• Tidak ada hasil yang ditemukan

KESIMPULAN DAN RISET LANJUTAN 5.1 Kesimpulan

Model Multiscenario MINLP merupakan model yang tepat untuk dapat di- aplikasikan dalam fungsi tujuan dalam masalah optimisasi superstruktur jaringan air tepadu dengan ketidakpastian sedemikian dapat meminimalkan total pembia- yaan dan model MINLP untuk keseimbangan aliran / material keselutuhan serta keseimbangan kontaminan dalam Unit Mixer, Splitter, Proses dan Treatment / Pemurnian. Pemilihan desain superstruktur jaringan air terpadu dapat memini- malkan total pembiayaan yang diproses dalam unit pemurnian / treatment untuk operasi penggunaan air.

5.2 Riset Lanjutan

a. Untuk menindak lanjuti hasil penelitian ini disarankan untuk mengkonstruk- si model sebuah jaringan yang berfungsi ganda dengan regenerasi industri penggunaan air dan pengolahan air limbah dan air dalam penyimpanan (reservoir) dalam integrasi langsung. Selain itu, beberapa utilitas jaringan mungkin berfungsi sebagai regenerasi air dalam induistri yang dapat difor- mulasikan dalam model tersebut.

b. Pengembangan model desain jaringan untuk fleksibilitas dengan ketidakpas- tian yang terdapat dalam skenario dapat dimasukkan ke dalam model de- ngan menggunakan fuzzy atau stokastik parameter dimana Interplant op- timisasi jaringan air dengan skema hub utilitas terkait berdasarkan fungsi

biaya yang dioptimisasikan dengan total penggabungan biaya modal (rege- nerasi, biaya pipa, dll) dan biaya penghematan air (air bersih, air limbah yang telah dimurnikan).

DAFTAR PUSTAKA

Acevedo, J., & Pistikopolous, E. N. (1998). Stokastik optimization based algori- thms for process synthesis under uncertainty.Computers and Chemical Engi- neering, 22, 647-671.

Ahmed, S., Bersihmalani, M., & Sahinidis, N. (2004). A finite branch-andbound algorithm for two-stage stokastik integer programs. Mathematical Program- ming, 100, 355-377.

Alva-Argez, A., Kokossis, A. C. & Smith, R. (1998). Wastewater minimisation of industrial systems using an integrated approach. Computers & Chemical Engineering, 22(Supplement 1), S741-S744.

Bagajewicz, M. (2000).A review of recent design procedures for water networks in refineries and process plants. Computers & Chemical Engineering, 24(9-10), 2093-2113.

Bersihmalani, M., & Sahinidis, N. (2002). Convexification and global optimization in continuous and mixed-integer nonlinear programming: Theory, algorithms, software and applications. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Birge, J. R., & Louveaux, F. V. (1997). Introduction to stokastik programming. New York: Springer. New York.

Biegler, L. T., Grossmann, I. E. & Westerberg, A. W. (1997).Systematic methods of chemical process design. New Jersey, USA: Prentice-Hall.

Castro, P., Teles, J.P. & Novais, A . (2009). Linear program-based algorithm for the optimal design of wastewater treatment system ,Clean Technologies and Environmentaln Policy, II(1),83-93.

Carøe, C. C., & Schultz, R. (1999). Dual decomposition in stokastik integer pro- gramming. Operations Research Letters, 24, 37-45.

Clay, R., & Grossmann, I. E. (1997). A disaggregation algorithm for the optimi- zation of stokastik planning models. Computers and Chemical Engineering, 21,751-774.

Dhole, V. R., Ramchandani, N., Tainsh, R. A. & Wasilewski, M. (1996). Make Your Process Water Pay for Itself. Chemical Engineering, 103, 100.

Doyle, S. J. & Smith, R. (1997). Targeting water reuse with multiple contaminants. Process Safety and Environmental Protection, 75(3), 181-189.

Dudley, S. (2003). Water Use in Industries of the Future: Chemical Industry. Chapter in ”Industrial Water Management : A Systems Approach”, (2nd Edition), New York.

El-Halwagi, M. M. (1997).Pollution prevention through process integration. Syste- matic design tools. San Diego, USA: Academic Press.

E. Ahmetovic and I.E. Grossmann. (2006). General Superstructure and Global Op- tiimization for the Design of Integrated Process Water Networks, Computers & Chemical, 14(12)126-140.

Feng, X. & Seider, W. D. (2001). New structure and design methodology for water networks. Industrial & Engineering Chemistry Research, 40(26), 6140-6146. Fisher, M. L. (1985). An applications oriented guide to lagrangian relaxation. In-

terfaces, 15(2), 10-21.

