5.7. FUTURE DEVELOPMENT AND APPLICATIONS
5.7.4. CPOX with Recycle
The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation.
However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system.
Shekhawat et al.[135]examined two options for adding steam to the reformer inlet: (1) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2and some H2and CO) and (2) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2and some H2O and CO2). The anode gas recycle reduced the carbon formation and increased the H2
concentration in the reformate. However,
5. CATALYTIC PARTIAL OXIDATION
122
reformer recycle was not as effective due princi-pally to the lower water content in the reformate compared to the anode gas. In fact, the reformate recycle showed slightly increased carbon forma-tion compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), indi-vidual gas species were independently intro-duced to the reformer feed.
The main conclusions of this study were as follows: (1) Recycle of a simulated anode off-gas increased CO and H2 yields and greatly reduced carbon deposition compared to recycle of a simulated reformer product gas. (2) The total quantity of carbon formed decreased monotoni-cally with anode gas recycle ratio, due to the higher levels of carbon dioxide and steam that oxidize the carbon. (3) The separate effects of five individual components of the recycle gas (H2, CO, CO2, H2O, and N2) show that carbon dioxide and water decrease carbon formation, while H2has the same effect as the presumably unreactive nitrogen; CO increases carbon forma-tion compared to nitrogen; the decrease in carbon formation due to carbon dioxide is believed to be due to the Boudouard reaction while steam in the recycle stream gasifies carbon to COþ H2. The results of this study suggest that additional research and optimization of a recycle stream would be beneficial for a reformer-solid oxide fuel cell system.
References
[1] Enger BC, Lødeng R, Holmen A. A review of cata-lytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transi-tion metal catalysts. Appl Catal A: Gen 2008;346 (1e2):1e27.
[2] Bharadwaj SS, Schmidt LD. Catalytic partial oxida-tion of natural gas to syngas. Fuel Proc Technol 1995;42(2e3):109e27.
[3] Tsang SC, Claridge JB, Green MLH. Recent advances in the conversion of methane to synthesis gas. Catal Today 1995;23(1):3e15.
[4] Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial
oxidation reactions. J Power Sources 2000;87(1e2):
28e38.
[5] York APE, Xiao T, Green MLH. Brief overview of the partial oxidation of methane to synthesis gas. Topics Catal 2003;22(3e4):345e58.
[6] York APE, Xiao T, Green MLH, Claridge JB. Methane oxyforming for synthesis gas production. Catal Rev 2007;49(4):511e60.
[7] Shekhawat D, Berry DA, Gardner TH, Spivey JJ.
Catalytic reforming of liquid hydrocarbon fuels for fuel cell applications. In: Spivey JJ, Dooley KM, editors. Catalysis. Cambridge: The Royal Society of Chemistry; 2006;19:184e253.
[8] Krumpelt M, Krause TR, Carter JD, Kopasz JP, Ahmed S. Fuel processing for fuel cell systems in transportation and portable power applications.
Catal Today 2002;77(1e2):3e16.
[9] Michael BC, Donazzi A, Schmidt LD. Effects of H2O and CO2 addition in catalytic partial oxidation of methane on Rh. J Catal 2009;265(1):117e29.
[10] Jing QS, Zheng XM. Combined catalytic partial oxidation and CO2reforming of methane over ZrO2 -modified Ni/SiO2 catalysts using fluidized-bed reactor. Energy 2006;31(12):2184e92.
[11] Schneider A, Mantzaras J, Jansohn P. Experimental and numerical investigation of the catalytic partial oxidation of CH4/O2mixtures diluted with H2O and CO2 in a short contact time reactor. Chem Eng Sci 2006;61(14):4634e49.
[12] Cellier C, Blangy B, Mateos-Pedrero C, Ruiz P.
Modification of catalytic performances due to the co-feeding of hydrogen or carbon dioxide in the partial oxidation of methane over a NiO/g-Al2O3
catalyst. Catal Today 2006;112(1e4):112e6.
[13] Burke NR, Trimm DL. The relative importance of CO2reforming during the catalytic partial oxidation of CH4-CO2 mixtures. In: Xinhe B, Yide X, editors.
Stud Surf Sci Catal. Elsevier; 2004 ;147:299e34.
[14] He S, Jing Q, Yu W, Mo L, Lou H, Zheng X.
Combination of CO2reforming and partial oxidation of methane to produce syngas over Ni/SiO2
prepared with nickel citrate precursor. Catal Today 2009;148(1e2):130e3.
