6.6. FUTURE WORK 1. Staged Reactor Configuration
6.6.2. Bimetallic Substituted Oxides
A number of studies have been presented here which applied multiple metal additions to a supported catalyst for OSR. In some cases the additional metal was used as a promoter to modify the activity and/or deactivation resis-tance of the catalytic metal(s). Other metal addi-tion was used to modify the support properties and/or its interaction with the active metal(s).
Building on the successes achieved in the OSR of Transportation Fuels (Section 6.5.3) through the use of substituted oxides (i.e., perovskites and pyrochlores), a potentially significant area for development of these catalysts exists in combining a bimetallic catalyst approach with a substituted oxide.
This approach differs from the use of promoting metal substitution, as done in the A-and/or B-sites of these materials, which are used to modify properties like surface acid-base character, morphology, ion conductivity, and carbon formation. Instead, this approach would examine the substitution of two different catalytic metals (i.e., Ni and Rh) that are active indepen-dently for OSR, and are substituted at a sufficient level in which both participate in the reaction.
In essence, this would be accomplished by selecting metals that are highly active and selec-tive for different steps in the reaction mechanism.
However, the approach will not simply provide a benefit from direct alloy formation between the metals, which may alter their electronic prop-erties in favorable ways, but may also provide a synergistic effect through the simultaneous participation in the overall reaction. For example, the substitution of both Ni and Rh together may reduce the formation of destructive filament carbon due to the high activity and carbon resis-tance of the Rh metal, which would be in prox-imity to the Ni atoms at the surface, but not in alloy form.
6. OXIDATIVE STEAM REFORMING
180
References
[1] Qi A, Wang S, Fu G, Wu D. Autothermal reforming of n-octane on Ru-based catalysts. Appl Catal A: Gen 2005;293:71e82.
[2] Borup RL, Inbody MA, Semelsberger TA, Tafoya JI, Guidry DR. Fuel composition effects on transportation fuel cell reforming. Catal Today 2005;99(3e4):263e70.
[3] Ferreira-Aparicio P, Benito MJ. New trends in reforming technologies: from hydrogen industrial plants to multifuel mircroreformers. Catal Rev Sci Eng 2005;47:491e8.
[4] Ahmed S, Krumpelt M. Hydrogen from hydro-carbon fuels for fuel cells. Int J Hydrogen Energy 2001;26(4):291e301.
[5] Danial DE, Kumar R, Ahluwalia RK, Krumpelt M. Fuel processors for automotive fuel cell systems: a para-metric analysis. J Power Sources 2001;102(1e2):1e15.
[6] Krumpelt M, Krause TR, Carter JD, Kopasz JP, Ahmed S. Fuel processing for fuel cell systems in transportation and portable power applications.
Catal Today 2002;77(1e2):3e16.
[7] Shekhawat D, Berry DA, Gardner TH, Haynes DJ, Spivey JJ. Effects of fuel cell anode recycle on cata-lytic fuel reforming. J Power Sources 2007;168 (2):477e83.
[8] Huang C, T-Raissi A. Thermodynamic analyses of hydrogen production from sub-quality natural gas:
Part II: steam reforming and autothermal steam reforming. J Power Sources 2007;163(2):637e44.
[9] Huang C, T-Raissi A. Thermodynamic analyses of hydrogen production from sub-quality natural gas:
Part I: pyrolysis and autothermal pyrolysis. J Power Sources 2007;163(2):645e52.
[10] Chan SH, Wang HM. Thermodynamic analysis of natural-gas fuel processing for fuel cell applications.
Int J Hydrogen Energy 2000;25(5):441e9.
[11] Semelsberger TA, Brown LF, Borup RL, Inbody MA.
Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds. Int J Hydrogen Energy 2004;29(10):1047e64.
[12] Liu S, Zhang K, Fang L, Li Y. Thermodynamic analysis of hydrogen production from oxidative steam reforming of ethanol. Energy Fuels 2008;22:1365e70.
[13] Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, et al. Catalytic autothermal reforming of methane and propane over supported metal cata-lysts. Appl Catal A: Gen 2003;241(1e2):261e9.
[14] Seo YS, Shirley A, Kolaczkowski ST. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies. J Power Sources 2002;108 (1e2):213e25.
[15] Dalle ND, Baggio P, Tomasi C, Mutri L, Canu P.
A thermodynamic analysis of natural gas reforming processes for fuel cell application. Chem Eng Sci 2007;62(18e20):5418e24.
[16] Zeng G, Tian Y, Li Y. Thermodynamic analysis of hydrogen production for fuel cell via oxidative steam reforming of propane. Int J Hydrogen Energy 2010;35(13):6726e37.
[17] Wang S, Wang S. Thermodynamic equilibrium composition analysis of methanol autothermal reforming for proton exchanger membrane fuel cell based on FLUENT Software. J Power Sources 2008;
185(1):451e8.
[18] Chan SH, Wang HM. Thermodynamic and kinetic modelling of an autothermal methanol reformer.
J Power Sources 2004;126(1e2):8e15.
[19] Hagh BF. Stoichiometric analysis of autothermal fuel processing. J Power Sources 2004;130(1e2):
85e94.
[20] Rabenstein G, Hacker V. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: a thermodynamic analysis. J Power Sources 2008;185(2):1293e304.
[21] Benito M, Padilla R, Sanz JL, Daza L. Thermody-namic analysis and performance of a 1 kW bio-ethanol processor for a PEMFC operation. J Power Sources 2007;169(1):123e30.
[22] Wang H, Wang X, Li M, Li S, Wang S, Ma X. Ther-modynamic analysis of hydrogen production from glycerol autothermal reforming. Int J Hydrogen Energy 2009;34(14):5683e90.
