• Tidak ada hasil yang ditemukan

Evaluasi Radiologis

Dalam dokumen PENGARUH PEMBERIAN PLATELET RICH FIBRIN (Halaman 33-0)

Evaluasi radiologis untuk penilaian bone healing pada kasus fraktur femur yang ditatalaksana dengan ORIF, menggunakan skoring Goldberg et al.: 1. no fracture healing; 2. Moderate healing; and 3. Complete healing.

28 E. Evaluasi Histopatologis

Evaluasi histologis menggunakan skoring oleh Huo et al.:

Tabel 3. Skoring untuk evaluasi histopatologis pada proses fracture healing.

Skor Gambaran histopatologis 1 Jaringan fibrous

2 Dominan jaringan fibrous dengan sedikit jaringan kartilago 3 Jumlah jaringan fibrous sama dengan jaringan kartilago

4 Dominan jaringan kartilago dengan sedikit gambaran jaringan fibrous 5 Kartilago

6 Dominan jaringan kartilago dengan sedikit gambaran tulang immature 7 Jumlah jaringan kartilago sama dengan jaringan tulang immature 8 Dominan gambaran tulang immature daripada kartilago

9 Union fraktur dengan gambaran tulang immature 10 Union fraktur dengan gambaran tulang matur

29 F. Kerangka Konsep

Gambar 12. Kerangka Konsep stem cells and connective tissue cells (fibroblast

 Formasi jaringan konektif dan kalus

Keterangan:

: Variabel yang diteliti : Hasil yang diharapkan

30 G. Hipotesis

H1: Pemberian platelet rich fibrin dapat meningkatkan sekresi growth factor dan mempengaruhi proses terjadinya bone healing pada fraktur diafisis femur tikus (Rattus norvegicus) yang difiksasi dengan intramedullary nail.

H0: Pemberian platelet rich fibrin tidak dapat meningkatkan sekresi growth factor dan mempengaruhi proses terjadinya bone healing pada fraktur diafisis femur tikus (Rattus norvegicus) yang difiksasi dengan intramedullary nail.

31 BAB III

METODOLOGI PENELITIAN

A. Jenis Penelitian

Penelitian ini menggunakan desain penelitian eksperimental post-test only control group design dengan tikus Wistar rats (Rattus norvegicus) sebagai hewan percobaan karena pengukuran pada hewan uji dilakukan pada waktu tertentu setelah pemberian perlakuan. Dalam penelitian ini sampel dibagi dua kelompok, dimana terdapat kelompok yang diberikan platelet rich fibrin dan kelompok satunya yaitu kelompok kontrol yang tidak diberikan apa-apa.

B. Lokasi Penelitian

Perlakuan pada tikus Wistar rats dan pemeriksaan sampel dilakukan di Laboratorium Hewan Coba Pusat Antar Universitas Universitas Gajah Mada Yogyakarta, sedangkan pemeriksaan radiologi dilakukan di Laboratorium Radiologi Universitas Gajah Mada.

C. Waktu Penelitian

Waktu penelitian ini dilakukan pada bulan November 2021 - Desember 2021.

Tahap pengolahan, analisis, dan pelaporan data dilakukan pada bulan Januari - Februari 2022.

D. Populasi dan Sampling 3.3.1 Populasi Penelitian

Subjek penelitian adalah tikus Wistar rats model bone graft umur 12 - 14 minggu, jenis kelamin jantan, dengan rentang berat badan 450 – 600 gram,

32 diperoleh dari Laboratorium Hewan Coba Pusat Antar Universitas Universitas Gajah Mada Yogyakarta.

1. Kriteria inklusi:

a. Jenis Tikus: Wistar rats b. Umur 12 - 14 minggu.

c. Berat badan 450 - 600 gram.

d. Jenis Kelamin: Jantan 2. Kriteria eksklusi:

a. Tikus Wistar rats yang mati saat penelitian.

b. Tikus dengan kondisi sakit.

3.3.2 Jumlah Sampel

Jumlah replikasi ditentukan berdasarkan rumus Resource Equation :

E adalah Degree of freedom (derajat kebebasan). Angka “E” dianggap optimal jika dalam rentang 10 hingga 20 (Charan dan Biswas, 2013).

