• Tidak ada hasil yang ditemukan

Kesimpulan

Galur dihaploid (DH) calon pelestari hasil kultur antera terbukti baik dan stabil, sehingga dapat berfungsi sebagai galur pelestari efektif bagi galur mandul jantan dengan latar belakang sitoplasma wild abortive, Gambiaca dan Kalinga. Galur tersebut antara lain H36-3-Ma, H36-3- Mb, B2-1-M, B4-1-Da, H36-3-Mc, H36-4-M, B1-2-Pb dan B2-1-Db. Galur-galur DH tersebut memiliki kriteria agromorfologi dan hasil yang baik, serta memiliki ketahanan terhadap pathogen hawar daun bakteri.

Penggunaan galur dihaploid pelestari dalam perakitan galur mandul jantan melalui metode silang balik berkelanjutan efektif dan mempercepat proses perakitan GMJ baru. Telah teridentifikasi 10 galur mandul jantan baru yang memiliki latar belakang sitoplasma WA, Gambiaca dan Kalinga. Sepuluh GMJ baru tersebut memiliki sterilitas polen stabil, perilaku dan morfologi bunga yang mendukung kemampuan persilangan alami serta tahan terhadap patogen hawar daun bakteri. Dalam proses produksi benih, kelemahan GMJ baru berupa malai pendek dan tertutup oleh daun bendera dapat diatasi melalui penyemprotan GA3 untuk meningkatkan persilangan alami. GMJ baru dengan tipe sitoplasma yang berbeda memiliki potensi produksi benih yang lebih tinggi dibandingkan IR58025A dan dapat digunakan dalam pengembangan padi hibrida. GMJ dengan sitoplasma Kalinga dan Gambiaca dapat digunakan untuk antisipasi terhadap kerapuhan genetik, karena dapat menghasilkan hibrida berheterosis tinggi.

Hibrida turunan GMJ tipe WA menghasilkan heterosis berkisar antara 32,22 – 41,15% terhadap varietas Inpari13 (cek inbrida terbaik), sedangkan dibandingkan Hipa6 Jete (cek hibrida terbaik), hibrida tersebut menghasilkan kelebihan hasil 25,35 – 33,81%. Hibrida turunan Gambiaca memberikan kelebihan hasil sebesar 15,49 – 36,61% dan 9,48 – 29,50% berturut- turut terhadap Inpari13 dan Hipa6 Jete. Hibrida yang dibentuk oleh GMJ tipe Kalinga menghasilkan heterosis berkisar antara 14,61 – 26,45% dan 8,65 – 19,88% berturut-turut terhadap Inpari13 dan Hipa6 Jete. Hibrida yang menghasilkan bobot hasil tertinggi pada kelompok turunan GMJ tipe WA adalah BI485A/IR53942 (10,21 t/ha). Bobot hasil tertinggi pada kelompok turunan GMJ tipe Gambiaca ditunjukkan oleh BI855A/SMD11 (9,88 t/ha), sedangkan pada kelompok turunan GMJ tipe Kalinga ditunjukkan oleh BI665A/IR53942 (9,15 t/ha).

Saran

Ketahanan GMJ baru teridentifikasi terhadap penyakit hawar daun bakteri saja, sehingga perlu dilakukan pengujian ketahanan GMJ terhada hama dan penyakit tropis lainnya. Potensi produksi benih GMJ tipe Gambiaca (BI855A) perlu diteliti kembali dalam plot yang lebih luas pada musim yang tepat agar tidak terjadi halangan non teknis sehingga diperoleh informasi potensi produksi benih GMJ tersebut secara akurat.

GMJ tipe Kalinga dan Gambiaca belum optimal dalam menghasilkan hibrida potensi hasil tinggi karena belum tersedia galur pemulih kesuburan spesifik bagi kedua GMJ baru tersebut. Karena itu perlu dilakukan identifikasi terhadap galur-galur lokal maupun galur-galur inbrida unggulan untuk merakit galur pemulih kesuburan bagi kedua GMJ tersebut. Perlu dikaji dan diidentifikasi gen yang berperan dalam memulihkan kesuburan GMJ tipe Kalinga. Hibrida yang telah teridentifikasi berpotensi hasil dan memiliki heterosis tinggi, perlu diuji kembali pada pengujian daya hasil yang lebih luas, sehingga dapat dilakukan seleksi terhadap kombinasi terbaik.

Inc.

