• Tidak ada hasil yang ditemukan

Kesimpulan penelitian ini adalah frekuensi biomarker MN, NPB, NBUD dan 8-shaped pada kelompok studi lebih tinggi daripada kontrol, tetapi masih dalam rentang yang normal. Paparan kronis radiasi alam tinggi dan faktor usia serta jenis kelamin tidak mempengaruhi kelainan sitogenetik (MN, NPB, NBUD, dan 8-Shaped) pada sel limfosit darah penduduk Desa Ahu dan Salletto, Mamuju, Sulawesi Barat.

5.2. Saran

Perlu dilakukan penelitian kontinuitas mengenai respons adaptif pada penduduk Desa Ahu dan Saletto, Mamuju, Sulawesi Barat dengan penambahan jumlah sampel penelitian berskala besar disertai pengukuran faktor kebiasaan merokok dan mengonsumsi alkohol pada penduduk.

33

Alakoç, C & Eroğlu, HE. (2011). Determining mitotic index in peripheral lymphocytes of welders exposed to metal arc welding fumes. Turk J Biol. 35: 325-30

Alatas, Zubaidah., Lusiyanti, Yanti., Purnama, Sofiati., Ramadhani, Dwi., L, Masnelly., AS, Viria. (2012). Respon sitogenetik penduduk daerah radiasi alam tinggi di Kabupaten Mamuju, Sulawesi Barat. Jurnal Sains dan Teknologi Nuklir Indonesia, 13 (1):13–26.

Alatas, Z., Hidayati, S., Akhadi, M., Purba, M., Purwadi, D., Ariyanto, Ariyanto, S., Winarno, H., Syahril. (2016). Buku pintar nuklir. Jakarta: BATAN Press.

Ali, A.K & Muttar, A.J. (2014). Evaluation of micronucleus, nuclear division index and sister chromatid exchanges in human lymphocyte for local samples of Al-Tuwaitha region-Iraq. Iraqi Journal of biotechnology. 13(2), 173-185.

Altuntas, Hamiyet Domez & Bitgen, Nazmiye. (2012). Evaluation of the genotoxicity and cytotoxicity in the general population in Turkey by use of the cytokinesis block micronucleus cytome assay. Elsevier. 748(1-2):1-7.

Bartsch, K., Knittler, K., Borowski, C., Rudnik, S., Damme, M., Aden, K., Spehlmann, M.E., Frey, N., Saftig, P., Chalaris, A. (2017). Absence of RNAse H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genes. 26:3960–3972.

Bissett RJ, McLaughlin JR. (2010). Radon. Chronic Dis Can. 29:38–50.

Campbell, Neil A., Reece. Jane B., Urry, Lisa A., Cain, Michael L., Wasserman, Steven A., Minorsky, Peter V., Jackson, Robert B. (2010). Biologi. Edisi kedelapan jilid 3. Jakarta: Erlangga.

Choi, V. W. Y., Wong, M. Y. P., Cheng, S. H., & Yu, K. N. (2011). Dosimetric study of radioadaptive responsse of Zebra fish embryos using PADC-Film substrates. Radiation Measurements. 46:1795–1798.

Donnelly, E. H., Nemhauser, J. B., Smith, J. M., Kazzi, Z. N. Farfan, E. B., Chang, A. S., and Naeem, S. F. (2010). Acute radiation syndrome: assessment and management. Southern Medical Journal. 103(6):541-546.

Deshuillers P, Raskin R, Messick J. Pelger-huët. (2014). The frequency of lymphocytes containing dumbbell shaped nuclei depends on ionizing radiation dose and correlates with appearance of chromosomal aberrations anomaly in a Cat. Vet Clin Pathol. 43:337-41.

34 Encheva, E., Deleva, S., Hristova, R., Hadjidekova, V., & Hadjieva, T. (2012). Investigating micronucleus assay applicability for prediction of normal tissue intrinsic radiosensitivity in gynecological cancer patients. Reports of Practical Oncology and Radiotherapy, 17:24–31.

Fan, Hongye., Dong, Guanjun., Zhao, Guangfeng., Liu, Fei & Yao, Genghong. (2014). Gender differences of b cell signature in healthy subjects underlie disparities in incidence and course of SLE related to estrogen. J. Immunol. Res. 814598

Fenech, M. (1998). Chromosomal damage rate, aging, and diet. Ann N Y Acad Sci. 20:23-36.

Fenech M. (2000). The in vitro micronucleus technique. Mutat Res. 455:81–95. Fenech M. (2006). Cytokinesis block micronucleus assay evolves into a “cytome”

assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res. 600:58–66.

Fenech M. (2007). Cytokinesis block micronucleus cytome assay. Nat Protoc 5:1084–104.

Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surrales, J., Crott, J.W., Parry, J., Norppa, H., Eastmond, D.A., Tucker, J.D., Thomas, P., (2011). Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis. 26(1):125-132.

Fenech, M & Bonassi, S. (2011). The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human

peripheral blood lymphocytes. Mutagenesis. 1, pp.43–49.

Fenech, M.; Knasmueller, S.; Bolognesi, C.; Bonassi, S.; Holland, N.; Migliore, L.; Palitti, F.; Natarajan, A.T.; Kirsch-Volders, M. (2016). Molecular mechanisms by which in vivo exposure to exogenous chemical genotoxic agents can lead to micronucleus formation in lymphocytes in vivo and ex vivo in humans. Mutat Res. 770:12–25.

Flemming, Entwicklung., Stand, Merkel & Bonnet’s Ergebnisse. (1892). Development and state of knowledge about amitosis. Merkel and Bonnet’s result. 2: 37-82.

Gahrouei, D.S., Gholami, M. and Setayandeh, S. (2013). A review on natural background radiation. Advanced Biomedical Research, 2(3):3–8.

Garm, C., Moreno-Villanueva, M., Bürkle, A., Petersen, I., Bohr, VA & Christensen, K. (2013). Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells. Aging Cell. 12(1):58-66.

Garrison, J. C., & Uyeki, E. M. (1988). The effects of G-radiation on chondrogenic development in vitro. Radiation Research. 116:356-363. Gisselsson, D., Bjo¨rk, J., Ho¨glund, M., Mertens, F., Dal Cin, P., Akerman, M.

and Mandahl, N. (2001). Abnormal nuclear shape in solid tumors reflects mitotic instability. Am. J. Pathol., 158:199–206.

Haaf, T., Raderschall, E., Reddy, G., Ward, D. C., Radding, C. M. & Golub, E. I. (1999). Sequestration of mammalian Rad-51 recombination protein into micronuclei. J. Cell Biol., 144, 11–20.

Hall, E.J & Giaccia, A.J. (2012). Radiobiology for the radiologist, 7th edition. Williams & Wilkins. Philadelphia.

Harding, S.M.; Benci, J.L.; Irianto, J.; Discher, D.E.; Minn, A.J.; Greenberg, R.A. (2017). Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 548:466–470.

Hendry, J. H., Simon, S. L., Wojcik, A., Sohrabi, M., Cardis, E., Laurier, D., & Hayata, I. (2009). Human exposure to high natural background radiation: what can it teach us about radiation risks?. Journal of Radiological Protection. 29:A29–A42.

Heuser, VD., Andrade, VM., Peres, A., Braga, LMGM & Chies JAB. (2008). Influence of age and sex on the spontaneous DNA damage detected by micronucleus test and comet assay in mice peripheral blood cells. Cell Biol Int. 32(10):1223-9.

Hoffelder, L.. Luo, N.A., Burke, S.C., Watkins, S.M., Gollin, W.S & Saunders. (2004). Resolution of anaphase bridges in cancer cells. Chromosoma. 112:389–397.

Huang P, Huang B, Weng H, Nakayama K, Morimoto K. (2009). Effects of lifestyle on micronuclei frequency in human lymphocytes in japanese hard metal workers. Prev Med. 48(4):383-8

HTTP:/www.kesmas.kemkes.go.id/portal/konten/~rilis-berita/031717-radiasi-dan-kesehatan. 2017. diakses tanggal 26 Desember 2019.

Ionescu, M.E., Ciocirlan, M., Becheanu, G., Nicolaie, T., Ditescu, C., Teiusanu, A.G., Gologan, S.I., Arbanas, T & Diculescu, M.M. (2011). Nuclear division index may predict neoplastic colorectal lesions. Maedica (Buchar). 6: 173–178.

International Atomic Energy Agency (IAEA). (2001). Cytogenetic analysis for radiation dose assessment, Technical Report Series no. 405, Vienna.

36 International Atomic Energy Agency IAEA. (2011). Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. Technical Report Series. Austria.

Iskandar, D., Syarbaini, dan Kusdiana. (2014). Map of environmental gamma dose rate of Indonesia. National Nuclear Energy Agency. Jakarta.

Kalpana, K. B., Devipriya, N., Srinivasan, M & Menon, V. P. (2009). Investigation of the radioprotective efficacy of hesperidin against gamma radiation induced cellular damage in cultured human peripheral blood lymphocyte. Mutation Research, 676:54-61.

Karuppasamy, CV., Ramachandran, EN., Kumar, VA., Kumar, PR., Koya, PK & Jaikrishan, G. (2016). Peripheral blood lymphocyte micronucleus frequencies in men from areas of Kerala, India, with high versus normal levels of natural background ionizing radiation. Mutat Res Genet Toxicol Environ Mutagen. 800‑801:40‑5.