E = 4n – 4 (optimal bila E 10-20) (E : Degree of freedom)

Jika E = 10 10 = 4.n – 4 4n = 14 E = 3,5

Jika E = 20 20 = 4.n – 4

33 4n = 24

E = 6

E dalam rentang 10 dan 20, maka hewan coba tiap kelompok berkisar antara 4 hingga 6 ekor. Dipilih 4 ekor hewan coba tiap kelompok.

E. Variabel dan Definisi Operasional Penelitian 3.E.1 Variable penelitian

a. Variabel Bebas: pemberian PRF pada fraktur tulang panjang tikus Wistar rats

b. Variabel terikat: Variabel yang akan diteliti, yaitu Callus formation pada area fraktur

3.E.2 Definisi operasional variabel a. Pemberian PRF

Platelet rich fibrin (PRF) merupakan konsentrat platelet yang di peroleh dari proses sentrifugasi sampel pungsi darah vena tanpa penambahan antikoagulan. Darah diambil dari 2 sampel tikus sebanyak 10 mm kemudian disentrifugasi dengan kecepatan 3000 rpm selama 10 menit.

Ketika proses sentrifugasi, femomena hemostasis membagi sampel darah menjadi bagian-bagian, yang salah satu bagian tersebut merupakan PRF, sebuah lapisan fibrin yang terdiri dari trombosit dan plasma (Kim et al., 2014). Pembuatan PRF dilakukan Laboratorium Hewan Coba Pusat Antar Universitas Universitas Gajah Mada Yogyakarta.

b. Pemeriksaan Radiologis

34 Pemeriksaan radiographic AP dilakukan setelah 4 minggu setelah perlakuan tindakan. Kemudian dinilai berupa bridging callus formation dan fracture line. Skoring berdasarkan Goldberg et al.

c. Pemeriksaaan histopatologis

Pemeriksaan dilakukan dengan menilai gambaran histopatologis pada area fraktur melalui pengecatan hematoxylin eosin. Skoring berdasarkan Huo et al.

F. Cara Kerja dan Teknik Pengambilan Data 1.1 Tahap Persiapan

a. Persiapan Alat dan Bahan 1) Membuat ethical clearance 2) Persiapan hewan percobaan

b. Pembuatan PRF

1) Penggunaan anestesi umum sebelum pengambilan darah dari jantung sebanyak 10 ml dari 2 ekor hewan (Bölükbaşi et al., 2013)

2) Darah dikumpulkan di sterile glass test tubes 10 ml tanpa penambahan antikoagulan (menyebabkan aktivasi platelet di sample darah setelah kontak dengan dinding tube dalam beberapa menit dan pelepasan kaskade koagulasi) 3) Langsung disentrifugasi 3000 rpm selama 10 menit

4) Hasil berupa pemisahan tiga fraksi akibat perbedaan fraksi: RBCs dilapisan bawah, PRF di lapisan tengah, dan PPP (platelet-poor plasma) dilapisan atas.

PPP diaspirasi dan dibuang

35 5) Gel PRF dipisahkan dari lapisan RBCs dibawahnya menggunakan sterile

stainlesssteel scissors

6) Bekuan PRF dipotong kecil-kecil dan dicampur dengan material graft atau dengan membrane PRF yang dipersiapkan dengan menekan PRF clot diantara dua potong kain kasa bedah untuk membuang serum.

(Rosamma Joseph et al., 2014) 1.2 Tahap Penelitian

Tikus dibagi scara random menjadi 2 kelompok yaitu kelompok perlakuan dan kelompok kontrol. Tikus dipersiapkan pada ruang operasi, kemudian sterilisasi medan operasi. Insisi dilakukan pada regio paha kiri tikus sebesar 2 cm pada sisi lateral. Fraktur femur dibuat dengan menggunakan oscillator saw. Kemudian difiksasi dengan menggunakan k wire 0,8. pada kelompok perlakuan diberikan PRF. Kemudian luka insisi ditutup dengan menggunakan 4.0 non absorbable suture.

