• Tidak ada hasil yang ditemukan

[21] Wei J, Iglesia E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J Phys Chem B 2004;108:

4094e103.

[22] Rostrup-Nielsen JR, Christiansen LJ. Internal steam reforming in fuel cells and alkali poisoning. Appl Catal A: Gen 1995;126:381e90.

[23] Mogensen M, Lybye D, Kammer K, Bonanos N. Ceria revisited: electrolyte or electrode material? 2005. In:

Singhal SC, Mizusaki J, editors. Proceedings e Elec-trochem Soc; 2005. p. 1068e74.

[24] Mosqueda B, Toyir J, Kaddouri A, Ge´lin P. Steam reforming of methane under water deficient condi-tions over gadolinium-doped ceria. Appl Catal B: Env 2009;88:361e7.

[25] Lin SS-Y, Kim DH, Ha SY. Metallic phases of cobalt-based catalysts in ethanol steam reforming: the effect of cerium oxide. Appl Catal A: Gen 2009;355:

69e77.

[26] Clarigde JB, York APE, Brungs AJ, Marquez-Alvarez C, Sloan J, Tsang SC, et al. New catalysts for the conver-sion of methane to synthesis gas: molybdenum and tungsten carbide. J Catal 1998;180:85e100.

[27] Sehested J, Jacobsen CJH, Rokni S, Rostrup-Nielsen JR.

Activity and stability of molybdenum carbide as a catalyst for CO2reforming. J Catal 2001;201:206e12.

[28] Back MH, Back RA. Thermal decomposition and reactions of methane. In: Albright LF, Crynes BL, Corcoran WH, editors. Pyrolysis, theory and indus-trial practice, Chapter 1. New York: Academic Press;

1983. p. 1e24.

[29] Karim GA, Metwally M. A kinetic investigation of the reforming of natural gas for the production of hydrogen. Int J Hydrogen Energy 1979;5:293e304.

[30] Frost L, Hartvigsen J, Elangovan S. Co-electrolysis of steam and carbon dioxide as feed to a methanation reaction. Proc Annual AIChE Meeting 2007;8.

[31] Ross LL. Pyrolysis furnace design: conventional and novel pyrolysis. In: Albright LF, Crynes BL, Corcoran WH, editors. Theory and industrial prac-tice, Chapter 1. New York: Academic Press; 1983. p.

327e64.

[32] Zdonik SB, Green EJ, Haller LP. How cracking proceeds in the ethylene-pyrolysis reaction. Oil Gas J 1967;65(26):96e101.

[33] van Santen RA. Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 2009;42:57e66.

[34] Bengaard HS, Nørskov JK, Sehested JS, Clausen BS, Nielsen LP, Molenbroek AM, et al. Steam reforming and graphite formation on Ni catalysts. J Catal 2002;209:365e84.

[35] van Grootel PW, Hensen EJM, van Santen RA. DFT study on H2O activation by stepped and planar Rh surfaces. Surf Sci 2009;603:3275e81.

[36] Helveg S, Lo´pez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, et al. Atomic-scale imaging of carbon nanofibre growth. Nature 2004;427:426e9.

[37] Wei J, Iglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4with CO2or H2O to form synthesis gas and carbon on nickel catalysts.

J Catal 2004;224:370e83.

[38] Xu J, Froment GF. Methane steam reforming, metha-nation and water-gas shift: I. Intrinsic kinetics. AIChE J 1989;35:88e96.

[39] Avetisov AK, Rostrup-Nielsen JR, Kuchaev VL, Bak Hansen J-H, Zyskin AG, Shapatina EN. Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst. J Mol Catal A: Chem 2010;315:155e62.

[40] Bodrov IM, Apel’baum LO. Reaction kinetics of methane and carbon dioxide on a nickel surface. Kinet Katal 1967;8:379e82.

[41] Bradford MCJ, Vannice MA. CO2reforming of CH4over supported Pt catalysts. J Catal 1998;173:157e71.

[42] Rostrup-Nielsen JR, Bak Hansen J-H. CO2-reforming of methane over transition metals. J Catal 1993;144:38e49.

[43] Zhang Z, Verykios XE. Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts. Catal Lett 1996;38:175e9.

