• Tidak ada hasil yang ditemukan

HASIL DAN PEMBAHASAN Eksplorasi Data Suhu Udara Rata-rata

DAFTAR LAMPIRAN

HASIL DAN PEMBAHASAN Eksplorasi Data Suhu Udara Rata-rata

Gambar 5 Plot Data Suhu Udara Rata-rata Per Hari.

Berdasarkan Gambar 5terlihat bahwa suhu harian pada Januari tahun 2000 sampai September 2004 di sekitar Palangkaraya adalah

Suhu Udara Rata-rata per Hari Palangkaraya

index waktu su h u 0 500 1000 1500 18 20 22 24 26 28 30 32

relatif seragam di sekitar nilai rata-rata. Hal ini juga ditunjukan dengan nilai simpangan baku yaitu 0,96. Nilai simpangan baku yang kecil menunjukkan bahawa jarak suatu nilai dengan rataannya tidak berbeda jauh dan sebagian besar data memiliki nilai yang hampir sama. Dengan demikian dapat dikatakan bahwa sebaran deret waktu untuk data suhu udara per hari membentuk pola stasioner. Nilai tertinggi suhu udara rata-rata per hari mencapai 29,6 oC, terendah mencapai 23,6 oC, serta rata-rata dan nilai tengahnya bernilai 26,79 oC, dan 26,80.

Gambar 6 Plot Data Suhu Udara Rata-rata Per Minggu.

Sama halnya pada Gambar 5, Gambar 6 yang memperlihatkan sebaran data suhu udara rata-rata per bulan yang juga relatif seragam di sekitar nilai tengahnya. Hal ini diperkuat juga dengan nilai simpangan baku yang relatif kecil yaitu 0,6. Dengan demikian pola sebaran deret waktu untuk data suhu udara rata-rata per minggu juga membentuk pola horizontal. Suhu terendahnya mencapai 24,60 oC, sedangkan tertinggi mencapai 28,20 oC yaitu pada bulan Juni 2002. Rata-rata dan nilai tengahnya adalah 26,79 oC.

Pada Gambar 7, merupakan sebaran data untuk suhu udara rata-rata per bulan. Pada gambar tersebut terlihat bahwa pola deret waktu dengan frekuensi per bulan juga membentuk pola stasioner karena nilai data relatif seragam di sekitar nila rata-ratanya yaitu 26,82 oC. Hal ini juga diperkuat dengan nilai simpangan bakunya yang realatif kecil yaitu 0,5 dan untuk nilai suhu tertinggi yaitu pada bulan mei 2001, yang mencapai 28,40 oC dan terendah pada bulan agustus 2001, yaitu mencapai suhu 26,00 oC.

Gambar 7 Plot Data Suhu Udara Rata-rata Per Bulan.

Dengan demikian, dari ketiga jenis sebaran deret waktu tersebut memperlihatkan bahwapola data suhu udara baik dengan frekuensi per hari, minggu dan bulan, cenderung stasioner pada nilai rata-ratanya. Maka dengan demikian bahwa data suhu udara rata-rata memiliki pola horizontal.

Pemodelan Suhu Udara Rata-Rata Per Hari Pemodelan data suhu udara rata-rata per hari dilakukan dengan menggunakan 1735 record. Data tersebut terdiri dari 1705recorddari tanggal 1 Januari 2000 sampai 31 Agustus 2004, yang kemudian akan digunakan sebagai data training dan 30recorddari tanggal 1 September 2004 sampai 30 September 2004 digunakan untuk memvalidasi model yang didapatkan.

Sebelum proses pendugaan model dengan menggunakan data training, dilakukan pengecekan kestasioneran data untuk nilai tengah dan ragamnya. Untuk mengetahui kestasioneran dalam ragam dapat dilakukan dengan menggunakan uji Bartett and Levene. Nilai-p yang didapatkan, jika menunjukkan lebih besar dari 0,05 berarti bahwa data tersebut stasioner dalam ragam, akan tetapi jika lebih kecil, berarti data tidak stasioner dalam ragam. Hasil uji pada Lampiran 2, menunjukkan nilai- plebih besar dari 0,05. Dengan demikian bahwa data stasioner dalam ragam.