Kazimírová, A., Barancoková, M., Dzupinková, Z., Wsólová, L & Dusinská, M. (2009). Micronuclei and chromosomal aberrations, important markers of ageing: possible association with XPC and XPD polymorphisms. Mutat Res. 661(1-2):35-40

Kimura, M., Umegaki, K., Higuchi, M., Thomas, P. & Fenech, M. (2004). Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J. Nutr. 134:48–56.

Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M. (2003). Report from the in vitro micronucleus assay working group. Mutat Res. 540:153-163.

Kong CM, Lee XW, Wang X. (2013). Telomerase shortening in human disease. FEBS J. 280 : 3180-93

Kravtsov, Viacheslav., Livanova, Aleksandra & Starkova, Yekaterina. (2017). Nuclear abnormalities of lymphocytes as the simplest markers for bioindication test in case of mass casualty events involving radiation exposure. Emerg Med. ISSN: 2165-7548.

Libert, C., Dejager, L. & Pinheiro, I. (2010). The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10, 594–604.

Lindberg, Hanna K., Wang, Xu., Jarventaus, Hilkka., Falck Ghita C.M., Norppa, Hannu & Fenech, Michael. (2006). Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes. Elsevier; Mutation Research. 617:33–45.

Lopez, V., Barinova, N., Onishi, M., Pobiega, S., Pringle, Dubrana, K. And Marcand, S. (2015). Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions, Genes Dev. 29 (3):322– 336.

Luo, L., Urata, Y., Hasan, A.S., Goto, S., Guo, C.Y. Tou, F.F., Xie, Y & Li, T.S. (2016). Radiation exposure decreases the quantity and quality of cardiac stem cells in mice. PLoS One. 11(5): e0152179.

Lusiyanti, Y., Kurnia, I., Suvifan, V. A., Sardini, S., Purnami, S., & Rahajeng, N. (2017). Evaluation of chromosomal aberrations and micronuclei in medical workers chronically exposed to low dose ionizing radiation. Biosaintifika: Journal of Biology & Biology Education. 9(3), 585-591.

Mackenzie, K.J.; Carroll, P.; Martin, C.A.; Murina, O.; Fluteau, A.; Simpson, D.J.; Olova, N.; Sutcliffe, H.; Rainger, J.K.; Leitch, A. (2017). Surveillance of micronuclei links genome instability to innate immunity. Nature. 548:461–465.

MacLeod, A.S., Rudolph, R., Corriden, R., Ye, I., Garijo, O., Havran, W.L., (2014). Skin-Resident T cells sense ultraviolet radiation induced injury and contribute to DNA repair. Journal of Immunology. 192(12), 5695–5702.

McHugh, M.S., Lopez, C.H. , Ho, M.R., Spitz, C.J., Etzel, R.A & El-Zein. (2013). Use of the cytokinesis blocked micronucleus assay to detect gender differences and genetic instability in a lung cancer case control study cancer epidemiol. Biomarkers Prevention: Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Preventive Oncol. 22:135–145.

Meenakshi, K & Sivasubramanian, B., Venkatraman. (2016). Nucleoplasmic bridges as a biomarker of DNA damage exposed to radon. Mutation Research. 814:22-28.

Milosevic-Djordjevic O, Grujicic D, Novakovic T, (2002). Micronuclei and ageing in a sample of Yugoslavian population. Genetika. 38:264–7.

Mohammadi, S., Taghavi-dehaghani, M., Gharaati, M. R., Masoomi, R., & Ghiassi-Nejad, M. (2006). Adaptive response of blood lymphocytes of inhabitants residing in high background radiation areas of Ramsar micronuclei, apoptosis and comet assays. Journal of Radiation Research. 47(3–4), 279–285.

Mortazavi, S. M. J., Ghiassi-Nejad, M., Ikushima, T., Assaie, R., Heidary, A., Varzegar, R., & Esmaili, A. (2003). Are the inhabitants of high

38 background radiation areas of Ramsar more radioresistant. Iranian Journal of Radiology, 1(1 & 2):37–43.

Mortazavi SMJ, Mozdarani H. (2012). Is it time to shed some light on the black box of health policies regarding the inhabitants of the high background radiation areas of Ramsar, Iran. J Radiat Res. 10: 111-6.

Nikiforov, AM., Fedortseva, RF., Monosova, EK., Iartseva, NM & Kravtsov, VI. (2000). Nuclei with protrusions–”tailed” nuclei and radiation cytogenetic markers in a lymphocyte culture after X‑Ray irradiation. Radiats Biol Radioecol. 40:299‑304.