[15] He S, Wu H, Yu W, Mo L, Lou H, Zheng X. Combi-nation of CO2 reforming and partial oxidation of methane to produce syngas over Ni/SiO2 and Ni-Al2O3/SiO2catalysts with different precursors. Int J Hydrogen Energy 2009;34(2):839e43.
[16] Choudhary VR, Mondal KC. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3
perovskite-type mixed metal-oxide catalyst. Appl Energy 2006;83(9):1024e32.
REFERENCES 123
[17] Choudhary VR, Mondal KC, Choudhary TV. Partial oxidation of methane to syngas with or without simul-taneous steam or CO2reforming over a high-tempera-ture stable-NiCoMgCeOxsupported on zirconia-hafnia catalyst. Appl Catal A: Gen 2006;306:45e50.
[18] Cellier C, Clef DL, Mateos-Pedrero C, Ruiz P. Influ-ence of the co-feeding of CO, H2, CO2or H2O in the partial oxidation of methane over Ni and Rh sup-ported catalysts. Catal Today 2005;106(1e4):47e51.
[19] Puolakka KJ, Juutilainen S, Krause AOI. Combined CO2reforming and partial oxidation of n-heptane on noble metal zirconia catalysts. Catal Today 2006;115 (1e4):217e21.
[20] Jing Q, Lou H, Mo L, Fei J, Zheng X. Combination of CO2 reforming and partial oxidation of methane over Ni/BaO-SiO2catalysts to produce low H2/CO ratio syngas using a fluidized bed reactor. J Mol Catal A: Chem 2004;212(1e2):211e7.
[21] Souza MMVM, Schmal M. Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts. Appl Catal A:
Gen 2003;255(1):83e92.
[22] Tsyganok AI, Inaba M, Tsunoda T, Suzuki K, Takehira K, Hayakawa T. Combined partial oxida-tion and dry reforming of methane to synthesis gas over noble metals supported on Mg-Al mixed oxide.
Appl Catal A: Gen 2004;275(1e2):149e55.
[23] Wang W, Stagg-Williams SM, Noronha FB, Mattos LV, Passos FB. Partial oxidation and combined reforming of methane on Ce-promoted catalysts. Catal Today 2004;98(4):553e63.
[24] Larentis AL, de Resende NS, Salim VMM, Pinto JC.
Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas. Appl Catal A: Gen 2001;215(1e2):211e24.
[25] Liu S, Xiong G, Dong H, Yang W. Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/g-Al2O3
catalyst. Appl Catal A: Gen 2000;202(1):141e6.
[26] Choudhary VR, Uphade BS, Mamman AS. Partial oxidation of methane to syngas with or without simultaneous CO2and steam reforming reactions over Ni/AlPO4. Micro Meso Mater 1998;23(1e2):61e6.
[27] Claridge JB, Green MLH, Tsang SC. Methane conversion to synthesis gas by partial oxidation and dry reforming over rhenium catalysts. Catal Today 1994;21(2e3):455e60.
[28] Uchijima T, Nakamura J, Sato K, Aikawa K, Kubushiro K, Kunimori K. Production of synthesis gas by partial oxidation of methane and reforming of methane with carbon dioxide. In: Curry-Hyde HE, Howe RF, editors. Stud Surf Sci Catal. Elsevier; 1994;
81: 325e7.
[29] Hutchings GJ, Scurrell MS, Woodhouse JR. Direct partial oxidation of methane: effect of the oxidant on the reaction. Appl Catal 1988;38(1):157e65.
[30] Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT.
Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion. Catal Today 1992;13(2e3):417e26.
[31] Roin A. HSC Chemistry Ver. 5.0. Outokumpu Research; 2002. Oy, Finland.
[32] Hickmann DA, Schmidt LD. Synthesis gas formation by direct oxidation of methane over Pt monoliths.
J Catal 1992;138(1):267e82.
[33] Hickmann DA, Schmidt LD. Production of syngas by direct catalytic oxidation of methane. Science 1993;259:343.
[34] Hickmann DA, Schmidt LD. Synthesis gas formation by direct oxidation of methane over monoliths.
Washington, D.C.: American Chemical Society Meeting; 1993.
[35] Hickmann DA, Schmidt LD. Synthesis gas formation by direct oxidation of methane over rhodium monoliths. Catal Lett 1993;17:223.