Selain uji kestasioneran dalam ragam, uji kestasioneran untuk nilai tengah harus dilakukan pada data. Uji ini dapat dilakukan dengan menggunakan uji Augmented Dickey Fuller(ADF). Hasil uji ADF pada Lampiran 3 memperlihatkan bahwa data stasioner dalam nilai tengahnyayang ditandai dengan nilai-p yang lebih kecil dari 0,05. Akan tetapi, jika dilihat dari plot ACF pada Gambar 8, menurut Bowerman dan O’connell (1987)terdapat indikasi ketidakstasioneran data, ini terlihat dari adanya penurunan nilai AFC dengan perlahan. Oleh karena itu pemodelan dilakukan dengan dan tanpa proses pembedaan.

Gambar 8 Autocorrelation Function Untuk Suhu Udara Rata-rata Per Hari Tanpa Pembedaan. index waktu su h u 0 50 100 150 200 22 24 26 28 30

Sebaran Suhu Udara Rata-rata Per Bulan

Time S uh u 2000 2001 2002 2003 2004 22 24 26 28 30 0 5 10 15 20 25 30 0 .0 0 .2 0.4 0 .6 0 .8 1 .0 Lag A C F suhu_hari

8 Pemodelan Suhu Udara Rata-rata Per Hari

tanpa Proses Pembedaan

Plot ACF pada Gambar 8 memperlihatkan bahawa nilai korelasi diri yang nyata terdapat pada lag ke-1 sampai ke-29. Dengan demikian identifikasi model sementara adalah MA(29).Sedangkan plot PACF pada Gambar 9, menunjukkan nilai korelasi diri parsial yang nyata terdapat pada lag ke-1 sampai ke-5. Dengan demikian dapat diidentifikasikan model sementara kedua adalah AR(5). Jika melihat plot ACF dan PACF secara bersamaan maka dapat ditentukan sebagai model sementaranya adalah ARMA(5,29). Dengan demikian identifikasi model sementara tanpa proses pembedaan adalah AR(5), MA(29) dan ARMA(5,29). Adapun untuk plot ACF dan PACF lebih jelas dapat dilihat pada Lampiran 4 dan 5.

Gambar 9 Parsial Autocorrelation Function Untuk Suhu Udara Rata-rata Per Hari Tanpa Pembedaan.

Model-model sementara yang didapatkan, akan dilakukan pendugaan parameter dan uji signifikansi parameter. Adapun hasil pendugaan parameter untuk model-model tersebut disajikan pada Lampiran 6. Pada Lampiran 6 terlihat bahwa model dengan t-hitung lebih besar dari t- tabelnya(1,960) untuk semua parameternya adalah model AR(5). Dengan demikian, bahwa hanya model AR(5) yang semua parameter dugaannya signifikan terhadap nilai yt. Maka model ini yang akan diikut sertakan pada proses diagnostik model.

Pada proses diagnostik model dilakukan pengecekan kelayakan model dengan menggunakan asumsi kebebasan dan kenormalan pada sebaran sisaannya. Uji Ljung- Box pada Lampiran 7, merupakan uji yang bertujuan untuk melihat ada atau tidaknya korelasi antara sisaan (kebebasan sisaan). Pada plot tersebut terlihat bahwa nilai-p model AR(5) menunjukkan nilai-nilai yang signifikan pada taraf 5% untuk semua lag. Hal ini dapat dikatakan bahwa tidak ada korelasi antar sisaan pada model tersebut. Maka dapat dikatakan bahwa model AR(5) layak untuk data.