[23] Villegas L, Guilhaume N, Provendier H, Daniel C, Masset F, Mirodatos C. A combined thermody-namic/experimental study for the optimisation of hydrogen production by catalytic reforming of isooctane. Appl Catal A: Gen 2005;281(1e2):75e83.
[24] Docter A, Lamm A. Gasoline fuel cell systems.
J Power Sources 1999;84(2):194e200.
[25] Ersoz A, Olgun H, Ozdogan S, Gungor C, Akgun F, TirIs M. Autothermal reforming as a hydrocarbon fuel processing option for PEM fuel cell. J Power Sources 2003;118(1e2):384e92.
[26] Parmar RD, Kundu A, Karan K. Thermodynamic analysis of diesel reforming process: mapping of carbon formation boundary and representative independent reactions. J Power Sources 2009;194 (2):1007e20.
[27] Kang I, Bae J. Autothermal reforming study of diesel for fuel cell application. J Power Sources 2006;159 (2):1283e90.
[28] Kaila RK, Krause AOI. Autothermal reforming of simulated gasoline and diesel fuels. Int J Hydrogen Energy 2006;31(13):1934e41.
REFERENCES 181
[29] Shekhawat D, Berry DA, Gardner TH, Spivey JJ.
Catalytic reforming of liquid hydrocarbon fuels for fuel cell applications. In: Spivey JJ, Dooley KM, editors. Catalysis, vol. 27. Cambridge, UK: The Royal Society of Chemistry; 2006. p. 184e253.
[30] Ibarreta AF, Sung C-J. Optimization of Jet-A fuel reforming for aerospace applications. Int J Hydrogen Energy 2006;31(8):1066e78.
[31] Roine A, Lamberg P, Mansikka-aho J, Bjorklund P, Kentala J-P, Talonen T. HSC Chemistry v6.12. Out-otec Research Oy; 2007.
[32] Lindermeir A, Kah S, Kavurucu S, Mu¨hlner M.
On-board diesel fuel processing for an SOFC-APUeTechnical challenges for catalysis and reactor design. Appl Catal B: Env 2007;70(1e4):488e97.
[33] Michael BC, Donazzi A, Schmidt LD. Effects of H2O and CO2 addition in catalytic partial oxidation of methane on Rh. J Catal 2009;265(1):117e29.
[34] York APE, Xiao T, Green MLH. Brief overview of the partial oxidation of methane to synthesis gas. Top Catal 2003;22:345e58.
[35] Au CT, Wang HY. Mechanistic studies of methane partial oxidation to syngas over sio2-supported rhodium catalysts. J Catal 1997;167(2):337e45.
[36] Li B, Maruyama K, Nurunnabi M, Kunimori K, Tomishige K. Temperature profiles of alumina-sup-ported noble metal catalysts in autothermal reforming of methane. Appl Catal A: Gen 2004;275(1e2):157e72.
[37] Pino L, Vita A, Cipitı` F, Lagana` M, Recupero V.
Performance of Pt/CeO2catalyst for propane oxidative steam reforming. Appl Catal A: Gen 2006;306:68e77.
[38] Prettre M, Eichner CH, Perrin M. Catalytic oxidation of methane to carbon monoxide and hydrogen. Trans Faraday Soc 1946;43:335e40.
[39] Ruiz JAC, Passos FB, Bueno JMC, Souza-Aguiar EF, Mattos LV, Noronha FB. Syngas production by auto-thermal reforming of methane on supported platinum catalysts. Appl Catal A: Gen 2008;334(1e2):259e67.
[40] Simeone M, Salemme L, Scognamiglio D, Allouis C, Volpicelli G. Effect of water addition and stoichiom-etry variations on temperature profiles in an auto-thermal methane reforming reactor with Ni catalyst.
Int J Hydrogen Energy 2008;33(4):1252e61.
[41] Mukainakano Y, Yoshida K, Okumura K, Kunimori K, Tomishige K. Catalytic performance and QXAFS analysis of Ni catalysts modified with Pd for oxidative steam reforming of methane. Catal Today 2008;132(1e4):101e8.
[42] Tomishige K, Nurunnabi M, Maruyama K, Kunimori K. Effect of oxygen addition to steam and dry reforming of methane on bed temperature profile over Pt and Ni catalysts. Fuel Process Technol 2004;85(8e10):1103e20.
[43] Simeone M, Menna L, Salemme L, Allouis C.
Temperature evolution on Rh/Al2O3 catalyst during partial oxidation of methane in a reverse flow reactor. Exp Therm Fluid Sci 2010;34(3):
381e6.
[44] Simeone M, Salemme L, Allouis C. Reactor temper-ature profile during autothermal methane reforming on Rh/Al2O3catalyst by IR imaging. Int J Hydrogen Energy 2008;33(18):4798e5808.
[45] Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH. Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3catalyst.
J Catal 1991;132(1):117e27.
[46] Yamazaki O, Tomishige K, Fujimoto K. Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio. Appl Catal A: Gen 1996;136(1):49e56.
[47] Enger BC, Lødeng R, Holmen A. Modified cobalt catalysts in the partial oxidation of methane at moderate temperatures. J Catal 2009;262(2):188e 98.
[48] Li B, Kado S, Mukainakano Y, Miyazawa T, Miyao T, Naito S, et al. Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane. J Catal 2007;245(1):144e55.
[49] Li B, Kado S, Mukainakano Y, Nurunnabi M, Miyao T, Naito S, et al. Temperature profile of cata-lyst bed during oxidative steam reforming of methane over Pt-Ni bimetallic catalysts. Appl Catal A: Gen 2006;304:62e71.