[36] Peters K, Rudolf M, Voetter H. Brennstoff-Chem 1955;36:257.
[37] Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH. Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3catalyst.
J Catal 1991;132(1):117e27.
[38] Au CT, Hu YH, Wan HL. Pulse studies of CH4
interaction with NiO/Al2O3 catalysts. Catal Lett 1994;27(1e2):199e206.
[39] Au CT, Wang HY, Wan HL. Mechanistic studies of CH4/O2conversion over SiO2-supported nickel and copper catalysts. J Catal 1996;158(1):343e8.
[40] Vermeiren WJM, Blomsma E, Jacobs PA. Catalytic and thermodynamic approach of the oxyreforming reac-tion of methane. Catal Today 1992;13(2e3):427e36.
[41] Hu YH, Ruckenstein E. Pulse-MS study of the partial oxidation of methane over Ni/La2O3catalyst. Catal Lett 1995;34(1(2)):41e50.
[42] Hu YH, Ruckenstein E. Transient kinetic studies of partial oxidation of CH4. J Catal 1996;158(1):260e6.
[43] Heitnes K, Lindberg S, Rokstad OA, Holmen A.
Catalytic partial oxidation of methane to synthesis gas. Catal Today 1995;24(3):211e6.
[44] Heitnes K, Lindberg S, Rokstad OA, Holmen A.
Catalytic partial oxidation of methane to synthesis gas using monolithic reactors. Catal Today 1994;
21(2e3):471e80.
[45] Mallens EPJ, Hoebink JHBJ, Marin GB. An investi-gation on the reaction mechanism for the partial oxidation of methane to synthesis gas over platinum.
Catal Lett 1995;33(3,4):291e304.
5. CATALYTIC PARTIAL OXIDATION
124
[46] Passos FB, Oliveira ER, Mattos LV, Noronha FB.
Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts. Catal Lett 2006;110(1e2):161e7.
[47] Hochmuth JK. Catalytic partial oxidation of methane over a monolith supported catalyst. Appl Catal B:
Env 1992;1(2):89e100.
[48] Hickmann DA, Schmidt LD. Steps in methane oxida-tion on platinum and rhodium surfaces. High-temperature reactor simulations. AIChE J 1993;39:1164.
[49] Oh SH, Mitchell PJ, Siewert RM. Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives. J Catal 1991;132(2):287e301.
[50] Walter K, Buyevskaya OV, Wolf D, Baerns M.
Rhodium-catalyzed partial oxidation of methane to CO and H2. In situ DRIFTS studies on surface intermediates. Catal Lett 1994;29(1,2):26170.
[51] Buyevskaya OV, Walter K, Wolf D, Baerns M.
Primary reaction steps and active surfaces sites in the rhodium-catalyzed partial oxidation of methane to CO and H2. Catal Lett 1996;38(1,2):81e8.
[52] Buyevskaya OV, Wolf D, Baerns M. Rhodium-cata-lyzed partial oxidation of methane to CO and H2. Transient studies on its mechanism. Catal Lett 1994;
29(12):249e60.
[53] Heitnes K, Rokstad OA, Holmen A. Partial oxidation of methane over platinum metal gauze. Catal Lett 1996;36:25e30.
[54] Qin D, Lapszewicz J, Jiang X. Comparison of partial oxidation and steam-CO2mixed reforming of CH4to syngas on MgO-supported metals. J Catal 1996;159 (1):140e9.
[55] Horn R, Williams KA, Degenstein NJ, Schmidt LD.
Syngas by catalytic partial oxidation of methane on rhodium: mechanistic conclusions from spatially resolved measurements and numerical simulations.
J Catal 2006;242(1):92e102.
[56] Wang D, Dewaele O, de Groote AM, Froment GF.
Reaction mechanism and role of the support in the partial oxidation of methane on Rh/Al2O3. J Catal 1996;159(2):418e26.
[57] Boucouvalas Y, Zhang Z, Verykios XE. Heat transport limitations and reaction scheme of partial oxidation of methane to synthesis gas over supported rhodium catalysts. Catal Lett 1994;27:131e42.
[58] Au CT, Wang HY. Mechanistic studies of methane partial oxidation to syngas over SiO2-supported rhodium catalysts. J Catal 1997;167(2):337e45.
[59] Shustorovich E. The bond-order conservation approach to chemisorption and heterogeneous catalysis: applications and implications. In: DD Eley HP, Paul BW, editors. Adv Catal: Academic Press; 1990. p. 101e63.
