KESIMPULAN DAN SARAN
KesimpulanDari hasil pembahasan dan penelitian yang dilakukan, diperoleh kesimpulan sebagai berikut :
1. Semakin besar kapasitas DG yang di interkonesikan pada bus yang sama, seperti pada bus 3, maka nilai profil tegangan pada jaringan akan semakin meningkat, dapat dilihat pada Gambar 4.2, dimana hal ini dikarenakan kapasitas daya dari sistem semakin bertambah.
2. Dengan kapasitas DG yang sama tetapi diletakan di tempat berbeda, pada Tabel 4.2 bus 10 dan 11, kedua bus mempunyai rugi-rugi yang berbeda dan profil tegangan yang berbeda dikarenakan lokasi interkoneksi pada bus yang berbeda menyebabkan perubahan aliran daya yang berbeda juga. 3. Pada simulasi yang telah dilakukan, titik interkoneksi DG yang paling baik
adalah pada bus 23 dengan kapasitas DG sebesar 0.4 MW, dimana pada titik ini, sistem mempunyai rugi-rugi sistem yang paling kecil dibandingkan dengan rugi-rugi titik interkoneksi yang lainya dan mempunyai profil tegangan yang lebih baik juga.
Saran
Saran dari penulis sebagai pengembangan tugas ahkir ini adalah sebagai berikut :
62
1. Melakukan metode optimasi ini pada jaringan distribusi lainya baik jaringan distribusi yang pada keadaan existing nya telah ada DG maupun tidak ada DG.
2. Menggunakan metode optimasi lain seperti Algoritma Genetika, Swarm
Optimation dan lain sebagainya untuk menentukan titik interkoneksi dan
kapasitas terbaik dari DG.
3. Melakukan peninjauan ulang akan hasil penelitian ini dengan meninjau segi ekonomis dan dari segi proteksinya.
5
BAB 2
TINJAUAN PUSTAKA
Sistem Tenaga ListrikSistem tenaga listrik merupakan kumpulan peralatan listrik yang saling terhubung membentuk suatu sistem yang digunakan untuk membangkitkan tenaga listrik pada pusat pembangkit tenaga listrik dan menyalurkan tenaga listrik melalui suatu jaringan transmisi dan jaringan distribusi hingga sampai ke pelanggan. Gambar 2.1 merupakan gambar segaris suatu sistem tenaga listrik yang terdiri dari pusat pembangkit, transmisi, dan distribusi [4].
Pusat Pembangkit Transmisi Distribusi Gardu Induk Step Up Gardu Induk Step Down Beban
Gambar 2.1 One Line Diagram Sistem Tenaga Listrik
Suatu pembangkit tenaga listrik ditempatkan pada lokasi tertentu berdasarkan sumber daya alam yang digunakan. Jenis pembangkit tenaga listrik yang digunakan adalah seperti Pembangkit Listrik Tenaga Air (PLTA), Pembangkit Listrik Tenaga Uap (PLTU), Pembangkit Listrik Tenaga Gas (PLTG), Pembangkit Listrik Tenaga Diesel (PLTD), dan Pembangkit Listrik Tenaga Panas Bumi (PLTP). Setelah tenaga listrik dibangkitkan kemudian tenaga listrik disalurkan ke transformator step up. Hal ini disebabkan karena lokasi pelanggan tenaga listrik yang tersebar luas dan jauh dari pusat pembangkit tenaga listrik.
6
Pada transformator step-up, tegangan yang dibangkitkan oleh pembangkit listrik dinaikkan menjadi tegangan tinggi sesuai dengan Sistem kelistrikan di Indonesia menggunakan standart tegangan tinggi di antara 150kV, 275kV dan 500kV. Tenaga listrik ini kemudian disalurkan ke gardu induk sebagai pusat beban melalui saluran transmisi. Setelah sampai di gardu induk, tegangan tinggi pada saluran transmisi kemudian diturunkan menggunakan transformator step
down pada gardu induk menjadi tegangan menengah sebesar 20 kV.
Tegangan menengah 20 kV disalurkan melalui jaringan distribusi primer hingga transformator distribusi. Pada transformator distribusi, tegangan menengah 20 kV diturunkan menjadi tegangan rendah 380/220 V. Tegangan rendah ini kemudian disalurkan melalui jaringan distribusi sekunder hingga sampai ke pelanggan.