[44] Alstrup I, Rostrup-Nielsen JR, Røen S. High temper-ature hydrogen sulfide chemisorption on nickel cata-lysts. Appl Catal 1981;1:303e14.

[45] Rostrup-Nielsen JR. Methane conversion for fuel cells: the role of sulphur. Stud Surf Sci Catal 2007;

167:153e8.

[46] Cooper BH, Knudsen KG. Ultra deep desulfurization of diesel: how an understanding of the underlying kinetics can reduce investment costs. In: Hsu CS, Robinson PR, editors. Practical advances in petroleum processing, vol. 1, Chapter 10. New York: Springer Science; 2006. p. 297e316.

[47] Abild-Pedersen F, Nørskov JK, Rostrup-Nielsen JR, Sehested J, Helveg S. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density func-tional theory calculations. Phys Rev B 2006;73(11).

Article Number 115419.

[48] Rostrup-Nielsen JR. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J Catal 1984;85:31e43.

[49] Dibbern HC, Olesen P, Rostrup-Nielsen JR, Tøttrup PB, Udengaard N. Make low H2/CO syngas using sulfur passivated reforming. Hydrocarb Proc 1986;65(1):71e4.

REFERENCES 69

[50] Rostrup-Nielsen JR, Christensen T, Dybkjær I. Steam reforming of liquid hydrocarbons. Stud Surf Sci Catal 1998;113:91e5.

[51] Rostrup-Nielsen JR. Hydrogen via steam reforming of naphtha. Chem Eng Prog 1977;73(9):87e92.

[52] Andrew SPS. Catalysts and catalytic processes in the steam reforming of naphtha. Ind Eng Chem Prod Res Develop 1969;8:321e4.

[53] Natesakhawat S, Watson RB, Wang X, Ozkan US.

Deactivation characteristics of lanthanide-promoted solegel Ni/Al2O3 catalysts in propane steam reforming. J Catal 2005;234:496e508.

[54] Borowiecki T, Golebiowski A, Stasinska B. Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons.

Appl Catal A: Gen 1997;153:141e56.

[55] Cheng Z, Wu Q, Li J, Zhu Q. Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 catalyst. Catal Today 1996;30:147e55.

[56] Trimm DL. Coke formation and minimisation during steam reforming reactions. Catal Today 1997;37:

233e8.

[57] Xu J, Chen L, Tan KF, Borgna A, Saeys M. Effect of boron on the stability of Ni catalysts during steam methane reforming. J Catal 2009;261:158e65.

[58] Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, et al.

Design of a surface alloy catalyst for steam reforming.

Science 1998;279:1913e5.

[59] Richardson JT, Hung J-K, Zhao J. CO2CH4reforming with Pt-Re/g-Al2O3 catalysts. Stud Surf Sci Catal 2001;136:203e7.

[60] Stagg SM, Resasco DE. Effects of promoters and supports on coke formation on Pt catalysts during CH4 reforming with CO2. Stud Surf Sci Catal 1997;

111:543e50.

[61] Shabaker JW, Huber GW, Dumesic JA. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J Catal 2004;222:

180e91.

[62] Saadi S, Hinnemann B, Helveg S, Appel CC, Abild-Pedersen F, Nørskov JK. First-principles investigations of the Ni3Sn alloy at steam reforming conditions. Surf Sci 2009;603:762e70.

[63] Bridger GW, Chinchen GC. Hydrocarbon reforming catalysts. In: Catalyst handbook. London: Wolfe Scientific Books; 1970. p. 64e96.

[64] Rostrup-Nielsen J. Syngas for C1-chemistry. limits of the steam reforming process. Stud Surf Sci Catal 1988;36:73e8.

[65] Jackson SD, Thomson SJ, Webb G. Carbonaceous deposition associated with the catalytic

steam-reforming of hydrocarbons over nickel alumina cata-lysts. J Catal 1981;70:249e63.

[66] Christensen TS. Adiabatic prereforming of hydrocar-bons e an important step in syngas production. Appl Catal A: Gen 1996;138:285e309.

[67] Piwetz MM, Larsen JS, Christensen TS. Hydro-desulfurization and pre-reforming of logistic fuels for use in fuel cell applications. Proc 1996 Fuel Cell Seminar. Orlando, FL: 1996. p. 780e93.