Foo, D. C. Y. (2009). State-of-the-Art Review of Pinch Analysis Techniques for Water Network Synthesis. Industrial & Engineering Chemistry Research, 489(11), 5125-5159.

Grossmann, I.E., Halemane, K. P., & Swaney, R. E. (1983). Optimization strategies for flexible chemical processes.Computers and Chemical Engineering, 7, 439- 462.

Guignard, M., & Kim, S. (1987). Lagrangean decomposition: A model yielding stronger lagrangean bounds. Mathematical Programming,39,215-228.

Grossmann, I. E. (1995). Global optimization of bilinear process networks with multicomponent flows. Computers & Chemical Engineering, 19(12), 1219- 1242.

Gunaratnam, M., Alva-Argaes, A., Kokossis, A., Kim & Smith, R. (2005). Auto- mated Design of Total water Systems, Industrial & Engineering Chemistry Research, 44(3). 588-599.

Galan, B. & Grossmann, I. E. (1998). Optimisasi design of distributed wastewater treatment networks. Industrial & Engineering Chemistry Research, 37(10), 4036-4048.

Huang, C.-H., Chang, C.-T. Ling, H.-C. & Chang, C.-C. (1999). A Mathema- tical Programming Modelfor Water Usage and Treatment Network Design. Industrial & Engineering Chemistry Research, 38(8),3190-3190.

Horst, R., & Tuy, H. (1996). Global optimization deterministik approaches (3rd

ed.). Berlin: Springer-Verlag.

Karuppiah, R., & Grossmann, I.E. (2006). Global optimization for the synthesis of integrated water systems in chemical processes. Computers and Chemical Engineering, 30, 650-673.

Karuppiah, R. & Grossmann, I. E. (2008). Global optimization of multi skena- rio mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Computers & Chemical Engi- neering, 32(1-2), 145-160.

Kuo, W.C. J. & Smith, R. (1997). Effluent treatment system design. Chemical Engineering Science,52(23), 4273-4290.

Liu, M. L., & Sahinidis, N. V. (1996). Optimization in process planning under uncertainty. Industrial and Engineering Chemistry Research, 35, 4154-4165. Mann, J. G. & Liu, Y. A. (1999). Industrial water reuse and wastewater minimi-

zation. New York, USA: McGraw-Hill.

McCormick, G. P. (1976). Computability of global solutions to factorable non- convex programs. Part I. Convex underestimating problems. Mathematical Programming, 10, 146-175.

Norkin, V. I., Pflug, G. Ch., & Ruszczynski, A. (1998). A branch and bound method for stokastik global optimization. Mathematical Programming, 83, 425-450.

Quesada, I., & Grossmann, I. E. (1995). Global optimization of bilinear process networks with multicomponent flows, Computer & Chemical Engineering 19 (12), 1219-1242.

Ryoo, H. S., & Sahinidis, N. (1995). Global optimization of nonconvex NLPs and MINLPs with applications in process design.Computers and Chemical Engi- neering, 19, 551-556.

Savelski, M. & Bagajewics, M., (2003). On the necessary conditions of optimality of water utilization systems in process plants with multiple contaminants, Chemical Engineering Science, 58 (23-24) , 5349-5362.

Sahinidis, N. (1996). BARON: A general purpose global optimization software package. Journal of Global Optimization, 8(2), 201-205.

Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and op- portunities. Computers and Chemical Engineering, 28, 97 1-983.

Sorin, M. & Bedard, S. (1999). The global pinch point in water reuse networks. Process Safety and Environmental Protection, 77(25), 305-308.

Takriti, S., Birge, J. R., & Long, E. (1996). A Stokastik model of the unit commi- tment problem. IEEE Transactions on Power Systems, 11, 1497- 1508. Takama , N , Kuriyama , T, Shiriko & Umeda T. (1980). Optimisasi water alloca-

tion in a pretoleum refinery, Computer & Chemical Engineering, 4(4), 251- 258.

Wang, Y. P. & Smith, R. (1994a). Wastewater minimisation.Chemical Engineering Science, 49(7),981-1006.

Wang, Y.P. & Smith, R. (1994b). Design of distributed effluent treatment systems. Chemical Engineering Science, 49(18), 3127-3145.

Wang, Y. P. & Smith, R. (1995). Wastewater Minimization with Flowrate Con- straints. Chem. Eng. Res. Des., 73, 889.

Dokumen terkait