1.3 Tahap Pengambilan Sampel

Kelompok hewan coba, dibagi menjadi 4. Dua kelompok diterminasi pada hari ke 14 dan dua kelompok lain diterminasi pada hari ke 28. Tulang femur diambil, kemudian dilakukan pemeriksaan roentgen femur AP dan lateral dan pemeriksaan histopatologi.

G. Analisis Data

Pada penelitian ini, data yang diperoleh dianalisis secara statistik menggunakan program Statistical Product and Service Solutions (SPSS) for Microsoft Windows release 25.0. Jumlah sampel penelitian kurang dari 50

36 sampel maka digunakan uji distribusi Shapiro-Wilk untuk menentukan distribusi data. Uji statistik yang digunakan uji independent T-Test untuk membandingkan atau komparasi 2 kelompok sampel tidak berpasangan berdistribusi normal. (Dahlan, 2011).

37 H. Alur Penelitian

Bagan 2. Alur Penelitian

Kelompok P1 dan P3 diterminasi dan dilakukan pengambilan roentgen femur AP pada hari ke 14, pada area fraktur dilakukan pengambilan sampel untuk penilaian gambaran histopatologis.

Kelompok P2 dan P4 diterminasi dan dilakukan pengambilan roentgen femur AP pada hari ke 28, pada area fraktur dilakukan pengambilan sampel untuk penilaian gambaran histopatologis

Hasil penilaian radiologis dan histopatologis dianalisis dengan uji statistik Populasi Tikus Wistar Rats

Sampel 16 tikus, umur 12-14 minggu, BB 450 - 600 gram Adaptasi 1 minggu

Dibagi secara acak menjadi 4 kelompok

P3 4 tikus P2 4 tikus

Pembuatan Fraktur Femur

Fraktur kemudian difiksasi dengan menggunakan k-wire 0,8

Kelompok P1dan P2 tidak diberikan

apa-apa

Kelompok P3 dan P4 diberikan platelet rich

fibrin

P1 4 tikus P4 4 tikus

38 DAFTAR PUSTAKA

Anderson LD, Hutchins WC, Wright PE, Disney JM. Fractures of the tibia and fibula treated by casts and transfixing pins. Clin Orthop Relat Res. 1974 Nov-Dec;(105):179-91

Apley, A. G. and Solomon, L. (2017) Apley’s System of Orthopaedics and Fractures. CRC Press.1-70.

Bai M-Y, Wang C-W, Wang J-Y, Lin M-F, Chan WP. Three-dimensional structure and cytokine distribution of platelet-rich fibrin. Clinics. 2017;72:116–24.

Bais MV, Wigner N, Young M, et al. BMP2 is essential for postnatal osteogenesis but not for recruitment of osteogenic stem cells. Bone. 2009; 45(2):254–66. [PubMed: 19398045]

Bahney, C. S., Zondervan, R. L., Allison, P., Theologis, A., Ashley, J. W., Ahn, J., Miclau, T., et al. (2019) ‘Cellular biology of fracture healing’, Journal of Orthopaedic Research, 37(1), pp. 35–50. doi: 10.1002/jor.24170.

Balga R, Wetterwald A, Portenier J, et al. Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone. 2006; 39(2):325–35. [PubMed: 16580896]

Bassett, CAL. Biophysical principles affecting bone structure. In: Bourne, GH., editor.

Biochemistry and Physiology of bone. 2. Academic Press; New York: 1971. p. 341-376.

Bhandari M, Guyatt GH, Swiontkowski MF, et al. Surgeons’ preferences for the operative treatment of fractures of the tibial shaft. An international survey. J Bone Joint Surg Am.

2001;83-A(11):1746–1752.

Bölükbaşi, N. et al. (2013) ‘The Use of Platelet rich fibrin in Combination With Biphasic Calcium Phosphate in the Treatment of Bone Defects: A Histologic and Histomorphometric Study’, Current Therapeutic Research - Clinical and Experimental, 75. 15–21.