Selain uji kebebasan sisaan, kenormalan pada sisaan harus terpenuhi. Pengecekan kenormalan sebaran sisaan dapat dilakukan dengan menggunakan uji Shapiro-Wilk yang disajikan pada Lampiran 8. Pengujian kenormalan sisaan pada model AR(5), menunjukkan nilai-p yang lebih kecil dari 0,05 yang berarti bahwa sisaan tidak menyebar secara normal. Akan tetapi sisaan yang tidak menyebar normal dapat ditoleransi karena didasarkan pada teorema dalil limit pusat yang menyatakan bahwa suatu sebaran dapat didekati dengan sebaran normal ketika jumlah contohnya besar. Dengan demikian, model AR(5) dapat dikatakan sisaannya menyebar normal dan memenuhi proses dignostik model.

Model yang telah memenuhi proses diagnostik model, selanjutnya akan dilakukan overfitting. Model overfitting untuk AR(5) adalah AR(6). Hasil pendugaan parameter untuk model tersebut menunjukkan bahwa t- hitung lebih besar dari t-tabelnya tidak pada semua parameternya (ada parameter yang tidak signifikan). Dengan demikiann model AR(6) tidak relevan untuk data. Dengan demikian hanya model AR(5) yang ditetapkan sebagai model terbaik untuk pemodelan data suhu rata- rata per hari di sekitar Palangkaraya tanpa proses pembedaan. Secara matematis, model AR(5) dapat ditulisakan sebagai berikut: yt = 105,693+ 0.2712yt-1 + 0.1409yt-2 + 0.0753yt-3 + 0,0626yt-4 + 0,0554yt-5

Pemodelan Suhu Udara Rata-rata Per Hari dengan Proses Pembedaan Satu Kali

Gambar 10 Plot Data Suhu Udara Rata-rata Per Hari Setelah Proses Pembedaan Satu Kali.

Pada Gambar 10 memperlihatkan grafik sebaran data suhu udara rata-rata per hari yang telah mengalami pembedaan satu kali. Adapun, Identifikasi model sementar dapat dilakukan dengan melihat plot ACF dan PACF dari data yang telah mengalami proses pembedaan satu kali, yaitupada Gambar 11 dan 12 yang lebih jelas dapat dilihat juga pada Lampiran 9 dan 10. Plot ACF pada Gambar 11, menunjukkan bahwa nilai ACF yang nyata pada lag pertama. Dengan demikian model sementara pertama

0 5 10 15 20 25 30 0 .0 0 .1 0 .2 0 .3 Lag P a rt ia l A C F Series data_hri

Suhu rata-rata harian setelah di diff

index waktu su hu _h ar i 0 500 1000 1500 -4 -2 0 2 4

sebaran Suhu dan hasil prediksinya Time Index su hu _h ar i 1400 1500 1600 1700 1800 24 25 26 27 28 29

adalah ARIMA(0,1,1).Selain itu, jika melihat pada plot PACF pada Gambar 12, menunjukkan bahwa nilai PACF yang nyata pada lagke-1, sampai lag ke-8. Maka identifikasi model sementara kedua adalah ARIMA(8,1,0). ARIMA(8,1,1) juga dapat ditentukan sebagai model sementara dengan melihat plot ACF dan PACF secara bersama-sama. Dengan demikian, model sementara data suhu udara rata-rata melalui proses pembedaan satu kali adalah model ARIMA(0,1,1), ARIMA(8,1,0) dan ARIMA(8,1,1).

Gambar 11 Autocorrelation Function Untuk Suhu Udara Rata-rata Per Hari dengan Pembedaan Satu Kali. Sama halnya dengan model-model sementara pada proses sebelumnya, model- model sementara pada proses ini juga harus dilakukan pendugaan parameter dan uji signifikasi parameter. Hasil pendugaan parameter untuk model-model sementara yang disajikan pada Lampiran 11, menunjukkan bahwa hanya model ARIMA(0,1,1) dan ARIMA(8,1,0) yang memiliki t-hitung lebih besar dari t-tabelnya(1,960) untuk semua parameternya. Dengan demikian, hanya ARIMA(0,1,1) dan ARIMA(8,1,0) yang akan diikutkan pada proses diagnostik model.