Nurhayati, M., Purnami, Sofiati & Syaifudin, Mukh. (2016). Cytogenetic evaluation in peripheral blood lymphocytes of individuals living in high natural background radiation of Botteng village, Mamuju. Proceedings 2ndInternational Conference on the Sources, Effects and Risks of Ionizing Radiation (SERIR 2). 80-4

Odum, E. P. (1971). Fundamentals of ecology. W. B. Saunders Company, Philadelphia. Pp. 451-467.

Pampalona, D., Soler, A., Genesca, L & Tusell. (2010). Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies. Mutat Res. 683;16–22. Pannkuk EL, Fornace AJ Jr., Laiakis EC. (2017). Metabolomic Applications in

Radiation Biodosimetry: Exploring Radiation Effects Through Small Molecules. Int J Radiat Biol. 93:1151-76.

Purnami, Sofiati., Lubis, Masneli., Suryadi & Syaifudin, Mukh. (2020). Center The assessment of mitotic and nuclear division indexes as biomarkers for estimating the risk on the health of residents exposed to the high natural radiation of Mamuju, West Sulawesi. National Nuclear Energy Agency of Indonesia. doi:10.1088/1742-6596/1436/1/012032

Pujadi, E. dkk (2016). Laporan teknis penelitian radioaktivitas lingkungan di Mamuju, West Sulawesi 2015-2019. PTKMR-BATAN.

Ramadhani, Dian, T & Restadiawawati. (2013). Pengaruh paparan aerosol cat semprot terhadap frekuensi pembentukan mikronukleus mukosa mulut pada pengguna cat semprot. Thesis. Fakultas Kedokteran, Universitas Diponegoro.

Ramadhani, Dwi., Sardini, Sri., Lubis, Masnelli., & Syaifudin, Mukh. (2016). Evaluation of lymphocytes proliferation in Botteng village (A high background radiation area) inhabitants using binucleate index. Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia. ISSN 1907-0322.

Ramadhani, Dwi., Nurhayati, Siti., Rahardjo, Tur., Pudjadi, Eko., & Syaifudin, Mukh. (2018). Lymphocyte proliferation kinetics in inhabitant of Takandeang village, Mamuju: A high background radiation areas in Indonesia. The Indonesian Biomedical Journal. https://doi:10.18585/inabj.v10i1.357

Ramadhani, Dwi., Purnami, Sofiati., Nurhayati, Siti., Pudjadi, Eko & Syaifudin, Mukh. (2018). In vitro radiosensitivity of lymphocytes from high background radiation area inhabitants in Indonesia: A pilot study using the G0 micronucleus assay. Journal of Biological Researcher. http://dx.doi.org/10.23869/bphjbr.24.1.20181

Rana S, Raj K.,Sarwat Sulatana RK. (2010). Radiation induced biomarkers for detection and assesment of absorbed radiation doses. J Pharm Bioallied Sci. 2(3):189–96.

Rao, X., Zhang, Y., Yi, Q. et al. (2008). Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long term live cell imaging. Mutat. Res. 646, 41–49.

Raynaud CM, Sabatier L, Philipot O, Olaussen KA, Soria JC. (2008). Telomere length, telomeric protein and genomic instability during multistep carcinogenesis process. Oncol Hematol. 66 : 99-117.

Richard, Stalter & Dianella, Howarth. (2012). Gamma radiation. St. John's University USA.

Reily, P. A. (1994). Free radicals in biology: Oxidative stress and the effect of ionizing radiation. International Journal of Radiation Biology, 65:27-33.

Rodrigues, A Matthew., Beaton-Green, A Lindsay., Wilkins, C Ruth., Fenech, F Michael. (2018). The potential for complete automated scoring of the cytokinesis block micronucleus cytome assay using imaging flow cytometry. Elsevier. 836 (Pt A):53-64.

Sakiani, S., N. J. Olsen., & W. J. Kovacs. (2013). Gonadal steroids and humoral immunity. Nature Reviews Endocrinology, vol. 9:56–62.

Shimizu, N. (2011). Molecular mechanism of the origin of micronuclei from extrachromosomal elements. Mutagenesis, 26:119-123.

Shimizu, N & Shimuara, T., Tanaka, T. (2000). Selective elimination of acentric double minutes from cancer cells through the extrusion of MN. Mutat Res. 448: 81–90.

40 Silva, LR., Silva, EB., Silva, RC., Amâncio, FF & Melo, MM. (2011). Micronuclei as biomarkers of genotoxicity of gamma radiation in aquatic environments. International Nuclear Atlantic Conference‑INAC. Belo Horizonte, MG. Brazil.

Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. (2016). Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn, 16:65-81.