[Badan Litbang] Badan Penelitian dan Pengembangan Pertanian. 2007. Daerah Pengembangan dan Anjuran Budidaya Padi Hibrida. Badanlitbang Pertanian, DEPTAN. 43 p.

[BPS] Badan Pusat Statistik. 2010. Data produktivitas, luas panen dan produksi seluruh provinsi, Angka Ramalan III 2010. Jakarta

Bahar H, Zen S, Syarif AA. 2000. Parameter genetik padi gogo. Stigma 8(4):265- 268.

Brar DS, Fujimura T, McCouch S, Zapata FJ. 1994. Application of biotechnology. Di dalam: Virmani SS, editor. Selected papers from the International Rice Research Conference. IRRI, Philippines. hlm 51-62.

Brar DS, Dalmacio R, Elloran R, Aggarwal R, Angeles R, Khush GS. 1996. Gene transfer and molecular characterization of introgression from wild Oryza species into rice. Di dalam: Khush GS, editor. Rice Genetics III. International Rice Research Institute, Philippines. hlm 477-486.

Chahal GS, Gosal SS. 2002. Principles and Procedures of Plant Breeding. Alpha Science International Ltd., Pangbourne.

Chakraborty R, Chakraborty S, Dutta BK, Paul SB. 2009. Combining ability analysis for yield and yield components in bold grained rice (Oryza sativa L.) of Assam. Acta Agronómica 58 (1): 9-13.

Chhun et al. 2007. Gibberellin regulates pollen viability and pollen tube growth in rice. The Plant Cell 19:3876-3888.

Dewi IS, Soemantri IH, Rianawati S. 1996. Anther culture and its application for rice improvement program in Indonesia. IAARD Journal 18:51-56.

Dewi IS, Purwoko BS. 2001. Kultur antera untuk mendukung program pemuliaan tanaman padi. Bul. Agron. 29 (2): 59-63.

Dewi IS, Hanarida IS, Suwarno, Yunus M, Satoto, Apriana A, Sisharmini A, Hidayatun N, Pieter Y, Lestari Ap, dan Minantyorini. 2005. Teknik Biologi Molekuler untuk Perbaikan Padi Hibrida. Laporan APBN 2005. BB-Biogen, Deptan. 30 p.

Dewi IS, Purwoko BS. 2011. Kultur in vitro untuk produksi tanaman haploid androgenik. Di dalam: Bioteknologi dalam Pemuliaan Tanaman. IPB Press. Duvick DN. 1999. Heterosis: feeding people and protecting natural resources. Di

dalam: Coors JG, Pandey S, editor. The Genetics and Exploitation of Heterosis in Crops. American Society of Agronomy, Inc., Crop Science

Society of America, Inc., Soil Science Society of America, Inc., Madison, WI. hlm 19-29.

Eckardt NA. 2006. Cytoplasmic male sterility and fertility restoration. The Plant Cell 18:515-517.

Falconer DS. 1988. Introduction to Quantitative Genetics. 3rd Edition. London and New York: Longman Inc.

[FAO] Food and Agriculture Organization. Paddy rice production by country and geographical region, 1961-2007. http://www.fao.org/rice. 20 Desember 2010.

Gangashetti MG, Singh S, Khera P, Kadirvel P. 2006. Development of STS marker linked to elongated uppermost internode (eui-1) gene in rice (Oryza sativa L.). Indian J. Crop Science 1 (1-2): 113-116.

Ganefianti DW, Yulian, Suprapti AN. 2006. Korelasi dan sidik lintas antara pertumbuhan, komponen hasil dan hasil dengan gugur buah pada tanaman cabai. Jurnal Akta Agrosia 9(1): 1-6.

Gavino RB, Pi Y, Abon Jr CC. 2008. Application of gibberellic acid (GA3) in dosage for three hybrid rice seed production in the Philippines. Journal of Agricultural Technology 4(1): 183-192.

Goodnight CJ. 1999. Epistasis and heterosis. Di dalam Coors JG, Pandey S., editor. The Genetics and Exploitation of Heterosis in Crops. Crop Science Society of America, Madison WI. hlm 56-67.

Hanson MR, Bentolila S. 2004. Interaction of mitochondrial and nuclear genes that affect male gametophyte development. The Plant Cell 16:154-169. [IRRI] International Rice Research Institute. 2002. Standard Evaluation System

of Rice. IRRI, Philippines.

Jing R, Li X, Li P, Zhu Y. 2001. Mapping fertility-restoring genes of rice WA- cytoplasmic male sterility using SSLP markers. Botanical Bul. Academia Sinica 42: 167-171.