[68] Rostrup-Nielsen JR. Conversion of hydrocarbons and alcohols for fuel cells. Phys Chem Chem Phys 2001;3:283e8.

[69] Rostrup-Nielsen JR, Skov A, Christiansen LJ. Deacti-vation in pseudo-adiabatic reactors. Appl Catal 1986;22:71e83.

[70] Cockerham RG, Percival G. Experiments on the production of peak-load gas from methanol and light petroleum distillates. Trans Inst Gas Eng 1957e58;107:

390e433.

[71] Jiang CJ, Trimm DL, Wainwright MS, Cant NW.

Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3catalyst. Appl Catal A: Gen 1993;93:145e58.

[72] Kundu A, Shul YG, Kim DH. Methanol reforming processes. Chapter 7. In: Zhao TS, Kreuer K-D, Nguyen TV, editors. Advances in fuel cells, vol. 1;

2007. p. 419e72.

[73] Bøgild Hansen J. In: Vielstich W, Lamm A, Gasteiger HA, editors. Handbook of fuel cells: fundamentals, technology, and applications, vol. 3 (1). New York:

John Wiley & Sons Ltd., p. 141-8

[74] Tanaka Y, Kikuchi R, Takeguchi T, Eguchi K. Steam reforming of dimethyl ether over composite catalysts of g-Al2O3 and Cu-based spinel. Appl Catal B: Env 2005;57:211e22.

[75] Feng D, Wang Y, Wang D, Wang J. Steam reforming of dimethyl ether over CuOeZnOeAl2O3eZrO2 þ ZSM-5: a kinetic study. Chem Eng J 2009;146:477e85.

[76] Bøgild Hansen J, Pa˚lsson J. Oxygenates and ammonia as SOFC fuels. Proc 1st European Fuel Cell Technol Appl Conf 2005:49.

[77] Trimm DL, O¨ nsan ZI. On board fuel conversion for hydrogen fuel cell driven vehicles. Catal Rev Sci Eng 2001;43:31e84.

[78] Cao C, Palo DR, Tonkovich AY, Wang Y. Catalyst screening and kinetic studies using microchannel reactors. Catal Today 2007;125:29e33.

[79] Pan L, Wang S. Methanol steam reforming in a compact plate-fin reformer for fuel-cell systems. Int J Hydrogen Energy 2005;30:973e9.

[80] Basile A, Gallucci F, Paturzo L. A dense Pd/Ag membrane reactor for methanol steam reforming:

experimental study. Catal Today 2005;104:244e50.

4. STEAM REFORMING FOR FUEL CELLS

70

[81] Chin YH, Dagle R, Hu J, Dohnalkova AC, Wang Y.

Steam reforming of methanol over highly active Pd/

ZnO catalyst. Catal Today 2002;77:79e88.

[82] Haryanto A, Fernando S, Murali N, Adhikari S.

Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 2005;19:2098e106.

[83] Rass-Hansen J, Christensen CH, Sehested J, Helveg S, Rostrup-Nielsen JR, Dahl S. Renewable hydrogen:

carbon formation on Ni and Ru catalysts during ethanol steam-reforming. Green Chem 2007;9:1016e21.

[84] Liguras DK, Kondarides DI, Verykios XE. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl Catal B: Env 2003;43:345e54.

[85] Llorca J, Homs N, Sales J, de la Piscina PR. Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J Catal 2002;209:306e17.

[86] Zhang L, Liu J, Li W, Guo C, Zhang J. Ethanol steam reforming over Ni-Cu/Al2O3-MyOz(M¼ Si, La, Mg, and Zn) catalysts. J Nat Gas Chem 2009;18:55e65.

[87] Adhikari S, Fernando S, Haryanto A. Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catal Today 2007;129:355e64.

[88] Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydro-carbons in liquid water. Nature 2002;418:964e7.

[89] Dybkjær I, Winter-Madsen S. Advanced reforming technologies for hydrogen production. Hydrocarbon Eng 1998;3(1):56.

[90] Rostrup-Nielsen JR, Winter-Madsen S. Large scale manufacture of hydrogen from hydrocarbons. Prepr Pap Am Chem Soc Div Pet Chem 2008;53(1):82e4.