Singh, VK., Santiago, Paola T., Simas, Madison., Garcia, Melissa., Fatanmi, Oluseyi O., Wise, Stephen Y., Seed, Thomas M. (2018). Acute radiation syndrome: an update on biomarkers for radiation injury. Journal of Radiation and Cancer Research. (4):132-146

Sinitsky, M.Y. & Druzhinin, V.G. (2014). The application of the cytokinesis block micronucleus assay on peripheral blood lymphocytes for the assessment of genome damage in long term residents of areas with high radon concentration. Journal of Radiation Study. 55:61–66.

Sukadana, I. G., dan Syaeful, H. (2016). Uranium exploration in Sulawesi. In Seminar on MGEI 8th Annual Convention. pp. 117–120. Malang.

Surova, O. & Zhivotovsky, B. (2013). Various modes of Cell Death Induced by DNA Damage. Oncogene, 32(33), 3789–3797.

Syaeful, H., Sukadana, I. G., & Sumaryanto, A. (2014). Radiometric mapping for naturally occurring radioactive materials (NORM) assessment in Mamuju, West Sulawesi. Atom Indonesia, 40(1):33–39.

Syaifuddin, Mukh. (2016). Biologi radiasi; Dasar-dasar dan aplikasi. Cetakang Pertama. Jakarta: BATAN PRESS. ISBN: 978-979-8500-73-2.

Syaifudin, Mukh., Defiyandra, Vira Putri., Nurhayati, Siti., Purnami, Sofiati & Pudjadi, Eko. (2018). Micronucleus assay based evaluation of radiosensitivity of lymphocytes among inhabitants living in high background radiation area of Mamuju, West Sulawesi, Indonesia. Genom Integrity. 9(1): 1-5

Syaifudin, Mukh. (2018). Pemeriksaan efek sitogenetik pada masyarakat akibat paparan radiasi alam di Kabupaten Mamuju, Sulawesi Barat. Protokol BATAN.

Thomas, P., Holland, N., Bolognesi, C., Kirsch-Volders, M., Bonassi, S & Zeiger, E. (2009). Buccal micronucleus cytome assay. Nat Protoc 2009;4(6):825-37

Thompson, S. L & Compton, D. A. (2011). Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule. Proc. Natl. Acad. Sci. 108:17974–17978.

Timmins, Julie k. (2011). Communication of benefits and risks of medical radiation : A historical perspective. Health Phys. 101(5):562–5.

Torres-Bugarín O., Covarrubias-Bugarín R., Zamora-Perez AL., Torres-Mendoza BM., García-Ulloa M & Martínez-Sandoval FG. (2007). Anabolic androgenic steroids induce micronuclei in buccal mucosa cells of body builders. Br J Sports Med, 41:592-6.

Trzeciak, AR., Barnes, J., Ejiogu, N., Foster, K., Brant, LJ., Zonderman, AB. (2008). Age, sex, and race influence single strand break repair capacity in a human population. Radic Biol Med . 45(12):1631-4.

Tuncay Orta & Süreyya Günebakan. (2012). The effect of aging on micronuclei frequency and proliferation in human peripheral blood lymphocytes.

Indian Journal of Human Genetics. DOI 10.4103/0971-6866.96671 United Nations Scientific Committee on the Effects of Atomic Radiation. (2008)

Report to the general assembly. Sources and effects of ionizing radiation.Vol. I. New York: United Nations.

Uppal, S. S., Verma, S. & Dhot, P. S. (2003). Normal values of CD4 and CD8 lymphocyte subsets in healthy Indian adults and the effects of sex, age, ethnicity, and smoking. Cytometry B Clin. Cytom. 52, 32–36.

Utani, K., Kohno, Y., Okamoto, A. and Shimizu, N. (2010). Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS One, 5, e10089.

Viacheslav, Yu., Kravtsov, Alexandra A., Livanova, Oleg V., Belyakov, Regina F & Fedortseva. (2018). The frequency of lymphocytes containing dumbbell- shaped nuclei depends on ionizing radiation dose and correlates with appearance of chromosomal aberrations. Genom integr. 31;9:1

Weiss, J. F. (1997). Pharmacologic approaches to protection against radiation induced lethality and other damage. Environmental Health Perspectives, 105:1473-1478.

Wodarz, D., Sorace, R., & Komarova, N. L. (2014). Dynamics of cellular responsses to radiation. Plos Computational Biology, 10(4):1–11.

Ye, C.J.; Regan, S.; Liu, G.; Alemara, S.; Heng, H.H. (2018). Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy

42 inheritance and emergence of new genome systems. Mol. Cytogenet.11, 31.