[60] Horn R, Williams KA, Degenstein NJ, Bitsch-Larsen A, Dalle Nogare D, Tupy SA, et al. Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium. J Catal 2007;249(2):380e93.
[61] Horn R, Williams KA, Degenstein NJ, Schmidt LD.
Mechanism of H2and CO formation in the catalytic partial oxidation of CH4 on Rh probed by steady-state spatial profiles and spatially resolved tran-sients. Chem Eng Sci 2007;62(5):1298e307.
[62] Prettre M, Eichner C, Perrin M. The catalytic oxida-tion of methane to carbon monoxide and hydrogen.
Trans Faraday Soc 1946;43:335e40.
[63] Enger BC, Lødeng R, Holmen A. Evaluation of reactor and catalyst performance in methane partial oxidation over modified nickel catalysts. Appl Catal A: Gen 2009;364(1e2):15e26.
[64] Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT. Partial oxidation of methane to synthesis gas. Catal Lett 1990;6:181e6.
[65] Boucouvalas Y, Zhang Z, Verykios XE. Partial oxidation of methane to synthesis gas via the direct reaction scheme over Ru/TiO2 catalyst. Catal Lett 1996;40(3(4)):189e95.
[66] Rabe S, Nachtegaal M, Vogel F. Catalytic partial oxidation of methane to synthesis gas over a ruthe-nium catalyst: the role of the oxidation state. Phy Chem Chem Phys 2007;9:1461e8.
[67] Rabe S, Vogel F, Truong T-B, Shimazu T, Wakasugi T, Aoki H, et al. Catalytic reforming of gasoline to hydrogen: kinetic investigation of deactivation processes. Int J Hydrogen Energy 2009;34(19):8023e33.
[68] Cao C, Hohn KL. Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3. Appl Catal A: Gen 2009;354 (1e2):26e32.
[69] Tsipouriari VA, Verykios XE. Kinetic study of the catalytic partial oxidation of methane to synthesis gas over Ni/La2O3 catalyst. In: Parmaliana A, Sanfilippo D, Frusteri F, Vaccari A, Arena F, editors.
Stud Surf Sci Catal; 1998; 119: 795e800.
[70] Gubanova EL, Schuurman Y, Sadykov VA, Mirodatos C, van Veen AC. Evaluation of kinetic models for the partial oxidation of methane to synthesis gas over a Pt/PrCeZrOxcatalyst coated on a triangular monolith. Chem Eng J 2009;154(1e3):174e84.
[71] De Smet CRH, de Croon MHJM, Berger RJ, Marin GB, Schouten JC. An experimental reactor to study the intrinsic kinetics of catalytic partial oxidation of methane in the presence of heat-trans-port limitations. Appl Catal A: Gen 1999;187 (1):33e48.
REFERENCES 125
[72] de Groote AM, Froment GF. Simulation of the cata-lytic partial oxidation of methane to synthesis gas.
Appl Catal A: Gen 1996;138(2):245e64.
[73] Slagtern A, Swaan HM, Olsbye U, Dahl IM, Mirodatos C. Catalytic partial oxidation of methane over Ni-, Co- and Fe-based catalysts. Catal Today 1998;46(2e3):107e15.
[74] Tang S, Lin J, Tan KL. Partial oxidation of metane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2. Catal Lett 1998;51:169e75.
[75] Ma D, Mei D, Li X, Gong M, Chen Y. Partial oxida-tion of methane to syngas over monolithic Ni/g-Al2O3catalyst e effects of rare earths and other basic promoters. J Rare Earths 2006;24(4):451e5.
[76] Salazar M, Berry DA, Gardner TH, Shekhawat D, Floyd D. Catalytic partial oxidation of methane over Pt/ceria-doped catalysts: effect of ionic conductivity.
Appl Catal A: Gen 2006;310:54e60.
[77] Dajiang M, Yaoqiang C, Junbo Z, Zhenling W, Di M, Maochu G. Catalytic partial oxidation of methane over Ni/CeO2-ZrO2-Al2O3. J Rare Earths 2007;25(3):
311e5.
[78] Salazar-Villalpando MD, Reyes B. Hydrogen production over Ni/ceria-supported catalysts by partial oxidation of methane. Int J Hydrogen Energy 2009;34(24):9723e9.