[91] Kolb G, editor. Fuel processing for fuel cells.

Weinheim: Wiley-VHC; 2008.

[92] Tonkovich ALY, Yang B, Perry ST, Fitzgerald SP, Wang Y. From seconds to milliseconds to microsec-onds through tailored microchannel reactor design of a steam methane reforme. Catal Today 2007;120:21e9.

[93] Lerou J, Tonkovich AL, Silva L, Perry S, McDonald J.

Microchannel reactor architecture enables greener processes. Chem Eng Sci 2010;65:380e5.

[94] Seris ELC, Abramowitz G, Johnston AM, Haynes BS.

Demonstration plant for distributed production of hydrogen from steam reforming of methane. Chem Eng Res Des 2005;83(A6):619e25.

[95] Fontell E, Kivisaari T, Christiansen N, Bøgild Hansen J, Pa˚lsson J. Conceptual study of a 250 kW planar SOFC system for CHP application. J Power Sources 2004;131:49e56.

[96] Palsson J, Hanseb JB, Christiansen N, Nielsen JU, Kristensen S. Solid oxide fuel cells e assessment of the technology from an industrial perspective.

Denmark: Presentation at Risø National Laboratory International Energy Conference. May 19e21, 2003.

[97] Barisic Z. Alstom Ballard PEM fuel cell power plants e European field trial program. Brussels:

Proceedings of the Business of Fuel Cells for Stationary Applications in Europe. Nov, 2001.

REFERENCES 71

C H A P T E R

5

Catalytic Partial Oxidation

Mark W. Smith, Dushyant Shekhawat

National Energy Technology Laboratory, U.S. Department of Energy, 3610 Collins Ferry Road, Morgantown, WV 26507-0880, USA

O U T L I N E

5.1. Introduction 74

5.2. Thermodynamics 75

5.2.1. Heat of Reaction 76 5.2.2. Effect of Temperature 76 5.2.3. Effect of O/C Ratio 78 5.3. Reaction Mechanisms and Kinetics 80 5.3.1. Reaction Mechanisms 80 5.3.1.1. Direct Mechanism 82 5.3.1.2. Indirect Mechanism 84 5.3.1.3. Effect of Space Velocity 85 5.3.1.4. Effect of Catalyst

Oxidation State 87

5.3.1.5. Mechanism for Methanol 88

5.3.2. Kinetic Studies 88

5.3.3. Summary for Mechanisms

and Kinetics 91

5.4. Light Hydrocarbons 92

5.4.1. Methane 92

5.4.1.1. Base Metal Catalysts 93 5.4.1.2. Noble Metal Catalysts 98 5.4.1.3. Bimetallic Catalysts 103 5.4.2. Ethane, Propane, and Butane 104 5.4.3. Summary for Light Hydrocarbons 106

5.5. Higher Hydrocarbons 106 5.5.1. Base Metal Catalysts 106

5.5.1.1. Promoters 106

5.5.1.2. Substituted Oxides and Oxygen-Conducting

Supports 106

5.5.1.3. Substituted Oxides on

Oxygen-Conducting Supports110 5.5.2. Noble Metal Catalysts 113

5.5.2.1. Promoters 113

5.5.2.2. Supports 114

5.5.2.3. Substitution into

Oxide Structures 116 5.5.3. Summary of Higher Hydrocarbons 116 5.6. Oxygenated Hydrocarbons 116

5.6.1. Alcohols 116

5.6.2. Dimethyl Ether (DME) 119

5.6.3. Biodiesel 119

5.6.4. Summary of Oxygenated

Hydrocarbons 120

5.7. Future Development and Applications 120 5.7.1. Substituted Oxides on

Oxygen-Conducting Supports 120 5.7.2. Multistaged Reactor 121

73

Fuel Cells DOI:10.1016/B978-0-444-53563-4.10005-7 Copyright Ó 2011 Elsevier B.V. All rights reserved.

5.7.3.1. Multiple Oxygen Feed

Locations 121

5.7.3.2. Multiple Catalyst

Formulations 121

5.7.3. Field-assisted CPOX 122 5.7.4. CPOX with Recycle 122