[50] Sato K, Nagaoka K, Nishiguchi H, Takita Y. n-C4H10
autothermal reforming over MgO-supported base metal catalysts. Int J Hydrogen Energy 2009;34(1):
333e42.
[51] Bitsch-Larsen A, Horn R, Schmidt LD. Catalytic partial oxidation of methane on rhodium and plat-inum: spatial profiles at elevated pressure. Appl Catal A: Gen 2008;348(2):165e72.
[52] Dalle ND, Degenstein NJ, Horn R, Canu P, Schmidt LD. Modeling spatially resolved profiles of methane partial oxidation on a Rh foam catalyst with detailed chemistry. J Catal 2008;258(1):131e42.
[53] Horn R, Williams KA, Degenstein NJ, Bitsch-Larsen A, Dalle ND, Tupy SA, et al. Methane cata-lytic partial oxidation on autothermal Rh and Pt foam catalysts: oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium. J Catal 2007;249(2):380e93.
[54] Horn R, Williams KA, Degenstein NJ, Schmidt LD.
Syngas by catalytic partial oxidation of methane on rhodium: mechanistic conclusions from spatially resolved measurements and numerical simulations.
J Catal 2006;242(1):92e102.
6. OXIDATIVE STEAM REFORMING
182
[55] Horn R, Williams KA, Degenstein NJ, Schmidt LD.
Mechanism of H2and CO formation in the catalytic partial oxidation of CH4 on Rh probed by steady-state spatial profiles and spatially resolved tran-sients. Chem Eng Sci 2007;62(5):1298e307.
[56] Hickman DA, Schmidt LD. Synthesis gas formation by direct oxidation of methane over Pt monoliths.
J Catal 1992;138(1):267e82.
[57] Hickman DA, Schmidt LD. Steps in CH4oxidation on Pt and Rh surfaces e high temperature reactor simulations. AIChE J 1993;39(7):1164e77.
[58] Hu YH, Ruckenstein E. Transient kinetic studies of partial oxidation of CH4. J Catal 1996;158(1):260e6.
[59] Mallens EPJ, Hoebink JHBJ, Marin GB. The reaction mechanism of the partial oxidation of methane to synthesis gas: a transient kinetic study over rhodium and a comparison with platinum. J Catal 1997;167 (1):43e56.
[60] Mallens EPJ, Hoebink JHBJ, Marin GB. An investi-gation on the reaction-mechanism for the partial oxidation of methane to synthesis gas over platinum.
Catal Lett 1995;33(3e4):291e304.
[61] Mhadeshwar AB, Vlachos DG. Hierarchical multi-scale mechanism development for methane partial oxidation and reforming and for thermal decompo-sition of oxygenates on Rh. J Phys Chem B 2005;
109(35):16819e35.
[62] Dauenhauer PJ, Salge JR, Schmidt LD. Renewable hydrogen by autothermal steam reforming of vola-tile carbohydrates. J Catal 2006;244(2):238e47.
[63] Semelsberger TA, Ott KC, Borup RL, Greene HL.
Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates. Appl Catal A: Gen 2006;309(2):210e23.
[64] Shishido T, Yamamoto Y, Morioka H, Takehira K.
Production of hydrogen from methanol over Cu/
ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming. J Mol Catal A: Chem 2007;268(1e2):185e94.
[65] Xu J, Froment GF. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics.
AIChE J 1989;35(1):88e96.
[66] Tøttrup PB. Evaluation of intrinsic steam reforming kinetic parameters from rate measurements on full particle size. Appl Catal 1982;4(4):377e89.
[67] Pacheco M, Sira J, Kopasz J. Reaction kinetics and reactor modeling for fuel processing of liquid hydrocarbons to produce hydrogen: isooctane reforming. Appl Catal A: Gen 2003;250(1):161e75.
[68] Halabi MH, de Croon MHJM, van der Schaaf J, Cobden PD, Schouten JC. Modeling and analysis of
autothermal reforming of methane to hydrogen in a fixed bed reformer. Chem Eng J 2008;137(3):568e78.
[69] Hoang DL, Chan SH. Modeling of a catalytic auto-thermal methane reformer for fuel cell applications.
Appl Catal A: Gen 2004;268(1e2):207e16.
[70] Hoang DL, Chan SH, Ding OL. Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support. J Power Sources 2006;159(2):1248e57.
[71] Ma L, Trimm DL, Jiang C. The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen. I. The kinetics of the catalytic oxidation of light hydrocarbons. Appl Catal A: Gen 1996;138(2):275e83.
[72] Trimm DL, Lam C- W. The combustion of methane on platinumealumina fibre catalystseI: kinetics and mechanism. Chem Eng Sci 1980;35(6):1405e13.
[73] Nah CY, Palanki S. Analysis of heptane autothermal reformer to generate hydrogen for fuel cell appli-cations. Int J Hydrogen Energy 2009;34(20):
8566e73.
[74] Papadias D, Lee SHD, Chmielewski DJ. Autothermal reforming of gasoline for fuel cell applications:
a transient reactor model. Ind Eng Chem Res 2006;
45(17):5841e58.
[75] Dubien C, Schweich D, Mabilon G, Martin B, Prigent M. Three-way catalytic converter modelling:
fast- and slow-oxidizing hydrocarbons, inhibiting species, and steam-reforming reaction. Chem Eng Sci 1998;53(3):471e81.
[76] Wheeler C, Jhalani A, Klein EJ, Tummala S, Schmidt LD. The water-gas-shift reaction at short contact times. J Catal 2004;223(1):191e9.
[77] Jin W, Gu X, Li S, Huang P, Xu N, Shi J. Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas. Chem Eng Sci 2000;55(14):2617e25.
