• Tidak ada hasil yang ditemukan

2. TINJAUAN PUSTAKA

2.2. Faktor dan Proses Penentu Produktivitas Primer

2.2.4. Intensitas Cahaya

Cahaya merupakan sumber energi utama dalam ekosistem perairan. Di perairan cahaya memiliki dua fungsi utama yaitu pertama memanasi air sehingga terjadi perubahan suhu dan berat jenis (densitas) yang selanjutnya menyebabkan terjadinya percampuran massa dan kimia air, dan yang kedua cahaya merupakan sumber energi bagi proses fotosintesis alga dan tumbuhan air. Apabila penetrasi cahaya dalam perairan semakin besar akan menyebabkan semakin besarnya daerah berlangsungnya fotosintesis, sehingga kandungan oksigen terlarut masih relatif tinggi pada lapisan air yang lebih dalam (Jeffries dan Mills 1996).

Proses fotosintesis di dalam perairan berlangsung jika ada cahaya sampai pada kedalaman tertentu dimana fitoplankton berada. Pada tahap awal cahaya matahari ditangkap oleh fitoplankton, kemudian energi ini digunakan untuk aktifitas proses fotosintesis. Tidak semua radiasi elektromagnetik yang jatuh pada tumbuhan berfotosintesis dapat diserap, tetapi hanya cahaya tampak (visible light) yang memiliki panjang gelombang berkisar antara 400-720 nm yang diabsorpsi dan digunakan untuk melakukan aktifitas fotosintesis (Lalli dan Parsons 1993).

Hubungan antara intensitas cahaya dan produktivitas primer perairan sangat nyata, dimana peningkatan intensitas cahaya secara proporsional sebanding dengan peningkatan produktivitas primer. Semakin meningkatnya intensitas cahaya akan mengakibatkan proses fotosintensis juga semakin meningkat sampai mencapai puncak dimana cahaya dalam kondisi jenis (Riley dan Chester 1971; Parson et al. 1984).

Fotosintesis hanya dapat berlangsung bila intensitas cahaya yang sampai ke suatu sel alga lebih besar daripada suatu intensitas tertentu. Hal ini berarti bahwa fitoplankton yang produktif hanyalah terdapat di lapisan-lapisan air teratas dimana intensitas cahaya cukup bagi berlangsungnya fotosintesis. Kedalaman penetrasi cahaya di dalam laut, yang merupakan kedalaman dimana produksi fitoplankton masih dapat berlangsung, bergantung pada beberapa faktor, antara lain absorbsi cahaya oleh air, panjang gelombang cahaya, kecerahan air, pemantulan cahaya oleh permukaan laut, lintang geografik dan musim (Nybakken 1992). Hasil fotosintesis yang relatif besar dihasilkan dari lapisan permukaan sampai pada kedalaman dengan nilai intensitas cahaya kurang lebih tinggal 1%

13 dari cahaya yang berada pada permukaan perairan yang disebut zona eufotik (Parson et al. 1984). Umumnya fotosintesis bertambah sejalan dengan bertambahnya intensitas cahaya sampai pada suatu nilai optimum tertentu (cahaya saturasi). Di atas nilai tersebut cahaya merupakan pembatas bagi fotosintesis (cahaya inhibisi). Semakin ke dalam perairan intensitas cahaya akan semakin berkurang dan merupakan penghambat sampai pada suatu kedalaman dimana fotosintesis sama dengan respirasi (Neale 1987). Pada kedalaman perairan dimana proses fotosintesis sama dengan proses respirasi disebut kedalaman kompensasi yang intensitas cahayanya tinggal 1% dari intensitas di permukaan perairan. Hubungan antara intensitas cahaya dan laju fotosintesis atau produktivitas fitoplankton di laut dapat digambarkan sebagai berikut (Gambar 2). 2.2.5. Unsur Hara N, P dan Si

Istilah umum yang digunakan secara luas untuk bahan organik adalah senyawa-senyawa yang disintesis secara biologi yang menghasilkan C, H, biasanya O, sedikit Nitrogen (N) dan fosfor (P), dan trace elemen lain yang penting untuk memelihara kehidupan tumbuhan. Protein, karbohidrat dan lemak adalah tipe-tipe senyawa organik yang banyak di dalam sistem kehidupan. Masing-masing mengandung karbon, hidrogen dan oksigen dalam rasio yang bervariasi. Dapat ditambahkan, bahwa lemak sering meliputi P, sedangkan protein mengandung N dan P (Basmi 1995).