Zhang Y, Guo J, Qi Y, Shao Q, Liang J. (2014). The Prevention of radiation induced DNA damage and apoptosis in human intestinal epithelial cells by Salvianic Acid A. J Radiat Res Appl Sci. Science Direct, 7(3):274– 85. Zeegers, D., Venkatesan, S., Koh, S.W., Low, G.K.M., Srivastava, P., Sundaram,

N., Sethu, S., Banerjee, B., Jayapal, M., Belyakov, O., Baskar, R., Balajee, A.S., And Hande, M.P. (2017). Biomarkers of ionizing radiation exposure: A multiparametric approach. Genome Integr.

43

Lampiran 1. Data Nuclear Division Index (NDI) kelompok kontrol

No. Kode Jenis Kelamin(L/P) (Tahun)Umur M1 M2 M3 M4 NDI

1 Mmj18 44 L 51 550 402 35 33 1,59 2 Mmj18 45 L 17 552 378 35 35 1,55 3 Mmj18 46 P 15 428 468 61 43 1,71 4 Mmj18 47 L 22 460 457 26 57 1,68 5 Mmj18 48 P 46 439 482 30 49 1,69 6 Mmj18 49 P 38 494 439 34 33 1,6 7 Mmj18 50 L 57 459 465 39 37 1,65 8 Mmj18 51 L 34 651 319 19 11 1,39 9 Mmj18 52 P 29 484 459 24 33 1,6 10 Mmj18 53 P 43 464 470 41 25 1,62 11 Mmj18 54 P 32 546 368 36 50 1,59 12 Mmj18 55 P 54 449 492 32 27 1,64 13 Mmj18 56 L 32 410 528 15 47 1,7 14 Mmj18 57 L 43 437 483 44 36 1,68 15 Mmj18 58 L 58 454 476 37 33 1,65

44 Lampiran 2. Data Nuclear Division Index (NDI) kelompok studi

No. Kode Jenis Kelamin(L/P) (Tahun) M1Umur M2 M3 M4 NDI

1 Mmj18 1 L 53 454 489 33 24 1,63 2 Mmj18 2 L 65 460 478 36 26 1,63 3 Mmj18 14 L 59 427 477 45 51 1,72 4 Mmj18 7 P 49 463 442 48 47 1,68 5 Mmj18 8 P 62 455 459 34 52 1,68 6 Mmj18 9 P 37 414 492 33 61 1,74 7 Mmj18 83 L 30 438 495 27 40 1,67 8 Mmj18 85 L 37 454 475 30 41 1,66 9 Mmj18 91 L 45 467 437 53 43 1,67 10 Mmj18 93 L 39 537 374 45 44 1,58 11 Mmj18 95 L 23 452 478 34 36 1,65 12 Mmj18 84 P 54 434 479 36 51 1,7 13 Mmj18 87 P 43 450 463 55 32 1,67 14 Mmj18 92 P 31 449 486 30 35 1,7 15 Mmj18 5 P 25 407 492 53 48 1,74

Lampiran 3. Data Micronuclei (MN) kelompok kontrol

No. Kode Jenis Kelamin(L/P) (Tahun) MN1 MN2 MN3 MN4Umur TotalMN F MN

1 Mmj18 44 L 51 1 0 0 0 1 0,001 2 Mmj18 45 L 17 5 1 0 0 6 0,006 3 Mmj18 46 P 15 1 0 0 0 1 0,001 4 Mmj18 47 L 22 4 0 0 0 4 0,004 5 Mmj18 48 P 46 5 0 0 0 5 0,005 6 Mmj18 49 P 38 0 1 0 0 1 0,001 7 Mmj18 50 L 57 6 2 0 0 8 0,008 8 Mmj18 51 L 34 2 0 0 0 2 0,002 9 Mmj18 52 P 29 0 1 0 0 1 0,001 10 Mmj18 53 P 43 2 1 0 0 3 0,003 11 Mmj18 54 P 32 1 0 0 0 1 0,001 12 Mmj18 55 P 54 12 0 0 0 12 0,012 13 Mmj18 56 L 32 4 0 0 0 4 0,004 14 Mmj18 57 L 43 7 1 0 0 8 0,008 15 Mmj18 58 L 58 8 1 0 0 9 0,009