[79] Bharadwaj SS, Schmidt LD. Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors. J Catal 1994;146(1):11e21.
[80] Bodke AS, Bharadwaj SS, Schmidt LD. The effect of ceramic supports on partial oxidation of hydrocar-bons over noble metal coated monoliths. J Catal 1998;179(1):138e49.
[81] Hohn KL, Schmidt LD. Partial oxidation of methane to syngas at high space velocities over Rh-coated spheres. Appl Catal A: Gen 2001;211(1):53e68.
[82] Donazzi A, Michael BC, Schmidt LD. Chemical and geometric effects of Ce and washcoat addition on catalytic partial oxidation of CH4on Rh probed by spatially resolved measurements. J Catal 2008;260 (2):270e5.
[83] Lyubovsky M, Karim H, Menacherry P, Boorse S, LaPierre R, Pfefferle WC, et al. Complete and partial catalytic oxidation of methane over substrates with enhanced transport properties. Catal Today 2003;
83(1e4):183e97.
[84] Poirier MG, Jean G, Poirier MP. Partial oxidation of methane over a praseodymium/ruthenium pyro-chlore catalyst. In: Kevin JS, Emerson CS, editors.
Stud Surf Sci Catal. Elsevier; 1992;73:359e66.
[85] Klvana D, Vaillancourt J, Kirchnerova J, Chaouki J.
Combustion of methane over La0.66Sr0.34Ni0.3Co0.7O3
and La0.4Sr0.6Fe0.4Co0.6O3prepared by freeze-drying.
Appl Catal A: Gen 1994;109(2):181e93.
[86] Jang BWL, Nelson RM, Spivey JJ, Ocal M, Oukaci R, Marcelin G. Catalytic oxidation of methane over hexaaluminates and hexaaluminate-supported Pd catalysts. Catal Today 1999;47(1e4):103e13.
[87] McCarty JG, Wise H. Perovskite catalysts for methane combustion. Catal Today 1990;8(2):231e48.
[88] Arai H, Yamada T, Eguchi K, Seiyama T. Catalytic combustion of methane over various perovskite-type oxides. Appl Catal 1986;26:265e76.
[89] Machida M, Eguchi K, Arai H. Catalytic properties of BaMAl11O19-a(M¼ Cr, Mn, Fe, Co, and Ni) for high-temperature catalytic combustion. J Catal 1989;120(2):377e86.
[90] Machida M, Eguchi K, Arai H. Effect of structural modification on the catalytic property of Mn-substituted hexaaluminates. J Catal 1990;123(2):
477e85.
[91] Machida M, Eguchi K, Arai H. Effect of additives on the surface area of oxide supports for catalytic combustion. J Catal 1987;103(2):385e93.
[92] Xiao T-C, Hanif A, York APE, Green MLH. Methane partial oxidation to synthesis gas over bimetallic cobalt/tungsten carbide catalysts and integration with a Mn substituted hexaaluminate combustion catalyst. Catal Today 2009;147(3e4):196e202.
[93] Basile F, Fornasari G, Trifiro` F, Vaccari A. Rh-Ni synergy in the catalytic partial oxidation of methane:
surface phenomena and catalyst stability. Catal Today 2002;77(3):215e23.
[94] Nikolla E, Schwank J, Linic S. Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J Catal 2007;250(1):85e93.
[95] Enger BC, Lødeng R, Holmen A. Modified cobalt catalysts in the partial oxidation of methane at moderate temperatures. J Catal 2009;262 (2):188e98.
[96] Witt PM, Schmidt LD. Effect of flow rate on the partial oxidation of methane and ethane. J Catal 1996;163(2):465e75.
[97] Corbo P, Migliardini F. Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts. Int J Hydrogen Energy 2007;32(1):55e66.
[98] Huff M, Torniainen PM, Schmidt LD. Partial oxida-tion of alkanes over noble metal coated monoliths.
Catal Today 1994;21(1):113e28.
[99] Ran R, Xiong G, Sheng S, Yang W, Stroh N, Brunner H. Catalytic partial oxidation of n-heptane for hydrogen production. Catal Lett 2003;88 (1e2):55e9.
5. CATALYTIC PARTIAL OXIDATION
126
[100] Zhu W, Xiong G, Han W, Yang W. Catalytic partial oxidation of gasoline to syngas in a dense membrane reactor. Catal Today 2004;93e95:257e61.