Suplai unsur dan senyawa esensial ke dalam suatu sistem perairan, khususnya Nitrogen (N), Fosfat (P) dan Silikat (Si) sering dilihat sebagai faktor pembatas yang mempengaruhi penyebaran dan pertumbuhan populasi dan komunitas fitoplankton. Howarth (1988) dan Pomeroy (1991) menyatakan bahwa dinamika populasi fitoplankton sangat ditentukan oleh nutrien yang berperan sebagai faktor pembatas. Penggunaan nutrien sebagai faktor pembatas dapat dibedakan sebagai :

1. Nutrien sebagai faktor pembatas pertumbuhan populasi yang dominan. Perubahan atau pertukaran populasi yang dominan terjadi di bawah batas saturasi dari populasi dominan yang ada.

2. Nutrien sebagai faktor pembatas terhadap laju potensial produksi primer bersih. Perubahan populasi melebih batas populasi dominan yang ada, ditentukan oleh perubahan spesies yang dominan.

3. Nutrien sebagai faktor pembatas produksi ekosistem bersih, populasi primer kotor melebihi total respirasi ekosistem. Perubahan populasi ini berdampak pada meningkatknya kandungan organik bersih atau hasil dari ekosistem.

Gambar 2. Diagram menunjukkan hubungan antara produktivitas dan intensitas cahaya. Pmax = Produktivitas maksimum; Ic = Intensitas cahaya pada titik kompensasi; Iopt = Intensitas cahaya pada Pmax; R = Respirasi; Pn = Produktivitas bersih; Pg = Produktivitas kotor (Nontji 2006)

• Produktivitas mempunyai hubungan yang linear dengan cahaya hanya pada intensitas cahaya yang rendah;

• Pada intensitas tertentu (Iopt), produktivitas akan mencapai maksimum (Pmax);

• Intensitas cahaya yang terlampau kuat akan menyebabkan produktivitas menurun (photo inhibition);

• Titik kompensasi adalah intensitas dimana produktivitas adalah sama dengan laju respirasi (P = R). Berdasarkan hal-hal di atas maka dalam sebaran vertikal produktivitas umumnya dapat terlihat kondisi seperti pada Gambar 3.

15

Gambar 3. Diagram menunjukkan sebaran vertikal produktivitas fitoplankton. Produktivitas maksimum (Pmax) dijumpai pada kedalaman di bawah permukaan. Kedalaman kompensasi terdapat pada kedalaman dimana praduktivitas seimbang dengan respirasi. Zona eufotik terdapat mulai dari permukaan hingga kedalaman kompensasi (Nontji 2006)

• Produktivitas di permukaan biasanya kecil karena pengaruh sinar matahari yang terlampau kuat akan menghambat produktivitas;

• Semakin dalam, produktivitas semakin meningkat, hingga mencapai maksimum (Pmax) pada kedalaman beberapa meter di bawah permukaan;

• Di bawah Pmax produktivitas akan berkurang secara proporsional terhadap intensitas cahaya;

• Produktivitas akan bersifat positif jika nilainya lebih besar dari respirasi (P>R)

• Kedalaman dimana produktivitas dan respirasi seimbang disebut kedalaman kompensasi, dan intensitas cahaya pada kedalaman ini disebut intensitas kompensasi

• Zona dari permukaan hingga kedalaman kompensasi disebut zona eufotik

• Di bawah zona eufotik intensitas cahaya sudah tak dapat menghasilkan produksi yang positif.

Unsur-unsur yang sangat dibutuhkan oleh fitoplankton merupakan faktor pembatas pada perairan yang berbeda. Menurut Hecky dan Kilham (1988) dari ketiga nutrien unsur utama tersebut yakni N, P dan Si, di perairan air tawar fosfat lebih bersifat faktor pembatas bagi pertumbuhan alga bila dibandingkan dengan