[78] Shigarov AB, Kireenkov VV, Kuzmin VA, Kuzin NA, Kirillov VA. Autothermal reforming of diesel fuel in a structured porous metal catalyst: both kinetically and transport controlled reaction. Catal Today 2009;144(3e4):341e9.
[79] Dorazio L, Castaldi MJ. Autothermal reforming of tetradecane (C14H30): a mechanistic approach. Catal Today 2008;136(3e4):273e80.
[80] Parmar RD, Kundu A, Thurgood C, Peppley BA, Karan K. Kinetic studies of the autothermal reform-ing of tetradecane over Pt/Al2O3catalyst in a fixed-bed reactor. Fuel 2010;89(6):1212e20.
[81] Rostrup-Nielsen J. In: Anderson JR, Boudard M, editors. Catalytic steam reforming. Catalysis Science and Technology, vol. 5. Berlin: Springer-Verlag; 1984.
p. 1e118.
REFERENCES 183
[82] Zaera F. Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective. Appl Catal A: Gen 2002;229(1e2):75e91.
[83] Reitz TL, Ahmed S, Krumpelt M, Kumar R, Kung HH.
Characterization of CuO/ZnO under oxidizing condi-tions for the oxidative methanol reforming reaction. J Mol Catal A: Chem 2000;162(1e2):275e85.
[84] Mizsey P, Newson E, Truong T-b, Hottinger P. The kinetics of methanol decomposition: a part of auto-thermal partial oxidation to produce hydrogen for fuel cells. Appl Catal A: Gen 2001;213(2):233e7.
[85] Wei J, Iglesia E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J Phys Chem B 2004;108:4094e103.
[86] Barbier J, Corro G, Marecot P, Bournonville JP, Franck JP. Structure sensitivity and coke formation on Pt/Al2O3catalysts. React Kinet Catal Lett 1985;28 (2):245e50.
[87] Barbier J, Corro G, Zhang Y, Bournonville JP, Franck JP. Coke formation on platinum-alumina catalyst of wide varying dispersion. Appl Catal 1985;13(2):245e55.
[88] Barbier J, Marecot P. Effect of presulfurization on the formation of coke on supported metal catalysts.
J Catal 1986;102(1):21e8.
[89] Sehested J. Four challenges for nickel steam-reforming catalysts. Catal Today 2006;111(1e2):103e10.
[90] Choudhary TV, Goodman DW. Methane activation on Ni and Ru model catalysts. J Mol Catal A: Chem 2000;163(1e2):9e18.
[91] Schuurman Y, Mirodatos C. Uses of transient kinetics for methane activation studies. Appl Catal A: Gen 1997;151(1):305e31.
[92] Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts.
J Catal 2008;259(1):147e60.
[93] Liao M-S, Zhang Q-E. Dissociation of methane on different transition metals. J Mol Catal A: Chem 1998;136(2):185e94.
[94] Trimm DL. Catalysts for the control of coking during steam reforming. Catal Today 1999;49(1e3):3e10.
[95] Bartholomew CH. Mechanisms of catalyst deactiva-tion. Appl Catal A: Gen 2001;212(1e2):17e60.
[96] Wang H, Liu Y, Wang L, Qin YN. Study on the carbon deposition in steam reforming of ethanol over Co/
CeO2 catalyst. Chem Eng J 2008;145(1):25e31.
[97] Wang HY, Ruckenstein E. Formation of filamentous carbon during methane decomposition over Co-MgO catalysts. Carbon 2002;40(11):1911e7.
[98] Gould BD, Chen X, Schwank JW. n-Dodecane reforming over nickel-based monolith catalysts:
deactivation and carbon deposition. Appl Catal A:
Gen 2008;334(1e2):277e90.
[99] Li B, Watanabe R, Maruyama K, Kunimori K, Tomishige K. Thermographical observation of cata-lyst bed temperature in oxidative steam reforming of methane over Ni supported on [alpha]-alumina granules: effect of Ni precursors. Catal Today 2005;
104(1):7e17.
[100] Yoshida K, Begum N, Ito S-i, Tomishige K. Oxidative steam reforming of methane over Ni/[alpha]-Al2O3
modified with trace noble metals. Appl Catal A: Gen 2009;358(2):186e92.
[101] Greenly J, Mavrikakis M. Alloy catalysts designed from first principles. Nat Mater 2004;3:810e5.
[102] Bozzolo G, Noebe RD, Khalil J, Morse J. Atomistic analysis of surface segregation in Ni-Pd alloys. Appl Surf Sci 2003;219(1e2):149e57.
[103] Parizotto NV, Zanchet D, Rocha KO, Marques CMP, Bueno JMC. The effects of Pt promotion on the oxi-reduction properties of alumina supported nickel catalysts for oxidative steam-reforming of methane: temperature-resolved XAFS analysis. Appl Catal A: Gen 2009;366(1):
122e9.
[104] Yoshida K, Okumura K, Miyao T, Naito S, Ito S-i, Kunimori K, et al. Oxidative steam reforming of methane over Ni/[alpha]-Al2O3 modified with trace Pd. Appl Catal A: Gen 2008;351(2):217e25.
[105] Mukainakano Y, Li B, Kado S, Miyazawa T, Okumura K, Miyao T, et al. Surface modification of Ni catalysts with trace Pd and Rh for oxidative steam reforming of methane. Appl Catal A: Gen 2007;318:
252e64.
[106] Dantas SC, Escritori JC, Soares RR, Hori CE.
Effect of different promoters on Ni/CeZrO2
catalyst for autothermal reforming and partial oxidation of methane. Chem Eng J 2010;156(2):
380e7.