Proses diagnostik model dilakukan dengan pengecekan kebebasan dan kenormalan sisaan pada model-model sementara. Salah satu hal

yang dilakuakn adalah dengan menggunakan uji Ljung-Box untuk pengecekan kebebasan sisaan. Hasil uji tersebut terlihat pada Lampiran 12 dan 13.Pada plot tersebut terlihat bahwa model ARIMA(0,1,1) menunjukkan nilai-nilai yang tidak signifikan pada taraf 5% pada semua lag. Sama halnya pada model ARIMA(8,1,0) yang menunjukkan nilai yang tidak signifikan pada lag ke-8, ke-9 dan ke-10. Dengan demikian bahwa sisaan pada kedua model tersebut tidak saling bebas. Maka pada proses pemodelan data suhu per hari dengan pembedaan satu kali tidak terdapat model yang layak untuk data.

Gambar 12 Partial Autocorrelation Function Untuk Suhu Udara Rata-rata Per Hari dengan Pembedaan Satu Kali. Peramalan Suhu Udara Rata-rata Per Hari

Pada proses peramalan, dilakukan pendugaan nilai suhu udara rata-rata per hari untuk 31 hari, dengan menggunakan model yang didapatkan. Sebelum proses peramalan, proses validasi model seharusnya dilakukan. Akan tetapi model yang didapatkan pada proses pemodelan dengan data suhu udara rata-rata per hari hanya menghasilkan satu model yang layak untuk data. Dengan demikian model AR(5) akan digunakan langsung pada proses peramalan beberapa waktu kedepan dengan menggunakan 100% data. 0 5 10 15 20 25 30 -0 .5 0 .0 0 .5 1 .0 Lag A C F suhu_hari 0 5 10 15 20 25 30 -0 .4 -0 .3 -0 .2 -0 .1 0.0 Lag P a rt ia l A C F Series data_hari.diff

10 Nilai hasil peramalan untuk 31 hari di bulan

Oktober 2004 dengan dilengkapi selang kepercayaan 95%dapat dilihat pada Gambar 13, sedangkan lebih rinci dapat dilihat pada Lampiran 14. Nilai ramalan ini dapat dijadikan salah satu pertimbangan dalam menentukan suhu udara rata-rata harian. Sementara selang kepercayaan sebesar 95% menunjukkan tingkat kepercayaanbahwa nilai aktual untuk suhu udara hari tersebut akan berada pada selang tersebut.Adapun untuk perbandingan antar data hasil peramalan dengan data aktual dapat dilihat pada Tabel1.

Tabel 1 Perbandingan Data Ramalan Suhu Per hari dengan Data Aktual

Jika melihat pada Tabel 1, terlihat bahwa model AR(5) baik untuk memprediksi data suhu udara rata-rata harian hingga 8 hari pada peramalan. Hal ini terlihat dari nilai selisih antara nilai aktual dengan nilai hasil ramal di antara 0,5 dan -0,5 walaupun untuk hari-hari berikutnya terdapat nilai yang sama antara hasil peramalan dan nilai aktualnya, akan tetapi keadaan tersebut tidak terus menerus. Akan tetapi,jika melihat keseluruhan hasil peramalan, model AR(5) cukup baik dalam melakukan peramalan, karena presentase kesalahan peramalan yang dinyatakan dalam MAPE relatif kecil yaitu sebesar 3,11%.

Pemodelan Suhu Rata-rata Udara Per Minggu

Pemodelan data suhu udara rata-rata perminggu dilakukan dengan menggunakan 241 record. Data tersebut terdiri dari 208 record, yang akan digunakan sebagai data training. Sedangkan 33 record data sisanya digunakan untuk validasi model.