unsur yang lain, sedangkan di perairan laut ketiga unsur tersebut bersama-sama bersifat sebagai faktor pembatas pertumbuhan terutama nitrogen. Caroco et al. (1987) berdasarkan hasil penelitiannya tentang pengaruh pengkayaan N dan P di perairan estuari hingga perairan pantai (perairan laut) dengan salinitas 32o/oo menyatakan bahwa fitoplankton pada perairan dengan salinitas 0 – 6,5 o/oo merespon terhadap penambahan konsentrasi P dan biomassanya meningkat hingga 2 – 6 kali, sedangkan penambahan nitrogen merangsang pertumbuhan fitoplankton di perairan bersalinitas yang lebih tinggi (31 o/oo). Smith (1984) mendapatkan bahwa fosfat dan silikat secara potensial merupakan faktor pembatas bagi pertumbuhan fitoplankton pada musim dingin sedangkan nitrat bersifat sebagai faktor pembatas pada perairan dengan salinitas yang lebih tinggi. Pada perairan dengan tingkat salinitas sedang, pertumbuhan fitoplankton tidak merespon terhadap penambahan N atau P. Peningkatan biomassa secara drastis terjadi bila penambahan N dan P dilakukan secara bersamaan.

Pertumbuhan dan reproduksi fitoplankton dipengaruhi oleh kandungan nutrien di dalam badan perairan. Kebutuhan akan besarnya kandungan dan jenis nutrien oleh fitoplankton sangat tergantung pada klas atau jenis fitoplankton itu sendiri disamping jenis perairan dimana fitoplankton tersebut hidup. Dengan demikian nitrogen secara signifikan berpengaruh terhadap struktur komunitas fitoplankton (Piehler et al. 2004). Namun demikian laju pertumbuhan fitoplankton akan tergantung pada ketersediaan nutrien yang ada. Menurut Pomeroy (1999), laju pertumbuhan fitoplankton akan sebanding dengan meningkatnya konsentrasi nutrien hingga mencapai suatu konsentrasi yang saturasi. Setelah keadaan ini, pertumbuhan fitoplankton tidak tergantung lagi pada konsentrasi nutrien.

Nitrogen dibutuhkan untuk mensintesa protein. Menurut Parson et al.

(1984), nitrogen di laut terutama berada dalam bentuk molekul-molekul nitrogen dan garam-garam anorganik seperti nitrat, nitrit dan amonia dan beberapa senyawa nitrogen organik. Pada umumnya nitrogen diabsorbsi oleh fitoplankton dalam bentuk nitrat (NO3-N) dan ammonia (NH3-N). Fitoplankton lebih banyak menyerap NH3-N dibandingkan dengan NO3-N karena lebih banyak dijumpai di perairan baik dalam kondisi aerobik maupun anaerobik (Welch, 1980). Selain itu

17 penggunaan N-NO3 membutuhkan penambahan energi seperti adanya enzim nitrat reduktase.

Pada umumnya konsentrasi nitrogen di perairan laut berkisar 0,01-50 μg/l untuk nitrat, 0,01-5 μg/l untuk nitrit dan 0,1-5 μg/l untuk amonia serta 0,2-2 μg/l untuk asam amino (Clark et al. 1972; Riley dan Segar 1970 dalam Parson et al.

1984). Sedang untuk pertumbuhan optimal fitoplankton menurut Mackenthum (1969) dalam Tambaru (2008) memerlukan kandungan nitrat berkisar 0,9-3,5 mg/l. Secara lebih khusus Ketchum (1939) dalam Parson et al. (1984) menjelaskan bahwa kebutuhan minimum nitrat yang dapat diserap oleh diatom berkisar 0,001-0,007 mg/l.

Dalam bentuk fosfor, fitoplankton menggunakan fosfat (PO4) untuk pertumbuhannya (Goldman dan Horne 1983). Fosfat mempengaruhi penyebaran fitoplankton khususnya diatom (Vollenweider 1968 diacu dalam Tambaru 2008). Fosfat menjadi faktor pembatas baik secara spasial maupun temporal. Konsentrasi fosfor di perairan umum berkisar 0,001-0,005 mg/l (Boyd 1982 diacu dalam Effendie 2003). Kandungan fosfat yang optimum untuk pertumbuhan fitoplankton berkisar 0,09-1,80 mg/l (Mackenthum 1969 diacu dalam Tambaru 2008). Pada perairan yang memiliki konsentrasi fosfat yang rendah (0,00-0,02 mg/l) akan didominasi oleh diatom, pada perairan dengan konsentrasi fosfat sedang (0,02-0,05 mg/l) akan dijumpai jenis Chlorophyceae yang berlimpah dan perairan yang memiliki konsentrasi fosfat tinggi (>0,10 mg/l) maka jenis Cyanophyceae menjadi dominan (Prowse 1946 dalam Tambaru 2008).