[107] Dias JAC, Assaf JM. Autothermal reforming of methane over Ni/[gamma]-Al2O3 catalysts: the enhancement effect of small quantities of noble metals. J Power Sources 2004;130(1e2):106e10.
[108] Nikolla E, Schwank J, Linic S. Comparative study of the kinetics of methane steam reforming on sup-ported Ni and Sn/Ni alloy catalysts: the impact of the formation of Ni alloy on chemistry. J Catal 2009;
263(2):220e7.
[109] Takanabe K, Nagaoka K, Nariai K, Aika K-i. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J Catal 2005;
232(2):268e75.
6. OXIDATIVE STEAM REFORMING
184
[110] Parizotto NV, Fernandez RF, Marques CMP, Bueno JMC. Promoter effect of Ag and La on stability of Ni/
Al2O3catalysts in reforming of methane processes. In:
8th natural gas conversion symposium. Brazil: 2007.
[111] Chin Y-H, King DL, Roh H-S, Wang Y, Heald SM.
Structure and reactivity investigations on supported bimetallic AuNi catalysts used for hydrocarbon steam reforming. J Catal 2006;244(2):153e62.
[112] San-Jose´-Alonso D, Juan-Juan J, Illa´n-Go´mez MJ, Roma´n-Martı´nez MC. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl Catal A: Gen 2009;371(1e2):54e9.
[113] Zhang J, Wang H, Dalai AK. Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 2007;249(2):300e10.
[114] Koh ACW, Chen L, Kee Leong W, Johnson BFG, Khimyak T, Lin J. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts. Int J Hydrogen Energy 2007;32(6):725e30.
[115] Xu J, Zhou W, Li Z, Wang J, Ma J. Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 2009;
34(16):6646e54.
[116] Nikolla E, Schwank J, Linic S. Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J Catal 2007;250(1):85e93.
[117] Nikolla E, Schwank JW, Linic S. Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell oper-ating conditions. Catal Today 2008;136(3e4):243e8.
[118] Lee WS, Kim TY, Woo SI. High-throughput screening for the promoters of alumina supported Ni catalysts in autothermal reforming of methane. Top Catal 2010;53:123e8.
[119] Omata K, Endo Y, Ishii H, Masuda A, Yamada M.
Effective additives of Ni/-Al2O3 catalyst at low methane conversion of oxidative reforming for syngas formation. Appl Catal A: Gen 2008;351(1):54e8.
[120] Ghenciu AF. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 2002;6(5):389e99.
[121] Lisboa JDS, Santos DCRM, Passos FB, Noronha FB.
Influence of the addition of promoters to steam reforming catalysts. Catal Today 2005;101(1):15e21.
[122] Twigg MV. Catalyst handbook. 2nd ed. London:
Manson Publishing; 1996.
[123] Ruckenstein E, Hang Hu Y. Methane partial oxida-tion over NiO/MgO solid soluoxida-tion catalysts. Appl Catal A: Gen 1999;183(1):85e92.
[124] Wang HY, Ruckenstein E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support. Appl Catal A: Gen 2000;204(1):143e52.
[125] Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH4and its reaction with CO2 over supported Rh catalysts. J Catal 1993;141(1):287e99.
[126] Mark MF, Maier WF. CO2-reforming of methane on supported Rh and Ir catalysts. J Catal 1996;164 (1):122e30.
[127] Wei J, Iglesia E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J Catal 2004;225 (1):116e27.
[128] Alvarez-Galvan MC, Navarro RM, Rosa F, Bricen˜o Y, Gordillo Alvarez F, Fierro JLG. . Performance of La, Ce-modified alumina-supported Pt and Ni catalysts for the oxidative reforming of diesel hydrocarbons.
Int J Hydrogen Energy 2008;33(2):652e63.
[129] Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts: I. Effects of support and metal cystallite size on reaction activity and deactivation character-istics. J Catal 1996;158(1):51e63.
[130] Nakamura J, Aikawa K, Sato K, Uchijima T. Role of support in reforming of CH4 with CO2 over Rh Catalysts. Catal Lett 1994;25(3e4):265e70.
[131] Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions. J Power Sources 2000;87(1e2):
28e38.
[132] Youn MH, Seo JG, Lee H, Bang Y, Chung JS, Song IK.
Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on metal oxides: effect of support acidity. Appl Catal B: Env 2010;98(1e2):57e64.
[133] Ferrandon M, Krause T. Role of the oxide support on the performance of Rh catalysts for the auto-thermal reforming of gasoline and gasoline surro-gates to hydrogen. Appl Catal A: Gen 2006;311:
135e45.
[134] Ra˚berg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, et al. Propane dry reforming to synthesis gas over Ni-based catalysts: influence of support and operating parameters on catalyst activity and stability. J Catal 2007;249(2):250e60.
[135] Christian Enger B, Lødeng R, Holmen A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A: Gen 2008;346(1e2):1e27.
[136] Alvarez-Galvan MC, Navarro RM, Rosa F, Bricen˜o Y, Ridao MA, Fierro JLG. Hydrogen production for fuel cell by oxidative reforming of diesel surrogate:
influence of ceria and/or lanthana over the activity of Pt/Al2O3catalysts. Fuel 2008;87(12):2502e11.
REFERENCES 185
[137] Santos DCRM, Madeira L, Passos FB. The effect of the addition of Y2O3 to Ni/[alpha]-Al2O3 catalysts on the autothermal reforming of methane. Catal Today 2010;149(3e4):401e6.
[138] Cai X, Cai Y, Lin W. Autothermal reforming of methane over Ni catalysts supported over ZrO2 -CeO2-Al2O3. J Nat Gas Chem 2008;17:201e7.