Bölükbaşi, N. et al. (2013) ‘The Use of Platelet rich fibrin in Combination With Biphasic Calcium Phosphate in the Treatment of Bone Defects: A Histologic and Histomorphometric Study’, Current Therapeutic Research - Clinical and Experimental, 75. 15–21.

Bosse MJ, MacKenzie EJ, Kellam JF, et al. An analysis of outcomes of reconstruction or amputation after leg-threatening injuries. N Engl J Med. 2002; 347(24):1924–1931.

Breur GJ, VanEnkevort BA, Farnum CE, et al. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates.

Journal of Orthopaedic Research. 1991; 9(3):348–59. [PubMed: 2010838]

39 Bucholz RW, Heckman JD, Court-Brown CM. Rockwood & Green's Fractures in Adults, 6th

Edition. USA: Maryland Composition. 2006. p80-331

Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discovery Today. 2003;

8(21):980–9. [PubMed: 14643161]

Charan, Jaykaran, and Tamoghna Biswas. “How to calculate sample size for different study designs in medical research?.” Indian journal of psychological medicine vol. 35,2 (2013):

121-6. doi:10.4103/0253-7176.116232

Cho HH, Kyoung KM, Seo MJ, et al. Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells & Development. 2006;

15(6):853– 64. [PubMed: 17253948]

Choukroun J, Diss A, Simonpieri A, Girard M-O, Schoeffler C, Dohan SL, et al. Platelet rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology.

2006;101(3):e56–60.

Colnot, C. (2009) ‘Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration’, Journal of Bone and Mineral Research, 24(2). 274–282.

Cooper, K. L. et al. (2013) ‘Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions’, Nature, 495(7441). 375–378.

Daley, J. M. et al. (2010) ‘The phenotype of murine wound macrophages’, Journal of Leukocyte Biology, 87(1). 59–67.

Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, et al. Platelet rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology.

2006;101(3):e37–44.

Dülgeroglu TC, Metineren H. Evaluation of the effect of platelet rich fibrin on long bone healing:

an experimental rat model. Orthopedics. 2017;40(3):e479–84.

Dy, P. et al. (2012) ‘Sox9 Directs Hypertrophic Maturation and Blocks Osteoblast Differentiation of Growth Plate Chondrocytes’, Developmental Cell, 22(3). 597–609.

Einhorn TA. The cell and molecular biology of fracture healing. Clinical Orthopaedics & Related Research. 1998; 355(Suppl):S7–21. [PubMed: 9917622]

40 Einhorn, T. A. & Gerstenfeld, L. C. (2015) ‘Fracture healing: Mechanisms and interventions’,

Nature Reviews Rheumatology. Nature Publishing Group, pp. 45–54. doi:

10.1038/nrrheum.2014.164.

Fukui N, Ueno T, Ito Y, Takahashi Y, Kimura Y, Nakajima Y, et al. Quantification of growth factors in platelet-rich Fibrin: A preliminary study. J Hard Tissue Biol. 2015;24(3):231–4.

Gerstenfeld LC, Alkhiary YM, Krall EA, et al. Three-dimensional reconstruction of fracture callus morphogenesis. Journal of Histochemistry & Cytochemistry. 2006; 54(11):1215–28.

[PubMed: 16864894]

Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. Journal of Cellular Biochemistry. 2003; 88(5):873–84. [PubMed: 12616527]

Giangregorio L, El-Kotob R. Exercise, muscle, and the applied load-bone strength balance.

Osteoporos Int. 2017;28(1):21–33.

Giannoudis PV, Papakostidis C, Kouvidis G, et al. The role of plating in the operative treatment of severe open tibial fractures: a systematic review. Int Orthop. 2009;33(1): 19–26.

Goh JC, Mech AM, Lee EH, Ang EJ, Bayon P, Pho RW. Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res. 1992 Jun;(279):223-8.

Goldberg VM, Powell A, Shaffer JW, Zika J, Bos GD, Heiple KG. Bone grafting: role of histocompatibility in transplantation. J Orthop Res. 1985; 3(4):389-404.

Gordon, S. and Martinez, F. O. (2010) ‘Alternative activation of macrophages: Mechanism and functions’, Immunity. Immunity. 593–604.