[101] Gardner TH, Shekhawat D, Berry DA. Partial oxidation of n-tetradecane over lanthanum Ni-hex-aaluminate. In: AIChE Fall Meeting. Austin: TX;
2004.
[102] Gardner TH, Shekhawat D, Berry DA, Smith MW, Salazar M, Kugler EL. Effect of nickel hexaaluminate mirror cation on structure-sensitive reactions during n-tetradecane partial oxidation. Appl Catal A: Gen 2007;323:1e8.
[103] Smith MW, Berry DA, Shekhawat D, Haynes DJ, Spivey JJ. Partial oxidation of liquid hydrocarbons in the presence of oxygen-conducting supports:
effect of catalyst layer deposition. Fuel 2010;89:
1193e201.
[104] Haynes DJ, Berry DA, Shekhawat D, Spivey JJ.
Catalytic partial oxidation of n-tetradecane using Rh and Sr substituted pyrochlores: effects of sulfur.
Catal Today 2009;145(1e2):121e6.
[105] Haynes DJ, Campos A, Smith MW, Berry DA, Shekhawat D, Spivey JJ. Reducing the deactivation of Ni-metal during the catalytic partial oxidation of a surrogate diesel fuel mixture. Catal Today 2010;
154(3e4):210e6.
[106] Smith MW, Berry DA, Shekhawat D, Haynes DJ, Spivey JJ. Effect of oxide catalysts and oxygen-con-ducting supports on partial oxidation of liquid hydrocarbons. In: American Chemical Society 237th National Meeting and Exposition, 2009, Salt Lake City, UT.
[107] Tanaka M, Takemura M, Ito N. Catalysts for reforming hydrocarbon fuels. United States Patent No. 4088608, to Nippon Soken, Inc., Japan, 1978.
[108] Shekhawat D, Gardner TH, Berry DA, Salazar M, Haynes DJ, Spivey JJ. Catalytic partial oxidation of n-tetradecane in the presence of sulfur or poly-nuclear aromatics: Effects of support and metal.
Appl Catal A: Gen 2006;311:8e16.
[109] Fuhitani Y, Muraki H. Process for partially oxidizing hydrocarbons. United States Patent No. 4087259, to Kabushiki Kaisha Toyota Chuo Kenkyusho, Japan, 1978.
[110] O’Connor RP, Schmidt LD. Catalytic partial oxida-tion of cyclohexane in a single-gauze reactor. J Catal 2000;191(1):245e56.
[111] Schmidt LD, Klein EJ, Leclerc CA, Krummenacher J, West KN. Syngas in millisecond reactors: higher alkanes and fast lightoff. Chem Eng Sci;8(3-6):1037e41.
[112] O’Connor RP, Klein EJ, Henning D, Schmidt LD.
Tuning millisecond chemical reactors for the catalytic
partial oxidation of cyclohexane. Appl Catal A: Gen 2003;238(1):29e40.
[113] Subramanian R, Panuccio GJ, Krummenacher JJ, Lee IC, Schmidt LD. Catalytic partial oxidation of higher hydrocarbons: reactivities and selectivities of mixtures. Chem Eng Sci 2004;59(22e23):5501e7.
[114] Krummenacher JJ, West KN, Schmidt LD. Catalytic partial oxidation of higher hydrocarbons at milli-second contact times: decane, hexadecane, and diesel fuel. J Catal 2003;215(2):332e43.
[115] Haynes DJ, Berry DA, Shekhawat D, Spivey JJ.
Catalytic partial oxidation of n-tetradecane using pyrochlores: effect of Rh and Sr substitution. Catal Today 2008;136(3e4):206e13.
[116] Haynes DJ, Campos A, Berry DA, Shekhawat D, Roy A, Spivey JJ. Catalytic partial oxidation of a diesel surrogate fuel using an Ru-substituted pyrochlore. Catal Today 2010;155:84e91.
[117] Liguras DK, Goundani K, Verykios XE. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts. Int J Hydrogen Energy 2004;29(4):419e27.
[118] Liguras DK, Goundani K, Verykios XE. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts. J Power Sources 2004;130(1e2):30e7.
[119] Salge JR, Deluga GA, Schmidt LD. Catalytic partial oxidation of ethanol over noble metal catalysts.
J Catal 2005;235(1):69e78.
[120] Wanat EC, Suman B, Schmidt LD. Partial oxidation of alcohols to produce hydrogen and chemicals in millisecond-contact time reactors. J Catal 2005;235 (1):18e27.