Sebelum proses pendugaan model dengan menggunakan data training, pengecekan kestasioneran data dalam nilai tengah dan ragamnya perlu dilakukan. Untuk mengetahui kestasioneran dalam ragam, pengujian data dapat dilakukan dengan menggunakan uji Bartett dan Levene.Hasil uji pada Lampiran 15, bahwa nilai-p menunjukkan nilai yang lebih besar dari 0,05, dengan demikian data stasioner dalam ragamnya. Selain itu, Uji kestasioneran untuk nilai tengahnya dapat dilakukan dengan menggunakan uji Augmented Dickey Fuller. Hasil uji pada Lampiran 16 memperlihatkan bahwa data stasioner dalam nilai tengahkarena nilai-p lebih kecil dari 0,05. Akan tetapi jika dilihat dari plot ACF pada Gambar 14, menurut Bowerman dan O’connell (1987)ada indikasi ketidakstasioneran data, ini terlihat dari adanya penurunan nilai AFC dengan perlahan (tail off). Oleh karena itu, kemungkinan pemodelan dapat dilakukan dengan dan tanpa proses pembedaan.

Gambar 14 Autocorrelation Function Untuk Suhu Udara Rata-rata Per Minggu Tanpa Pembedaan. 5 10 15 20 0 .0 0 .2 0 .4 0 .6 0 .8 1.0 ACF A C F

ACF Suhu Per Minggu Hari ke- Ramalan Data Aktual Selisih Aktual- Ramal 1 26,75 26,3 -0,4 2 26,76 27,4 0,6 3 26,76 27,3 0,5 4 26,75 26,5 -0,2 5 26,75 27,1 0,4 6 26,76 27,0 0,2 7 26,77 26,3 -0,5 8 26,78 27,0 0,2 9 26,77 28,1 1,3 10 26,77 28,0 1,2 11 26,77 27,9 1,1 12 26,77 27,6 0,8 13 26,77 27,4 0,6 14 26,77 27,3 0,5 15 26,78 27,1 0,3 16 26,78 26,8 0,0 17 26,77 27,3 0,5 18 26,77 28,3 1,5 19 26,77 27,4 0,6 20 26,78 28,2 1,4 21 26,78 26,8 0,0 22 26,78 28,7 1,9 23 26,78 27,8 1,0 24 26,78 27,9 1,1 25 26,78 27,8 1,0 26 26,78 28,2 1,4 27 26,78 28,2 1,4 28 26,78 27,7 0,9 29 26,78 29,0 2,2 30 26,78 28,3 1,5 31 26,78 27,8 1,0 MAPE 3,11%

Pemodelan Suhu Udara Rata-rata Per Minggu tanpa Proses Pembedaan

Plot ACF pada Gambar 14 memperlihakan bahawa nilai korelasi diri yang nyata terjadi pada lag ke-1 sampai ke-3. Dengan demikian identifikasi model sementara pada data suhu udara rata-rata adalah MA(2). Plot PACF pada Gambar 15, menunjukkan nilai korelasi diri parsial nyata terjadi pada dua lagke-1 dan ke-2, maka dari plot PACF dapat diidentifikasikan model sementara kedua adalah AR(3). Sedangkan jika melihat plot ACF dan PACF secara bersamaan maka dapat ditentukan model sementaranya adalah ARMA(3,2). Dengan demikian identifikasi model sementara pada data suhu udara rata-rata per minggu tanpa proses pembedaan adalah AR(3), MA(2) dan ARMA(3,2). Adapun untuk plot ACF dan PACF lebih jelas dapat dilihat pada Lampiran 17 dan 18.

Gambar 15 Parsial Autocorrelation Function untuk Suhu Udara Rata-rata Per Minggu Tanpa Pembedaan.

Model-model sementara yang telah didapatkan, selanjutnya akan mengalami proses pendugaan dan pengujian signifikansi nilai-nilai parameternya. Adapun hasil pendugaan dan pengujian parameter untuk model-model tersebut disajikan pada Tabel 2. Pada Tabel 2 terlihat bahwa model dengan t-hitung lebih besar dari t-tabelnya (1,984) untuk semua parameternya adalah model MA(2). Dengan demikian hanya model MA(2) yang akan diikutkan pada proses diagnostik model.