Gosman JH, Hubbell ZR, Shaw CN, Ryan TM. Development of cortical bone geometry in the human femoral and tibial diaphysis. Anat Rec (Hoboken). 2013 May;296(5):774-87.

Granero-Molto F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009; 27(8):1887–98. [PubMed: 19544445]

Hattori, T. et al. (2010) ‘SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification’, Development, 137(6). 901–911.

He L, Lin Y, Hu X, Zhang Y, Wu H. A comparative study of platelet rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in

41 vitro. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2009;108(5):707–

13.

He, L. et al. (2009) ‘A comparative study of platelet rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro’, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, 108(5).

707–13.

Hu, D. P. et al. (2017) ‘Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes’, Development (Cambridge), 144(2). 221–234.

Huo MH, Troiano NW, Pelker RR, Gundberg CM, Friedlaender GE. The influence of ibuprofen on fracture repair: biomechanical, biochemical, histologic, and histomorphometric parameters in rats. J Orthop Res. 1991; 9(3):383-390.

Hutson JJ Jr, et al. The treatment of gustilo grade IIIB tibia fractures with application of antibiotic spacer, flap and sequential distraction osteogenesis. Ann Plast Surg. 2010;64(5):541–552.

Ikegami, D. et al. (2011) ‘Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways’, Development, 138(8). 1507–1519.

Isern, J. et al. (2014) ‘The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function’, eLife, 3. 3696.

Joseph V, R., Sam, G. and Amol, N. V. (2014) ‘Clinical evaluation of autologous platelet rich fibrin in horizontal alveolar bony defects.’, Journal of clinical and diagnostic research : JCDR, 8(11). ZC43-7.

Karayürek F, Kadiroğlu ET, Nergiz Y, Akçay NC, Tunik S, Kanay BE, et al. Combining platelet rich fibrin with different bone graft materials: An experimental study on the histopathological and immunohistochemical aspects of bone healing. J Cranio-Maxillofacial Surg. 2019;47(5):815–25.

Kazley J, Jahangir A. Tibia Diaphyseal Fracture. [Updated 2021 Aug 14]. In: StatPearls [Internet].

Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK537173/

Keeling JJ, Gwinn DE, Tintle SM, et al. Short-term outcomes of severe open wartime tibial fractures treated with ring external fixation. J Bone Joint Surg Am. 2008;90(12):2643–

2651.

42 Ketenjian AY, Arsenis C. Morphological and biochemical studies during differentiation and

calcification of fracture callus cartilage. Clinical Orthopaedics & Related Research. 1975;

107:266–73. [PubMed: 48443]

Kim, T. H. et al. (2014) ‘Comparison of platelet-rich plasma (PRP), platelet rich fibrin (PRF), and concentrated growth factor (CGF) in rabbit-skull defect healing’, Archives of Oral Biology, 59(5). 550–558.

Kim, P. H. & Leopold, S. S. (2012) ‘Gustilo-Anderson classification’, Clinical Orthopaedics and Related Research. Springer New York LLC, pp. 3270–3274. doi: 10.1007/s11999-012-2376-6.

Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis & Rheumatism. 2009; 60(3):813–23. [PubMed: 19248097]

Kon T, Cho TJ, Aizawa T, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. Journal of Bone & Mineral Research. 2001; 16(6):1004–14. [PubMed: 11393777]

Kumar, K. R. et al. (2016) ‘Role of plasma-rich fibrin in oral surgery’, Journal of Pharmacy and Bioallied Sciences, 8(Suppl 1). S36–S38.

Larsen P, Elsoe R, Hansen SH, Graven-Nielsen T, Laessoe U, Rasmussen S. Incidence and epidemiology of tibial shaft fractures. Injury. 2015;46(4):746–50.

Leow JM, Clement ND, Tawonsawatruk T, Simpson CJ, Simpson AH. The radiographic union scale in tibial (RUST) fractures: Reliability of the outcome measure at an independent centre. Bone Joint Res. 2016;5(4):116-121. doi:10.1302/2046-3758.54.2000628

Leung, V. Y. L. et al. (2011) ‘SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression’, PLoS Genetics, 7(11).