Kearsey MJ, Pooni HS. 1996. The Genetical Analysis of Quantitative Traits. Chapman and Hall, London.

Khush GS. 2000. Taxonomy and origin of rice. Di dalam: Singh RK, Singh US, Khush GS, editor. Aromatic Rices. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi. hlm 5-14.

Khush GS. 2001. Green revolution : the way forward. Nat Genetics Rev 2:815- 822.

Lestari AP, Nugraha Y. 2007. Keragaman genetik hasil dan komponen hasil galur-galur padi hasil kultur anter. Jurnal Penelitian Pertanian Tanaman Pangan 26(1):14-19.

Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY. 2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737-1753.

Li J, Cai S, Feng J, Li W, Cheng G. 2007. Comparisons on genetic diversity among the isonuclear-allopasmic male sterile lines and their maintainer lines in rice. Rice Science 14(2): 94-100.

Liu X, Virmani SS, Rencui, Y. 1998. Advances in two-line hybrid rice breeding. Di dalam Virmani SS, Siddiq, Muralidharan, editor. Advances in hybrid rice technology. Philippines: IRRI.

Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R. 2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158:1755-1771

Makino S, Sugio A, White F, Bogdanove AJ. 2006. Inhibition of resistance gene– mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Molec.Plant-Microbe Interact. 19(3): 240–249.

Malini N, Sundaram T, Ramakrishnan SH, Saravanan S. 2006. Prediction of hybrid vigour for yield attributes among synthesized hybrids in rice (Oryza sativa L.). Research Journal of Agricultural and Biological Sciences 2 (4): 166-170.

Matsui T, Omasa K, Horie T. 1999. Mechanism of anther dehiscence in rice (Oryza sativa L.). Annals of Botany 84: 501-506.

Moedjiono, Mejaya MJ. 1994. Variabilitas genetik beberapa karakter plasma nutfah jagung koleksi Balittas Malang. Zuriat 5(2):27-32.

Mu C, Yamagishi J. 2001. Effects of gibberellic acid application on panicle characteristics and size of shoot apex in the first bract differentiation stage in rice. Plant Production Science 4(3): 227-229.

Patil PP, Vashi RD, Shinde DA, Lodam VA. 2011. Nature and magnitude of heterosis for grain yield and yield attributing traits in rice (Oryza sativa L.). Plant Archives 11(1): 423-427.

Peng S, Khush GS, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype breeding in increase rice yield potential. Field Crop Research 108: 32-38.

Poehlman JM, Sleeper DA. 1995. Breeding Field Crops. 4 th edition. Iowa State Univ. Press. Ames, USA.

Pradhan SB, Jachuck PJ. 1999. Development of isonuclear male sterile lines with four different cytoplasmic backgrounds in rice. Current Science Journal. http://www.iisc.ernet.in/currsci/may10/articles21.html. [September 2007].

Qiao B, Zhu X, Wang Y, Hong D. 2008. Mapping of QTL for three panicle exsertion-related traits in rice under different growing environments. Acta Agron Sin34 (3): 389-396.

Rahimi M, Rabiei B, Samizadeh H, Ghasemi AK. 2010. Combining ability and heterosis in rice (Oryza sativa L.) cultivars. J. Agr. Sci. Tech. 12: 223-231. Ramakrishna S, Swamy MBP, Mishra B, Virakthamath BC, Ahmed MI. 2006.

Characterization of thermo sensitive genetic male sterile lines for temperature sensitivity, morphology and floral biology in rice (Oryza sativa L.). Asian J. of Plant Sciences 5 (3): 421-428.

Rumanti IA, Satoto, Moenarso YP. 2005. Penampilan fenotipik dan tingkat kemandulan tepungsari 18 calon galur mandul jantan (Cytoplasmic Male Sterile Lines). Prosiding Kongres V dan Simposium Nasional PERIPI. Purwokerto, 25-26 Agustus 2005. hlm 339-347

Saidaiah P, Kumar SS, Ramesha MS. 2010. Combining ability studies for development of new hybrids in rice over environments. Journal of Agricultural Science 2(2): 225-233.

Salgotra RK, Gupta BB, Praveen S. 2009. Combining ability studies for yield and yield components in Basmati rice. Oryza 46: 12-16.

Sarker U, Biswas PS, Prasad B, Mian MAK. 2002. Heterosis and genetic analysis in rice hybrids. Pakistan Journal of Biological Sciences 5 (1): 1-5.