[139] Choudhary VR, Mamman AS. Energy efficient conversion of methane to synthesis gas over NiO-MgO solid solution. Appl Energy 2000;66:
161e75.
[140] Choudhary VR, Rajput AM, Mamman AS. NiO-alkaline earth oxide catalysts for oxidative methane-to-syngas conversion: influence of alkaline earth oxide on the surface properties and temperature-programmed reduction/reaction by H2 and methane. J Catal 1998;178(2):576e85.
[141] Choudhary VR, Uphade BS, Mamman AS. Oxidative conversion of methane to syngas over nickel sup-ported on commercial low surface area porous catalyst carriers precoated with alkaline and rare earth oxides. J Catal 1997;172(2):281e93.
[142] Wang S, Lu GQM. CO2reforming of methane on Ni catalysts: effects of the support phase and prepa-ration technique. Appl Catal B: Env 1998;16 (3):269e77.
[143] Vlaic G, Di Monte R, Fornasiero P, Fonda E, Kaspar J, Graziani M. Redox property-local structure rela-tionships in the Rh-loaded CeO2-ZrO2mixed oxides.
J Catal 1999;182(2):378e89.
[144] Fornasiero P, Balducci G, Di Monte R, Kaspar J, Sergo V, Gubitosa G, et al. Modification of the Redox Behaviour of CeO2 Induced by Struc-tural Doping with ZrO2. J Catal 1996;164(1):
173e83.
[145] Laosiripojana N, Chadwick D, Assabumrungrat S.
Effect of high surface area CeO2 and Ce-ZrO2
supports over Ni catalyst on CH4 reforming with H2O in the presence of O2, H2, and CO2. Chem Eng J 2008;138(1e3):264e73.
[146] Cao L, Pan L, Ni C, Yuan Z, Wang S. Autothermal reforming of methane over Rh/Ce0.5Zr0.5O2catalyst:
effects of the crystal structure of the supports. Fuel Process Technol 2010;91(3):306e12.
[147] Yuan Z, Ni C, Zhang C, Gao D, Wang S, Xie Y, et al.
Rh/MgO/Ce0.5Zr0.5O2 supported catalyst for autothermal reforming of methane: the effects of ceria-zirconia doping. Catal Today 2009;146(1e2):
124e31.
[148] Sacco A, Geurts FWAH, Jablonski GA, Lee S, Gately RA. Carbon deposition and filament growth on Fe, Co, and Ni foils using CH4eH2eH2Oe COeCO2gas mixtures. J Catal 1989;119(2):322e41.
[149] Wang HY, Ruckenstein E. Partial oxidation of methane to synthesis gas over alkaline earth metal oxide supported cobalt catalysts. J Catal 2001;199(2):
309e17.
[150] Profeti LPR, Ticianelli EA, Assaf EM. Co/Al2O3
catalysts promoted with noble metals for production of hydrogen by methane steam reforming. Fuel 2008;87(10e11):2076e81.
[151] Hu X, Lu G. Comparative study of alumina-sup-ported transition metal catalysts for hydrogen generation by steam reforming of acetic acid. Appl Catal B: Env 2010;99(1e2):289e97.
[152] Slagtern A˚ , Swaan HM, Olsbye U, Dahl IM, Mirodatos C. Catalytic partial oxidation of methane over Ni-, Co- and Fe-based catalysts. Catal Today 1998;46(2e3):107e15.
[153] Valdes-Perez RE, Fishtik I, Zeigarnik AV. Predictions of activity patterns for methane reforming based on combinatorial pathway generation and energetic. In:
American Chemical Society, Division of Fuel Chemistry; 1999. p. 541e4.
[154] Panuccio GJ, Schmidt LD. Species and temperature profiles in a differential sphere bed reactor for the catalytic partial oxidation of n-octane. Appl Catal A:
Gen 2007;332(2):171e82.
[155] Krummenacher JJ, Schmidt LD. High yields of olefins and hydrogen from decane in short contact time reactors: rhodium versus platinum. J Catal 2004;222(2):429e38.
[156] Wang R, Liu X, Chen Y, Li W, Xu H. Effect of metal-support interaction on coking resistance of Rh-based catalysts in CH4/CO2 reforming. Chin J Catal 2007;28(10):865e9.
[157] Burch R, Loader PK, Cruise NA. An investigation of the deactivation of Rh/alumina catalysts under strong oxidising conditions. Appl Catal A: Gen 1996;147(2):375e94.
[158] Cao L, Ni C, Yuan Z, Wang S. Autothermal reform-ing of methane over CeO2-ZrO2-La2O3supported Rh catalyst. Catal Lett 2009;131:474e9.
[159] Bunluesin T, Gorte RJ, Graham GW. Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties.
Appl Catal B: Env 1998;15(1e2):107e14.
[160] Qin D, Lapszewicz J, Jiang X. Comparison of partial oxidation and steam-CO2mixed reforming of CH4to syngas on MgO-supported metals. J Catal 1996;
159(1):140e9.
[161] Cao L, Ni C, Yuan Z, Wang S. Correlation between catalytic selectivity and oxygen storage capacity in autothermal reforming of methane over Rh/
Ce0.45Zr0.45RE0.1catalysts (RE¼ La, Pr, Nd, Sm, Eu, Gd, Tb). Catal Comm 2009;10(8):1192e5.
6. OXIDATIVE STEAM REFORMING
186
[162] Ferreira AP, Zanchet D, Arau´jo JCS, Liberatori JWC, Souza-Aguiar EF, Noronha FB, et al. The effects of CeO2 on the activity and stability of Pt supported catalysts for methane reforming, as addressed by in situ temperature resolved XAFS and TEM analysis.
J Catal 2009;263(2):335e44.