Lu, L. Y. et al. (2017) ‘Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway’, Journal of Orthopaedic Research, 35(11). 2378–2385.

Ma J, Ge J, Zhang S, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with

43 experimental myocardial infarction. Basic Research in Cardiology. 2005; 100(3):217–23.

[PubMed: 15754085]

Maes, C. et al. (2010) ‘Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels’, Developmental Cell, 19(2). 329–

344.

Malhotra, A. et al. (2013) ‘Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes’, Archives of Orthopaedic and Trauma Surgery, 133(2). 153–165.

Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5.

Matsubara, H. et al. (2012) ‘Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis’, Bone, 51(1). 168–180.

Nandi, S. K. et al. (2010) ‘Orthopaedic applications of bone graft & graft substitutes: A review’, Indian Journal of Medical Research, 132(7). 15–30.

Paulsen F, Böckers TM, Waschke J, Winkler S, Dalkowski K, Mair J, et al. Sobotta anatomy textbook: English edition with Latin nomenclature. Elsevier Health Sciences; 2018.

Reichert IL, McCarthy ID, Hughes SPF. The acute vascular response to intramedullary reaming.

Microsphere estimation of blood flow in the intact ovine tibia. J Bone Joint Surg(Br).

1995;77-B:490–493.

Riskesdas (2013) Riset Kesehatan Dasar. Departemen Kesehatan Indonesia.

Rockwood, C. A., Green, D. P., & Bucholz, R. W. (2015). Rockwood and Green's fractures in adults (8th ed.). Philadelphia: Lippincott Williams & Wilkins.

Sarmiento A, Gersten LM, Sobol PA, Shankwiler JA, Vangsness CT. Tibial shaft fractures treated with functional braces. Experience with 780 fractures. J Bone Joint Surg Br. 1989 Aug;71(4):602-9.

Simpson, A. H. R. W. & Tsang, S. T. J. (2018) ‘Non-union after plate fixation’, Injury. Elsevier Ltd, 49, pp. S78–S82. doi: 10.1016/S0020-1383(18)30309-7.

Singh, A., Kohli, M. and Gupta, N. (2012) ‘Platelet Rich Fibrin: A Novel Approach for Osseous Regeneration’, Journal of Maxillofacial and Oral Surgery, 11(4). 430–434.

Singh, A., Kohli, M. and Gupta, N. (2012) ‘Platelet Rich Fibrin: A Novel Approach for Osseous Regeneration’, Journal of Maxillofacial and Oral Surgery, 11(4). 430–434.

44 Strachan RK, McCarthy I, Fleming R, et al. The role of the tibial nutrient artery. Microsphere

estimation of blood flow in the osteotomized canine tibia. J Bone Joint Surg (Br). 1990;72-B:391–394.

Thompson JH, Koutsogiannis P, Jahangir A. Tibia Fractures Overview. [Updated 2021 Aug 7].

In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513267/

Trafton PG. Closed unstable fractures of the tibia. Clin Orthop Relat Res. 1988 May;(230):58-67.

Wendeberg, B. Acta Orthopaedica. 1961. Mineral metabolism of fractures of the tibia in manstudied with external counting of Sr85; p. 1-79.

Whelan DB, Bhandari M, McKee MD, et al. Interobserver and intraobserver variation in the assessment of the healing of tibial fractures after intramedullary fixation. J Bone Joint Surg [Br] 2002;84-B:15-18.

Yang, L. et al. (2014) ‘Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation’, Proceedings of the National Academy of Sciences of the United States of America, 111(33). 12097–12102.

Zhang N, Wu Y-P, Qian S-J, Teng C, Chen S, Li H. Research progress in the mechanism of effect of PRP in bone deficiency healing. Sci world J. 2013;2013.

Zhou, X. et al. (2014) ‘Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice’, PLoS Genetics, 10(12).

Dalam dokumen PENGARUH PEMBERIAN PLATELET RICH FIBRIN (Halaman 33-0)

Dokumen terkait