46 Lampiran 4. Data Micronuclei (MN) kelompok studi

No. Kode Jenis Kelamin(L/P) (Tahun) MN1 MN2 MN3 MN4Umur TotalMN F MN

1 Mmj18 1 L 53 6 0 0 0 6 0,006 2 Mmj18 2 L 65 6 0 0 0 6 0,006 3 Mmj18 7 P 49 7 1 0 0 8 0,008 4 Mmj18 8 P 62 13 0 0 0 13 0,013 5 Mmj18 9 P 37 9 1 1 0 11 0,011 6 Mmj18 14 L 59 4 0 0 0 4 0,004 7 Mmj18 83 L 30 10 1 0 0 11 0,011 8 Mmj18 84 P 54 11 1 0 0 12 0,012 9 Mmj18 85 L 37 13 0 0 0 13 0,013 10 Mmj18 87 P 43 6 0 1 0 7 0,007 11 Mmj18 91 L 45 19 3 0 0 22 0,022 12 Mmj18 92 P 31 16 1 0 0 17 0,017 13 Mmj18 93 L 39 13 1 2 0 16 0,016 14 Mmj18 5 P 25 8 0 0 0 8 0,008 15 Mmj18 95 L 23 10 0 0 0 10 0,01

Lampiran 5. Data Nucleoplasmic Bridge (NPB) kelompok kontrol

No. Kode Jenis Kelamin(L/P) Umur (Tahun) NPB

1 Mmj18 44 L 51 0 2 Mmj18 45 L 17 0 3 Mmj18 46 P 15 0 4 Mmj18 47 L 22 0 5 Mmj18 48 P 46 0 6 Mmj18 49 P 38 0 7 Mmj18 50 L 57 0 8 Mmj18 51 L 34 0 9 Mmj18 52 P 29 0 10 Mmj18 53 P 43 1 11 Mmj18 54 P 32 0 12 Mmj18 55 P 54 0 13 Mmj18 56 L 32 0 14 Mmj18 57 L 43 0 15 Mmj18 58 L 58 0

48 Lampiran 6. Data Nucleoplasmic Bridge (NPB) kelompok studi

No. Kode Jenis Kelamin(L/P) Umur (Tahun) NPB

1 Mmj18 1 L 53 0 2 Mmj18 2 L 65 1 3 Mmj18 7 P 49 0 4 Mmj18 8 P 62 0 5 Mmj18 9 P 37 0 6 Mmj18 14 L 59 0 7 Mmj18 83 L 30 0 8 Mmj18 84 P 54 0 9 Mmj18 85 L 37 0 10 Mmj18 87 P 43 0 11 Mmj18 91 L 45 0 12 Mmj18 92 P 31 0 13 Mmj18 93 L 39 1 14 Mmj18 5 P 25 0 15 Mmj18 95 L 23 0

Lampiran 7. Data Nuclear Bud (NBUD) kelompok kontrol

No. Kode Jenis Kelamin(L/P) Umur (Tahun) N-Bud

1 Mmj18 44 L 51 0 2 Mmj18 45 L 17 0 3 Mmj18 46 P 15 0 4 Mmj18 47 L 22 0 5 Mmj18 48 P 46 0 6 Mmj18 49 P 38 0 7 Mmj18 50 L 57 0 8 Mmj18 51 L 34 0 9 Mmj18 52 P 29 0 10 Mmj18 53 P 43 0 11 Mmj18 54 P 32 0 12 Mmj18 55 P 54 0 13 Mmj18 56 L 32 0 14 Mmj18 57 L 43 0 15 Mmj18 58 L 58 0

50 Lampiran 8. Data Nuclear Bud (NBUD) kelompok studi

No. Kode Jenis Kelamin(L/P) Umur (Tahun) N-Bud

1 Mmj18 1 L 53 0 2 Mmj18 2 L 65 0 3 Mmj18 7 P 49 0 4 Mmj18 8 P 62 0 5 Mmj18 9 P 37 1 6 Mmj18 14 L 59 0 7 Mmj18 83 L 30 0 8 Mmj18 84 P 54 0 9 Mmj18 85 L 37 0 10 Mmj18 87 P 43 0 11 Mmj18 91 L 45 0 12 Mmj18 92 P 31 0 13 Mmj18 93 L 39 1 14 Mmj18 5 P 25 0 15 Mmj18 95 L 23 0

Lampiran 9. Data 8-Shaped kelompok kontrol

No. Kode Jenis Kelamin(L/P) Umur (Tahun) 8-Shaped

1 Mmj18 44 L 51 7 2 Mmj18 45 L 17 5 3 Mmj18 46 P 15 1 4 Mmj18 47 L 22 3 5 Mmj18 48 P 46 2 6 Mmj18 49 P 38 1 7 Mmj18 50 L 57 4 8 Mmj18 51 L 34 0 9 Mmj18 52 P 29 1 10 Mmj18 53 P 43 6 11 Mmj18 54 P 32 3 12 Mmj18 55 P 54 0 13 Mmj18 56 L 32 2 14 Mmj18 57 L 43 2 15 Mmj18 58 L 58 3