[163] Souza MMVM, Schmal M. Autothermal reforming of methane over Pt/ZrO2/Al2O3catalysts. Appl Catal A: Gen 2005;281(1e2):19e24.
[164] Cronauer DC, Krause T, Salinas J, Wagner A, Wagner J. Comparison of Rh, Pt, and Rh-Pt sup-ported on an oxide-ion conducting substrate as catalysts for autothermal reforming of methane.
American Chemical Society, Divisions of Fuel Chemistry; 2006. p. 297e9.
[165] Bozo C, Guilhaume N, Garbowski E, Primet M.
Combustion of methane on CeO2-ZrO2 based cata-lysts. Catal Today 2000;59(1e2):33e45.
[166] Ge´lin P, Primet M. Complete oxidation of methane at low temperature over noble metal based catalysts:
a review. Appl Catal B: Env 2002;39(1):1e37.
[167] Lyubovsky M, Smith LL, Castaldi M, Karim H, Nentwick B, Etemad S, et al. Catalytic combustion over platinum group catalysts: lean versus fuel-rich operation. Catal Today 2003;83(1e4):71e84.
[168] Rabe S, Truong T-B, Vogel F. Low temperature cata-lytic partial oxidation of methane for gas-to-liquids applications. Appl Catal A: Gen 2005;292:177e88.
[169] Requies J, Rabe S, Vogel F, Truong TB, Filonova K, Barrio VL, et al. Reforming of methane over noble metal catalysts: catalyst deactivation induced by thiophene. Catal Today 2009;143(1e2):9e16.
[170] Lim S-S, Lee H-J, Moon D-J, Kim J-H, Park N-C, Shin J-S, et al. Autothermal reforming of propane over Ce modified Ni/LaAlO3 perovskite-type cata-lysts. Chem Eng J 2009;152(1):220e6.
[171] Silberova B, Venvik HJ, Walmsley JC, Holmen A.
Small-scale hydrogen production from propane.
Catal Today 2005;100(3e4):457e62.
[172] Aartun I, Venvik HJ, Holmen A, Pfeifer P, Go¨rke O, Schubert K. Temperature profiles and residence time effects during catalytic partial oxidation and oxidative steam reforming of propane in metallic microchannel reactors. Catal Today 2005;110(1e2):98e107.
[173] Barison S, Fabrizio M, Mortalo` C, Antonucci P, Modafferi V, Gerbasi R. Novel Ru/
La0.75Sr0.25Cr0.5Mn0.5O3-[delta] catalysts for propane reforming in IT-SOFCs. Solid State Ionics 2010;
181(5e7):285e91.
[174] Faria WLS, Dieguez LC, Schmal M. Autothermal reforming of propane for hydrogen production over Pd/CeO2/Al2O3catalysts. Appl Catal B: Env 2008;
85(1e2):77e85.
[175] Recupero V, Pino L, Vita A, CipitI F, Cordaro M, Lagana` M. Development of a LPG fuel processor for PEFC systems: laboratory scale evaluation of autothermal reforming and preferential oxidation subunits. Int J Hydrogen Energy 2005;30(9):
963e71.
[176] Vita A, Pino L, Cipitı` F, Lagana` M, Recupero V.
Structured reactors as alternative to pellets catalyst for propane oxidative steam reforming. Int J Hydrogen Energy 2010;35(18):9810e7.
[177] Takehira K. "Intelligent" reforming catalysts: trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites. J Nat Gas Chem 2009;18(3):237e59.
[178] Lee H-J, Lim Y-S, Park N-C, Kim Y- C. Catalytic autothermal reforming of propane over the noble metal-doped hydrotalcite-type catalysts. Chem Eng J 2009;146(2):295e301.
[179] Miyata T, Li D, Shiraga M, Shishido T, Oumi Y, Sano T, et al. Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming. Appl Catal A:
Gen 2006;310:97e104.
[180] Li D, Nishida K, Zhan Y, Shishido T, Oumi Y, Sano T, et al. Sustainable Ru-doped Ni catalyst derived from hydrotalcite in propane reforming. Appl. Clay Sci 2009;43(1):49e56.
[181] Nagaoka K, Jentys A, Lercher JA. Methane auto-thermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydro-talcite precursors. J Catal 2005;229(1):185e96.
[182] Liu D-J, Krumpelt M, Chien H-T, Sheen SH. Cata-lysts and fuel mixing for diesel reformer in fuel cell auxiliary power unit. In: Fuel Cell Seminar. San Antonio, TX: 2004.
[183] Moon DJ, Ryu JW, Lee SD, Ahn BS. Partial oxidation (POX) reforming of gasoline for fuel-cell powered vehicles applications. Korean J Chem Eng 2002;
19(6):921e7.
[184] Kim DH, Ryu JW, Choi EH, Gong GT, Lee H, Lee BG, et al. Production of synthesis gas by autothermal reforming of iso-octane and toluene over metal modified Ni-based catalyst. Catal Today 2008;136 (3e4):266e72.
[185] Moon DJ, Ryu JW, Lee SD, Lee BG, Ahn BS. Ni-based catalyst for partial oxidation reforming of iso-octane.
Appl Catal A: Gen 2004;272(1e2):53e60.
[186] Gould BD, Chen X, Schwank JW. Dodecane reform-ing over nickel-based monolith catalysts. J Catal 2007;250(2):209e21.
[187] Gould BD, Tadd AR, Schwank JW. Nickel-catalyzed autothermal reforming of jet fuel surrogates: n-Dodecane, tetralin, and their mixture. J Power Sources 2007;164(1):344e50.