Tabel 2 Nilai Parameter Dugaan Model-model Sementara Pada Pemodelan Suhu Udara Rata-rata Per Minggu Tanpa Pembedaan

Model Tipe Para.

S.e

t-hit

AR(3) AR 1 AR 2 AR 3 0,313 0,111 0,096 0,069 0,073 0,070 5,17 1,57 1,38 MA(2) MR 1 MR 2 0,302 0,156 0,071 0,067 4,25 2,31 ARMA (3,2) AR 1 AR 2 AR 3 MR 1 MR 2 -0,077 -0,094 0,267 0,402 0,341 0,488 0,354 0,179 0,507 0,433 0,16 0,26 1,49 0,79 0,79

keterangan : t-hit = nilai t berdasarkan perhitungan (t-

hitung), S.e = Standar Error, Para. = parameter

Sama halnyapada data harian, untuk proses diagnostik model dilakukan dengan pengecekan kebebasan dan kenormalan sisaan pada model-model sementara. Untukpengecekan kebebasan sisaan model, yang dapat dilakukan adalah dengan menggunakan uji Ljung-Box yang hasilnya terdapat pada Lampiran 19. Hasil uji ini menujukan terdapat nilai yang tidak signifikan pada taraf 5% pada lag ketiga.Hal ini dapat dikatakan bahwa sisaan tidak saling bebas. Dengan demikian, tidak ada model yang layak untuk data suhu udara rata-rata per minggu dengan pemodelan tanpa proses pembedaan. Pemodelan Suhu Udara Rata-rata Per Minggu dengan Proses Pembedaan Satu Kali

Gambar 16 Plot Data Suhu Udara Rata-rata Per Minggu Setelah Proses Pembedaan Satu Kali.

Pada Gambar 16 terlihat bahwa sebaran data suhu udara rata-rata per minggu yang telah mengalami proses pembedaan satu kali dan untuk lebih jelas bisa dilihat pada Lampiran 20. Sama halnya dengan sebaran data sebelumnya, identifikasi model pada data yang telah mengalamai proses pembedaan, dapatkan dengan melihat pola nilai ACF dan PACF. Plot nilai ACF dan PACF untuk data suhu udara rata-rata per minggu yang telah mengalami

5 10 15 -0 .1 0 .0 0 .1 0 .2 0 .3 Lag P a rt ia l A C F

PACF Data Perminggua Suhu Udara di Sekitar Palangkaraya

Time V1 0 50 100 150 200 -2 -1 0 1

12 proses pembedaan satu kalidisajikan Gambar 17

dan 18 yang lebih jelas dapat dilihat juga pada Lampiran 21 dan 22.

Gambar 17 Autocorrelation Function Untuk Suhu Udara Rata-rata Per Minggu dengan Pembedaan Satu Kali. Pada plot Nilai ACF menunjukkan bahwa nilai korelasi diri nyata terjadi pada lagke-1, Dengan demikian model sementara pertama dari data suhu udara rata-rata yang telah mengalami proses pembedaan adalah ARIMA(0,1,1). Sementara pada plot nilai PACF juga menunjukkan nilai yang nyata pada lag ke-1 dan ke-2. Dengan demikian identifikasi model sementara kedua adalah ARIMA(1,1,0) dan ARIMA(2,1,0). Dengan demikian secara keseluruhan identifikasi model sementara data yang telah melalui proses pembedaan satu kali adalah model ARIMA(0,1,1), ARIMA(1,1,0) dan ARIMA(2,1,0).

Gambar 18 Partial Autocorrelation Function Untuk Suhu Udara Rata-rata Per Minggu dengan Pembedaan Satu Kali.