52 Lampiran 10. Data 8-Shaped kelompok studi

No. Kode Jenis Kelamin(L/P) Umur (Tahun) 8-Shaped

1 Mmj18 1 L 53 9 2 Mmj18 2 L 65 9 3 Mmj18 7 P 49 8 4 Mmj18 8 P 62 7 5 Mmj18 9 P 37 7 6 Mmj18 14 L 59 11 7 Mmj18 83 L 30 10 8 Mmj18 84 P 54 5 9 Mmj18 85 L 37 7 10 Mmj18 87 P 43 5 11 Mmj18 91 L 45 9 12 Mmj18 92 P 31 7 13 Mmj18 93 L 39 4 14 Mmj18 5 P 25 10 15 Mmj18 95 L 23 5

Lampiran 11. Uji statistik Nuclear Division Index (NDI) A. Uji normalitas

B. Uji independent T test

F Sig. t df Sig. (2-tailed ) Mean Differenc e Std. Error Differenc e Nilai Equal variances assumed 2.351 .136 -2.31 5 28 .028 -.04800 .02074 Equal variances not assumed -2.31 5 23.644 .030 -.04800 .02074

C. Uji one-way ANOVA faktor jenis kelamin kelompok kontrol

Tests of Normality

Dependent

Variables NDI

Kolmogorov-Smirnova Shapiro-Wilk Statistic df Sig. Statistic df Sig.

Nilai kontrol .161 15 .200* .907 15 .120

sampel .123 15 .200* .960 15 .700

ANOVA

NDI_Kontrol

Sum of

Squares df Mean Square F Sig.

Between Groups .002 1 .002 .334 .573

Within Groups .087 13 .007

54 D. Uji one-way ANOVA faktor jenis kelamin kelompok studi

E. Uji one-way ANOVA faktor usia kelompok kontrol

ANOVA

NDI_Control

Sum of

Squares df Mean Square F Sig.

Between Groups .002 2 .001 .146 .866

Within Groups .087 12 .007

Total .089 14

F. Uji one-way ANOVA faktor usia kelompok studi

ANOVA

NDI_Sample

Sum of

Squares df Mean Square F Sig.

Between Groups .001 2 .000 .129 .880 Within Groups .025 12 .002 Total .026 14 ANOVA NDI_Sampel Sum of

Squares df Mean Square F Sig.

Between Groups .009 1 .009 7.464 .017

Within Groups .016 13 .001

Lampiran 12. Uji statistik Micronuclei (MN) A. Uji normalitas

B. Uji Independent T test

F Sig. t df Sig. (2-taile d) Mean Differenc e DifferenceStd. Error nilai Equal variances assumed 3.270 .081 -4.65 4 28 .000 -6.600 1.418 Equal variances not assumed -4.65 4 21.697 .000 -6.600 1.418

C. Uji one-way ANOVA faktor jenis kelamin kelompok kontrol

ANOVA

MN_Kontrol

Sum of

Squares df Mean Square F Sig.

Between Groups 12.386 1 12.386 .999 .336

Within Groups 161.214 13 12.401

Total 173.600 14

D. Uji one-way ANOVA faktor jenis kelamin kelompok studi

ANOVA

MN_Sampel

Sum of

Squares df Mean Square F Sig.

Between Groups .076 1 .076 .003 .957 Within Groups 324.857 13 24.989 Total 324.933 14 Tests of Normality Dependent Variables MN Kolmogorov-Smirnova Shapiro-Wilk Statistic df Sig. Statistic df Sig.

nilai Kontrol .150 15 .200* .930 15 .271

56 E. Uji one-way ANOVA faktor usia kelompok kontrol

ANOVA

MN_Kontrol

Sum of

Squares df Mean Square F Sig.

Between Groups 52.886 2 26.443 2.629 .113

Within Groups 120.714 12 10.060

Total 173.600 14

F. Uji one-way ANOVA faktor usia kelompok studi

ANOVA

MN_SAMPLE

Sum of

Squares df Mean Square F Sig.

Between Groups 85.752 2 42.876 2.151 .159

Within Groups 239.181 12 19.932

Lampiran 13. Hasil statistik Nucleoplasmic Bridge (NPB) A. Uji normalitas

B. Uji independent T test

F Sig. t df (2-tailed)Sig. DifferenceMean DifferenceStd. Error Nilai Equal variances assumed 1.463 .237 -.592 28 .559 -.067 .113 Equal variances not assumed -.592 25.688 .559 -.067 .113

C. Uji one-way ANOVA faktor jenis kelamin kelompok kontrol

D. Uji one-way ANOVA faktor jenis kelamin kelompok studi

ANOVA

NPB_Sampel

Sum of

Squares df Mean Square F Sig.

Dokumen terkait