REFERENCES 187
[188] Chen X, Gould BD, Schwank JW. n-Dodecane reforming over monolith-based Ni catalysts: SEM study of axial carbon distribution profile. Appl Catal A: Gen 2009;356(2):137e47.
[189] Chen X, Tadd AR, Schwank JW. Carbon deposited on Ni/CeZrO isooctane autothermal reforming cata-lysts. J Catal 2007;251(2):374e87.
[190] Erri P, Dinka P, Varma A. Novel perovskite-based catalysts for autothermal JP-8 fuel reforming. Chem Eng Sci 2006;61(16):5328e33.
[191] Navarro RM, Alvarez-Galvan MC, Villoria JA, Gonza´lez-Jime´nez ID, Rosa F, Fierro JLG. Effect of Ru on LaCoO3 perovskite-derived catalyst properties tested in oxidative reforming of diesel. Appl Catal B:
Env 2007;73(3e4):247e58.
[192] Villoria JA, Alvarez-Galvan MC, Navarro RM, Bricen˜o Y, Gordillo Alvarez F, Rosa F, et al. Zirconia-supported LaCoO3 catalysts for hydrogen produc-tion by oxidative reforming of diesel: optimizaproduc-tion of preparation conditions. Catal Today 2008;138 (3e4):135e40.
[193] Mawdsley JR, Krause TR. Rare earth-first-row tran-sition metal perovskites as catalysts for the auto-thermal reforming of hydrocarbon fuels to generate hydrogen. Appl Catal A: Gen 2008;334(1e2):311e20.
[194] Qi A, Wang S, Fu G, Ni C, Wu D. La-Ce-Ni-O monolithic perovskite catalysts potential for gasoline autothermal reforming system. Appl Catal A: Gen 2005;281(1e2):233e46.
[195] Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T. Suppression of carbon deposition in the CO2 -reforming of CH4by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl Catal A: Gen 1996;144 (1e2):111e20.
[196] Dinka P, Mukasyan AS. Perovskite catalysts for the auto-reforming of sulfur containing fuels. J Power Sources 2007;167(2):472e81.
[197] Dı´az A, Odriozola JA, Montes M. Influence of alkali additives on activity and toxicity of H2S and thio-phene over a Ni/SiO2 catalyst. Appl Catal A: Gen 1998;166(1):163e72.
[198] Krause T, Mawdsley J, Rossignol C, Kopasz J, Applegate D, Ferrandon M, et al. DOE progress report for hydrogen, fuel cells, and infrastructures technologies program 2002:332e6.
[199] Mawdsley J, Ferrandon M, Rossignol C, Ralph J, Miller L, Kopasz J, et al. DOE progress report for hydrogen, fuel cells, and infrastructures technologies program- catalysts for autothermal reforming 2003:1e5.
[200] Houghtby WE, Buswell RF, Bett JAS, Lesieur RR, Meyer AP, Preston JL, et al. Development of the adiabatic reformer to process No. 2 fuel oil and
coal-derived liquid fuels. Electric Power Research Insti-tute; Feb. 1981.
[201] Setzer HJ, Lesieur RR, Karavolis S, Wnuck WG.
Autothermal reforming catalyst and process. U.S.
Patent No. 4473543 to USA: United Technologies Corp; 1984.
[202] Wieland S, Baumann F, Ahlborn R. Process for the autothermal catalytic steam reforming of hydrocar-bons. U.S.A: 2002.
[203] Wieland S, Baumann F, Starz K-A. New catalysts for autothermal reforming of gasoline and water gas shift reaction. In: Fuel cell seminar. Portland, OR: 2000.
[204] Springmann S, Friedrich G, Himmen M, Sommer M, Eigenberger G. Isothermal kinetic measurements for hydrogen production from hydrocarbon fuels using a novel kinetic reactor concept. Appl Catal A: Gen 2002;235(1e2):101e11.
[205] Brandmair M, Apfel H, Find J, Cremers C, Stimming U, Lercher J. Kilowatt-scale autothermal gasoline reformer for mobile applications. In: Fuel cell seminar. Miami, FL: 2003.
[206] Reyes SC, Sinfelt JH, Feeley JS. Evolution of processes for synthesis gas production: recent developments in an old technology. Ind Eng Chem Res 2003;42(8):1588e97.
[207] Yanhui W, Diyong W. The experimental research for production of hydrogen from n-octane through partially oxidizing and steam reforming method. Int J Hydrogen Energy 2001;26(8):795e800.
[208] Zhang J, Wang Y, Ma R, Wu D. Characterization of alumina-supported Ni and Ni-Pd catalysts for partial oxidation and steam reforming of hydrocar-bons. Appl Catal A: Gen 2003;243(2):251e9.
[209] Zhang J, Wang Y, Ma R, Wu D. Investigation of alumina-supported Ni and Ni-Pd catalysts for partial oxidation and steam reforming of n-octane.
Korean J Chem Eng 2003;20(2):288e92.
[210] Berry DA, Shekhawat D, Gardner TH, Rogers W.
Fuel processing of diesel fuel for auxiliary power units. In U.S. DOE Progress Report for Hydrogen, Fuel Cells, and Infrastructure Technologies Program;
2002. p. 337e41.
[211] Ham DO, Lewis PF, Lord GW, Yarrington RM, Hwang HS. Hydrocarbon auththermal reforming program Corp. E, Editor. Feb. 1982.
[212] Heck RM, Flanagan P. Catalytic partial oxidation process. USA: Engelhard Corp; 1989.
[213] Hwang HS, Heck RM, Yarrington RM. Fuel cell electric power production. U.S. Patent No. 4522894, to USA: Engelhard Corp; 1985.
[214] Dunn S. Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 2002;27(3):
235e64.
6. OXIDATIVE STEAM REFORMING
188