Swamy MH, Rao MRG, Vidyachandra B. 2003. Studies on combining ability in rice hybrids involving new CMS lines. Karnataka J. Agril. Sci. 16 (2): 228- 233.

Sao A, Motiramani NK. 2006. Combining ability analysis for yield and yield contributing traits using cytoplasmic male sterility-fertility restoration system in rice hybrids. Jordan Journal of Agricultural Sciences 2 (1):29-34.

Sanint LR, Martinez CP, Lentini Z. 1996. Anther culture as a rice breeding tool : a profitable investment. Di dalam: Khush GS, editor. Rice Genetics III. Proceeding of the 3rd International Rice Genetics Symposium. IRRI, Philippines. hlm 511-517.

Sembiring H. 2010. Ketersediaan inovasi teknologi unggulan dalam meningkatkan produksi padi menunjang swasembada dan ekspor. Di dalam: Suprihatno B, Daradjat AA, Satoto, Baehaki SE dan Sudir, editor. Inovasi Teknologi Padi untuk Mempertahankan Swasembada dan Mendorong Ekspor Beras. Prosiding Seminar Nasional Padi 2009. Sukamandi. hlm.1-16.

Sen C, Singh RP. 2011. Study on heterosis in Boro x high yielding rice hybrids. International Journal of Plant Breeding and Genetics 5 (2): 141-149.

Sheeba A, Vivekanandan P, Ibrahim SM. 2006. Genetic variability for floral traits influencing outcrossing in the cms lines of rice. Indian J. Agric. Res. 40 (4): 272-276.

Sattari M, Kathiresan A, Gregorio GB, Virmani SS. 2008. Comparative genetic analysis and molecular mapping of fertility restoration genes for WA, Dissi,

and Gambiaca cytoplasmic male sterility systems in rice. Euphytica: International Journal of Plant Breeding 160 (3): 305-316.

Singh RK, Chaudhary BD. 1979. Biometrical Method in Quantitative Genetic Analysis. Kalyani Publ. New Delhi.

Singh S, Ram T. 1997. Growth response of diverse rice genotypes to exogenous application of GA3. IRRN 22: 31.

Singh S, Latha KM, Ahmed MI. 2006. Genotypic differences for flowering behavior in different varietal types in rice (Oryza sativa L.). Indian J. Crop Science 1 (1-2): 203-204.

Sidharthan B, Thiyagarajan K, Manonmani S. 2007. Cytoplasmic male sterile lines for hybrid rice production. J Appl Sci Res 3:935–937

Singh RJ, Shirisha Y. 2003. Evaluation of CMS lines for various floral traits that influence out crossing in rice (Oryza sativa L.). IRRN 28(1):24-26.

Stanfield WD.1983. Theory and Problems of Genetics. 2nd edition. Schain.s Outline Series. Mc.Graw Hill Book Co. New Delhi.

Steel RGD, Torrie JH. 1984. Principles and Procedures of Statistics. McGraw Hills Book Co. Inc. New York.

Stuber CW. 1994. Heterosis in plant breeding. Plant Breed Rev 12:227-251. Stuber CW, Lincoln SW, Wolff DW, Helentjaris T, Lander ES. 1992. Identification

of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823–839.

Sudir, Suprihanto. 2006. Perubahan virulensi strain Xanthomonas oryzae pv. oryzae, penyebab penyakit hawar daun bakteri pada tanaman padi. Jurnal Penelitian Pertanian Tanaman Pangan 25 (2): 100-107.

Sudir, Suprihanto, Triny SK. 2009. Identifikasi patotipe Xanthomonas oryzae pv. oryzae, penyebab penyakit hawar daun bakteri di sentra produksi padi di Jawa. Jurnal Penelitian Pertanian Tanaman Pangan 28 (3): 131-138. Suharsi TK. 2009. Peningkatan efisiensi pengisian dan pembentukan biji

mendukung produksi padi hibrida. Prosiding Seminar Hasil-Hasil Penelitian IPB. Bogor. hlm 709-716

Suwarno, Nuswantoro NW, Munarso YP, Diredja M. 2003. Hybrid rice research in Indonesia. Di dalam: Virmani SS, Mao CX, Hardy B, editor. Hybrid Rice for Food Security, Poverty Alleviation, and Environmental Protection. Proceedings of the 4th International Symposium on Hybrid Rice, Hanoi- Vietnam, 14-17 May 2002. IRRI, Philippines. hlm 287-296.