Model-model sementara yang didapatkan, selanjutnya akan mengalami proses pendugaan dan pengujian signifikansi nilai-nilai parameternya. Hasil pendugaan parameter untuk model-model sementara disajikan pada Tabel 3. Pada Tabel 3 terlihat bahwa model dengan t- hitung lebih besar dari t-tabelnya (1,984) untuk semua parameternya adalah model ARIMA(0,1,1), ARIMA(1,1,0) dan ARIMA(2,1,0). Dengan demikian model-model inilah yang akan diikutsertakan pada proses diagnostik model.

Tabel 3 Nilai Parameter Dugaan Model- modelSementara Pemodelan Suhu Udara Rata-rata Per Minggu denganPembedaan Satu Kali

Model Tipe Para.

S.e

t-

hit ARIMA(0,1,1) MA 1 -0,65 0,07 9,29 ARIMA(1,1,0) AR 1 -0,41 0,06 6,83 ARIMA(2,1,0) AR 1 AR 2 -0,52 -0,27 0,08 0,08 6,5 3,37

Keterangan : t-hit = nilai t berdasarkan perhitungan

(t-hitungan), S.e = Standar Error, Para. = Parameter

Pada proses diagnostik model, dilakukanpengecekan kebebasan sisaan untuk tiga model tersebut. Hal ini dilakuakn dengan menggunakan dengan uji Ljung-Box dan hasil uji disajikan pada Lampiran 23, 24, dan 25. Pada Lampiran 23, terlihat bahwa nilai-p yang signifikan pada taraf 5% terjadi pada semua lag. Dengan demikian model ARIMA(0,1,1) memiliki sisaan yang saling bebas, begitu pula pada model ARIMA(2,1,0) yang dapat dilihat pada Lampiran 25. Akan tetapi, berbeda halnya dengan mode ARIMA(1,1,0). Pada model ARIMA(1,1,0) terdapat nilai-p yang tidak signifikan pada taraf 5%. Maka model ARIMA(1,1,0) memiliki sisaan yang tidak saling bebas. Dengan demikian secara keeseluruhan hanya model ARIMA(0,1,1) dan ARIMA(2,1,1) yang akan diikutsertakan pada proses berikutnya.

Selain kebebasan sisaan, kenormalan pada sisaan model juga harus terpenuhi. Pengecekan kenormalan sisaan dapat dilakukan dengan menggunakan uji Shapiro-Wilk yang disajikan pada Lampiran 26 dan 27. Pada Lampiran 26 dan 27, terlihat bahwa nilai-p lebih besar dari 0,05, terlihat pada sisaan model ARIMA(0,1,1) maupun pada model ARIMA(2,1,0). Dengan demikian kedua model tersebut memiliki sisaan yang menyebar normal. Dengan demikian, model ARIMA(0,1,1) dan ARIMA(2,1,0) memenuhi proses diagnostik model.

Model-model yang memenuhi diagnostik model akan dilakukan overfitting model. Model overfitting untuk model ARIMA(0,1,1) adalah ARIMA(1,1,1) dan ARIMA(0,1,2). Sedangkan model ARIMA(2,1,0) ialah ARIMA(3,1,0) dan ARIMA(2,1,1). Hasil overfitting model dari Lampiran 28 memperlihatkan bahwa model ARIMA(0,1,1), ARIMA(1,1,1) dan ARIMA(0,1,2) sebagai model-model terbaik.