[121] Fixman EM, Abello MC, Gorriz OF, Arru´a LA.
Preparation of Cu/SiO2catalysts with and without tartaric acid as template via a sol-gel process: char-acterization and evaluation in the methanol partial oxidation. Appl Catal A: Gen 2007;319:111e8.
[122] Schuyten S, Guerrero S, Miller JT, Shibata T, Wolf EE.
Characterization and oxidation states of Cu and Pd in Pd-CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation. Appl Catal A: Gen 2009;352(1e2):133e44.
[123] Chang F-W, Ou T-C, Roselin LS, Chen W-S, Lai S-C, Wu H- M. Production of hydrogen by partial oxidation of methanol over bimetallic Au-Cu/TiO2 -Fe2O3 catalysts. J Mol Catal A: Chem 2009;313 (1e2):55e64.
[124] Ou T-C, Chang F-W, Roselin LS. Production of hydrogen via partial oxidation of methanol over bimetallic Au-Cu/TiO2 catalysts. J Mol Catal A:
Chem 2008;293(1e2):8e16.
REFERENCES 127
[125] Chang F-W, Lai S-C, Roselin LS. Hydrogen produc-tion by partial oxidaproduc-tion of methanol over ZnO-promoted Au/Al2O3catalysts. J Mol Catal A: Chem 2008;282(1e2):129e35.
[126] Rabe S, Vogel F. A thermogravimetric study of the partial oxidation of methanol for hydrogen produc-tion over a Cu/ZnO/Al2O3catalyst. Appl Catal B:
Env 2008;84(3e4):827e34.
[127] Faungnawakij K, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K. Cu-based spinel catalysts CuB2O4(B¼ Fe, Mn, Cr, Ga, Al0.75Mn0.25) for steam reforming of dimethyl ether. Appl Catal A: Gen 2008;341(1e2):139e45.
[128] Nilsson M, Jozsa P, Pettersson LJ. Evaluation of Pd-based catalysts and the influence of operating conditions for autothermal reforming of dimethyl ether. Appl Catal B: Env 2007;76(1e2):42e50.
[129] Zhang Q, Du F, He X, Liu Z-T, Liu Z-W, Zhou Y.
Hydrogen production via partial oxidation and reforming of dimethyl ether. Catal Today 2009;146 (1e2):50e6.
[130] Zhang Q, Li X, Fujimoto K, Asami K. Hydrogen production by partial oxidation and reforming of DME. Appl Catal A: Gen 2005;288(1e2):169e74.
[131] Wang S, Ishihara T, Takita Y. Partial oxidation of dimethyl ether over various supported metal cata-lysts. Appl Catal A: Gen 2002;228(1e2):167e76.
[132] Nguyen BNT, Leclerc CA. Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen. Int J Hydrogen Energy 2008;33(4):1295e303.
[133] Subramanian R, Schmidt LD. Renewable olefins from biodiesel by autothermal reforming. Angewandte Chemie International Edition 2005;44:302e5.
[134] Haynes DJ, Berry DA, Shekhawat D, Smith MW, Spivey JJ. Long term reforming of commercial diesel fuel using a layered pyrochlore catalyst. In: Spring National Meeting. San Francisco, CA: American Chemical Society; 2010.
[135] Shekhawat D, Berry DA, Gardner TH, Haynes DJ, Spivey JJ. Effects of fuel cell anode recycle on catalytic fuel reforming. J Power Sources 2007;168(2):477e83.
[136] Shekhawat D, Berry DA, Haynes DJ, Spivey JJ. Fuel constituent effects on fuel reforming properties for fuel cell applications. Fuel 2009;88(5):817e25.
[137] Shekhawat D, Berry DA, Spivey JJ. Reforming of liquid hydrocarbon fuels for fuel cell applications.
Catal Today 2008;136(3e4). 189.
[138] Smith MW, Berry DA, Shekhawat D, Haynes DJ, Spivey JJ. Catalytic material development for a SOFC reforming system: application of an oxidative steam reforming catalyst to a monolithic reactor. In: 8th International Fuel Cell Science, Engineering and Technology Conference. Brooklyn, NY: American Society of Mechanical Engineers; 2010.
[139] Smith MW, Berry DA, Shekhawat D, Haynes DJ, Spivey JJ. Ni-substituted oxide catalysts with oxygen ion conductivity for hydrocarbon reforming. In: 2010 Spring National Meeting. San Antonio, TX: Amer-ican Institute of Chemical Engineers; 2010.