Takai T, Matsura S, Nishio T, Ohsumi A, Shiraiwa T, Horie T. 2006. Rice yield potential is closely related to crop growth rate during late reproductive periode. Field Crops Research 96: 328-335.

Tiwari DK, Pandey P, Giri SP, Dwivedi JL. 2011. Heterosis studies for yield and its component in rice hybrids using CMS system. Asian Journal of Plant Sciences 10 (1): 29-42.

Tiwari DK, Pandey P, Giri SP, Dwivedi JL. 2011. Effect of GA3 and other plant growth regulators on hybrid rice seed production. Asian Journal of Plant Sceinces 10 (1): 1-7

Uga Y, Fukuta Y, Ohsawa R, Fujimura T. 2003. Variations of floral trait in Asian cultivated rice (Oryza sativa L.) and its wild relatives (O. rufipogon Griff.). Breeding Science 53: 345-352.

Virmani SS, Viraktamath BC, Casal CL, Toledo RS, Lopez MT, Manalo JO. 1997. Hybrid Rice Breeding Manual. IRRI, Philippines.

Virmani SS, Sun ZX, Mou TM, Ali AJ, Mao CX. 2003. Two-Lines Hybrid Rice Breeding Manual. IRRI, Philippines. 88p.

Virmani SS, Kumar I. 2004. Development and use hybrid rice technology to increase rice productivity in the tropics. IRRN 29 (1): 10-19.

Wicaksana, N. 2001. Penampilan fenotipik dan beberapa parameter genetik 16 genotipe kentang pada lahan sawah. Zuriat 12(1):15-20.

Widyastuti Y, Rumanti IA, Satoto. 2007. Studi keragaman genetik karakter bunga yang mendukung persilangan alami padi. Jurnal Penelitian Pertanian Tanaman Pangan 26 (1): 14-19.

Wray R, Visscher PM. 2008. Estimating trait heritability. Nature Education 1(1). http://www.nature.com/scitable/topicpage/estimating-trait-heritability-46889. 25 Juli 2011.

Xiao JH, Li J, Yuan LP, Tanksley SD. 1995. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745-754.

Yadav RDS, Singh GR, Srivastava JP. 2005. Enhancing outcrossing potential in hybrid rice. IRRN 30(1): 20-21

Yang W, Peng S, da Laza RC. 2007. Grain yield and yield attributes of new plant type and hybrid rice. Crop Science 47: 1393-1400.

Yin C, Gan L, Ng Denny, Zhou X, Xia K. 2007. Decreases panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. Journal of Experimental Botany 58 (10): 2441-2449.

You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G. 2006. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics 172:1287-1300.

Yu SB, Li JX, Xu CG, Tan YF, Gao YJ. 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226-9231.

Yuan LP, Fu X. 1995. Technology of Hybrid Rice Production. Food and Agriculture Organization of The United Nations. Rome. 83 p.

Yuan LP. 1998. Hybrid rice breeding in China. Di dalam: Virmani SS, Siddiq EA, Muralidharan K, editor. Advances in Hybrid Rice Technology. IRRI, Philippines. hlm 27-33.

Yuan LP, Wu X, Liao F, Ma G, Xu Q. 2003. Hybrid Rice Technology. China Agriculture Press.

Zen S, Bahar H. 2001. Variabilitas genetik, karakter tanaman, dan hasil padi sawah dataran tinggi. Stigma 9(1):25-28.

Zen S. 2002. Parameter genetik karakter agronomi galur harapan padi sawah. Stigma 10(4):325-330.

Derived from Three Cytoplasm Sources and Its Use on Hybrid Rice Breeding. Under direction of BAMBANG S. PURWOKO as chairman, HAJRIAL ASWIDINNOOR and ISWARI S. DEWI as members of the advisory committee.

Hybrid rice is an alternative technology to increase lowland rice productivity. In Indonesia, hybrid rice was developed through three line system that involved three parental lines i.e. cytoplasmic male sterile lines (CMS), maintainer (B) and Restorer (R). CMS as seed parent should have high pollen sterility, be stable, easy to restore, good in agro-morphology and flower behavior, high in combining ability and resistant to pest and diseases.

Intensive use of single source of male sterile cytoplasm (i.e. wild abortive or WA) in developing rice hybrids might lead to genetic vulnerability associated with susceptibility to pests and diseases.A series of experiments were conducted to identify new CMS from three cytoplasm sources (WA, Gambiaca and Kalinga) with high pollen sterility, stable and easy to restore. CMS efectivity on seed production and hybrid rice breeding were studied.