Model-model terbaik yang dihasilkan selanjutnya akan digunakan dalam proses validasi model. Validasi model merupakan

5 10 15 20 -0 .4 -0 .2 0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 Lag A C F

ACF Dif.Data Perminggua Suhu Udara di Sekitar Palangkaraya

5 10 15 20 -0 .4 -0 .3 -0 .2 -0 .1 0 .0 0 .1 Lag P a rt ia l A C F

sebaran Suhu dan hasil prediksinya Time Index T e m p e ra tu r (c) 200 220 240 260 280 300 25 26 27 28

proses yang membandingkan data aktual dengan data hasil ramalan dari setiap model. Model yang memiliki nilai MAPE dan AIC lebih kecil, dipilih sebagai model terbaik dari semua model. Adapun hasil validasi model yang disajikalan pada Tabel 4, menunjukkan bahwa model ARIMA(0,1,1) dipilih sebagai model terbaik karena memiliki nilai MAPE yang lebih kecil, meskipun nilai AIC tidak minimum. Hal ini dikarenakan model terbaik akan digunakan untuk peramalan beberapa periode ke depan dengan menggunakan 100% data. Oleh karena itu, lebih mendahulukan nilai MAPE yang minimum dalam memilih model terbaik. Secara matematis model ARIMA(0,1,1) dapat dituliskan sebagai berikut:

yt = 0,005 - (-0,65)et-1

Tabel 4 Hasil Validasi Model Pemodelan Suhu Udara Rata-rata Per minggu dengan Pembedaan Satu Kali

Model MAPE AIC

ARIMA(0,1,1)

2,1%

352,65 ARIMA(1,1,1)

2,4%

337,77 ARIMA(0,1,2)

2,2%

343,7

Peramalan Suhu Udara Rata-rata Per Minggu

Pada proses peramalan, dilakukan pendugaan nilai suhu udara rata-rata per minggu untuk 20 minggu, dengan menggunakan model terbaik yang didapatkan hasil proses validasi model. Proses peramalan menggunakan 100% data dengan menggunakan model ARIMA(0,1,1). Adapun nilai hasil peramalan dapat dilihat pada Gambar 19, sedangkan lebih rinci dapat dilihat pada Lampiran 29, dengan dilengkapi selang kepercayaan 95%. Selang kepercayaan sebesar 95% menunjukkan tingkat kepercayaan penelitian, bahwa nilai aktual untuk suhu udara rata-rata per minggu akan berada pada selang tersebut.

Adapun untuk perbandingan antara data ramalan dengan data aktual dapat dilihat pada Tabel5.Jika melihat hasil peramalan dan nilai aktualnya pada Tabel 6, bahwa model ARIMA(0,1,1) baik untuk meramal suhu udara rata-rata per minggu, karena presentase kesalahan peramalan yang dinyatakan dalam MAPE relatif kecil yaitu sebesar 1,91%. Tabel 5 Perbandingan Data Ramalan Suhu

Udara Rata-rata Per Minggu dengan Data Aktual Minggu ke- Ramalan Data Aktual Selisih Aktual - Ramal 314 26,756 25,7 -1,1 315 26,759 26,1 -0,6 316 26,762 26,7 -0,1 317 26,765 25,9 -0,9 318 26,768 26,2 -0,6 319 26,771 26,9 0,1 320 26,774 26,7 -0,1 321 26,777 26,9 0,2 322 26,78 27,6 0,8 323 26,783 27,6 0,8 324 26,786 28,1 1,3 325 26,789 27,8 1,0 326 26,792 26,8 0,0 327 26,795 27,5 0,7 328 26,798 26,1 -0,7 329 26,801 26,5 -0,3 330 26,804 26,6 -0,2 331 26,806 26,9 0,1 332 26,809 27,0 0,2 333 26,812 26,4 -0,4 MAPE 1,91%

14 Pemodelan Suhu Udara Rata-rata Per Bulan

Pemodelan dengan menggunakan suhu udara rata-rata per bulan dilakukan dengan menggunakan 54 record data, dari Januari 2000 sampai Juni 2005. Data tersebut terbagi menjadi data training sebanyak 48 record sedangkan 6 record sisanya digunakan sebagai validasi model.

Sebelum proses pendugaan model, dilakukan pengecekan kestasioneran pada data baik kestasioneran dalam nilai tengah maupun dalam ragamnya. Uji kestasioneran untuk nilai tengahnya dapat dilakukan dengan menggunakan uji Augmented Dickey Fuller

Dokumen terkait