[140] Xu J, Wei W, Tian A, Fan Y, Bao X, Yu C. Temperature profile in a two-stage fixed bed reactor for catalytic partial oxidation of methane to syngas. Catal Today 2010;149(1e2):191e5.
[141] Shen S, Pan Z, Dong C, Jiang Q, Zhang Z, Yu C, et al.
A novel two-stage reactor process for catalytic oxidation of methane to synthesis gas. In: Iglesia E, Spivey JJ, Fleisch TH, editors. Stud Surf Sci Catal.
Elsevier; 2001;136:99e104.
[142] Zhu J, Rahuman MSMM, van Ommen JG, Lefferts L.
Dual catalyst bed concept for catalytic partial oxidation of methane to synthesis gas. Appl Catal A:
Gen 2004;259(1):95e100.
[143] Tong GCM, Flynn J, Leclerc CA. A dual catalyst bed for the autothermal partial oxidation of methane to synthesis gas. Catal Lett 2005;102:131e7.
[144] Zhu H, Kee RJ, Engel JR, Wickham DT. Catalytic partial oxidation of methane using RhSr- and Ni-substituted hexaaluminates. Proc Combustion Insti-tute 2007;31(2):1965e72.
[145] Bromberg L, Cohn DR, Rabinovich A, Alexeev N.
Plasma catalytic reforming of methane. Int J Hydrogen Energy 1999;24(12):1131e7.
[146] Sobacchi MG, Saveliev AV, Fridman AA, Kennedy LA, Ahmed S, Krause T. Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels. Int J Hydrogen Energy 2002;
27(6):635e42.
[147] Will H, Scholz P, Ondruschka B. Microwave-assisted heterogeneous gas-phase catalysis. Chem Eng Tech 2004;27(2):113e22.
[148] Zhang X, Hayward DO. Applications of microwave dielectric heating in environment-related heteroge-neous gas-phase catalytic systems. Inorganica Chimica Acta 2006;359(11):3421e33.
5. CATALYTIC PARTIAL OXIDATION
128
C H A P T E R
6
Oxidative Steam Reforming
Daniel J. Haynes, Dushyant Shekhawat
National Energy Technology Laboratory, U.S. Department of Energy, 3610 Collins Ferry Rd, Morgantown, WV 26507, USA
O U T L I N E
6.1. Introduction 130
6.2. Thermodynamics 131
6.2.1. Contributing Reactions 131 6.2.2. Effect of Temperature 132 6.2.3. Effect of Oxidant to Fuel ratio e
O/C and S/C 134
6.2.3.1. Increasing O/C Ratio 134 6.2.3.2. Increasing S/C ratio 134 6.2.3.3. Autothermal Operation 135 6.2.3.4. Reaction Enthalpy 135 6.2.4. Effect of Pressure 137
6.3. Mechanism 138
6.3.1. Combustion-Reforming Mechanism 138 6.3.1.1. Effect of O/C and H2O/C
Ratios 142
6.3.2. Pyrolysis-reforming Mechanism 142 6.3.3. Decomposition and Reforming
Mechanism for Oxygenates 143
6.4. Kinetics 144
6.4.1. Hydrocarbons 144
6.4.1.1. Combination of Individual Reactions Approach 144
6.4.1.2. Fundamental Approach 146
6.4.2. Methanol 147
6.5. Catalytic OSR of Hydrocarbons 147 6.5.1. Natural Gas/Methane 148 6.5.1.1. Non-Precious Metals 149 6.5.1.2. Noble Metals 158 6.5.2. C2eC6Hydrocarbons 163 6.5.2.1. Catalysts 163 6.5.3. Transportation Fuels 164 6.5.3.1. Nickel-Based Catalysts 165 6.5.3.2. Noble Metals 170 6.5.3.3. Mixed Metal Oxides
(substituted oxides) 173 6.5.4. Oxygenated Compounds 175 6.5.4.1. Methanol 175
6.5.4.2. Ethanol 176
6.5.4.3. Biodiesel 179
6.6. Future Work 179
6.6.1. Staged Reactor Configuration 179 6.6.2. Bimetallic Substituted Oxides 180
129
Fuel Cells DOI:10.1016/B978-0-444-53563-4.10006-9 Copyright Ó 2011 Elsevier B.V. All rights reserved.