The results showed that among doubled haploid population,panicle weight had thelargest contribution to grain weight per hill, as shown by high and positive direct effect value (0.7739) and indirect effect value through number of filled grain per panicle (0.6556), therefore the characters could be usedfor selection of good maintainer lines. H36-3-Mb, H36-3-Mc, H36-4-M, H45-3-Da, B1-2-Pb and B2-2- Pb were suitable to be used as new maintainer candidates related to their high number of filled grain and yield. Doubled haploid of B1-1-Mb, B2-1-Db and B2-1- M were resistant to Bacterial Leaf Blight (BLB) strain III. B4-1-Dc line was very resistant (score 0) to BLB strain IV and VIII.

Six CMS of wild abortive types, one CMS of Gambiaca and three Kalinga types were bred through successive backcrosses. The three types of CMS lines were semi dwarf and having better flowering characters than the check line. The good flowering behavior of the new CMS lines improved seed set up to 25.90% compared to 2.98% of seed set in IR58025A. The new CMS were more effective and easier in its seed production. Phenotype obstacles such as low panicle exertion and short panicle length were improved through GA3 spraying. It increased the yield of seed.

The three types of CMS had spesific combining ability to many restorers and yielded high yielding hybrid combination with good heterosis. The results indicated that the yield of hybrids were controlled by overdominant, dominant x dominantor epistasis gene activity. The best hybrid was derived from WA cytoplasm i.e. BI485A/IR53942 (10.21 t/ha), while the best hybrid derived from Gambiaca cytoplasm was BI625A/SMD11 (9.88 t/ha). BI665A/IR53942 was the best hybrid derived from Kalinga cytoplasm, yielded up to 9.15 t/ha.

It can be concluded that new CMS derived from WA, Gambiaca and Kalinga cytoplasm were more efective on seed production and hybrid rice development because of their good flower behaviour, resistance to BLB and good specific combiner with restorers.

Keywords: cytoplasmic male sterile lines, wild abortive, gambiaca, kalinga, seed production, hybrid rice

PENDAHULUAN

Latar Belakang

Kebutuhan terhadap pangan khususnya beras, semakin meningkat sejalan dengan pertambahan jumlah penduduk, sedangkan usaha diversifikasi pangan berjalan lambat. Jumlah penduduk pada tahun 2010, 2015 dan 2020 diprediksikan akan mencapai 235 juta, 249 juta dan 263 juta jiwa. Oleh karena itu laju produksi padi nasional harus terus ditingkatkan. Pada tahun 2009 produksi padi nasional mencapai 64,4 juta ton gabah kering giling (GKG) atau meningkat 6,83% dibandingkan tahun 2008. Namun pada tahun 2010, peningkatan produksi padi nasional lebih rendah, hanya mencapai 2,45% dibandingkan tahun 2009 (BPS 2010). Hal ini disebabkan banyaknya bencana kekeringan, banjir dan juga tingkat serangan hama dan penyakit yang tinggi.

Teknologi padi hibrida yang memanfaatkan gejala heterosis merupakan salah satu cara untuk meningkatkan produktivitas padi di Indonesia. Padi hibrida menghasilkan pertambahan produktivitas mendekati 15-20% lebih tinggi dibanding varietas padi komersial terbaik. China telah sukses mengaplikasikan teknologi padi hibrida. Area yang ditanami padi hibrida di China saat ini terhitung lebih dari 50% dari total area padi. P

enggunaan padi hibrida di China mampu

meningkatkan produksi padi total dari 128 juta ton menjadi 189 juta ton,

walau terjadi penurunan luas lahan padi dari 36,5 juta ha pada 1975

menjadi 29,2 juta ha pada 2007. Peningkatan produktivitas pada periode

tersebut sangat besar yaitu dari 3,5 t/ha menjadi 6,35 t/ha (FAO 2008).

Budidaya padi hibrida juga mulai dilakukan pada skala luas di banyak negara Asia, seperti India dan Vietnam (You et al. 2006).

Padi hibrida di Indonesia dikembangkan dengan sistem 3 galur, yang melibatkan tiga galur tetua: galur mandul jantan sitoplasma (GMJ/CMS/A), galur pelestari (Maintainer/B), dan galur pemulih kesuburan (Restorer/R). Padi hibrida merupakan generasi F1 hasil persilangan antara galur mandul jantan sebagai tetua betina dengan galur pemulih kesuburan sebagai tetua jantan, sehingga sifat-sifat varietas padi hibrida ditentukan oleh sifat-sifat dari kedua tetuanya (You