Jaringan Distribusi
Jaringan distribusi merupakan salah satu bagian dari suatu sistem tenaga listrik yang terletak paling dekat dengan pelanggan. Jaringan distribusi berfungsi untuk menyalurkan tenaga listrik dari gardu induk ke pelanggan. Permasalahan utama pada jaringan distribusi adalah banyaknya gangguan yang sering terjadi. Intensitas gangguan yang terjadi pada jaringan distribusi lebih banyak dari pada gangguan di sistem tenaga listrik yang lain [4].
Permasalahan yang terjadi pada jaringan distribusi dapat mengakibatkan terganggunya kontinuitas pelayanan tenaga listrik dari gardu induk ke pelanggan. Tingkat kontinuitas pelayanan tenaga listrik setiap jaringan distribusi berbeda-beda tergantung jenis jaringan distribusi yang diterapkan.
7
Berdasarkan bentuk jaringan, jaringan distribusi dapat dibedakan menjadi beberapa jenis [5]:
1. Sistem radial terbuka 2. Sistem radial paralel 3. Sistem rangkaian tertutup 4. Sistem network
5. Sistem interkoneksi
Studi Aliran Daya
Studi aliran daya merupakan suatu bagian yang penting dalam analisis sistem tenaga. Studi aliran daya diperlukan untuk tahap perencanaan, pengaturan biaya, dan dapat menjadi peramalan untuk perencanaan pengembangan jaringan di masa depan. Beberapa parameter yang perlu diperhatikan dalam aliran daya adalah menentukan besar dan sudut fasa dari tegangan pada masing – masing bus, serta daya aktif dan reaktif yang mengalir pada setiap line.
Dalam penyelesaian sebuah aliran daya, sistem dioperasikan dalam keadaan seimbang. Besaran – besaran yang menjadi parameter dalam studi aliran daya adalah besar tegangan | |, sudut fasa �, daya aktif P, dan daya reaktif Q.
2.3.1 Konsep Perhitungan Aliran Daya
Perhitungan aliran daya pada dasarnya adalah menghitung besar tegangan, sudut fasa dan rugi – rugi pada jaringan dalam kondisi tunak dan dengan beban seimbang.
Pada setiap bus ada 4 variabel operasi yang terkait, yaitu daya aktif, daya reaktif, besar tegangan, dan sudut fasa tegangan. Supaya Persamaan aliran daya
8
dapat dihitung, dua dari empat variabel diatas harus diketahui untuk setiap bus, sedangkan variabel yang lainnya dihitung. Setiap bus dalam sistem tenaga listrik dikelompokkan menjadi 3 tipe bus, yaitu [6] :
1. Bus beban
Bus beban adalah bus yang tidak memiliki unsur pembangkitan tenaga listrik / generator, dan terhubung secara langsung dengan beban (konsumen). Bus beban biasa disebut dengan P-Q bus, karena pada bus ini, yang dapat diatur adalah kapasitas daya yang terpasang. P merupakan daya aktif terpasang dalam satuan Watt (W), sedangkan Q merupakan daya reaktif terpasang dalam satuan Volt Ampere Reaktif (VAR). Hubungan antara daya aktif dan daya reaktif terhubung dengan nilai cos phi (cos φ).
2. Bus generator
Bus generator atau biasa disebut bus voltage controlled. Disebut demikian, karena tegangan pada bus ini biasanya dijaga konstan. Pada bus ini terhubung dengan generator yang dapat dikontrol daya aktif dan tegangannya. Pengaturan daya aktif pada bus ini diatur dengan mengontrol penggerak mula (prime mover), sedangkan pengaturan tegangan pada bus ini diatur dengan mengontrol arus eksitasi pada generator. Oleh karena daya aktif (P) dan tegangan (V) yang dapat dikontrol, maka bus ini sering disebut sebagai P-V bus.
3. Bus referensi
Pada bus referensi atau biasa disebut slack bus, adalah sebuah bus generator yang dianggap sebagai bus utama karena merupakan bus yang memiliki kapasitas daya yang paling besar. Oleh karena daya yang dapat disalurkan oleh bus ini besar, maka dari itu, pada bus ini hanya nilai tegangan dan sudut fasa yang
9
bisa diatur, sedangakan besar daya aktif dan reaktifnya akan dicari dalam perhitungan.
Dalam sistem pemrograman, tipe bus identik dengan kode angka. Dimana kode untuk bus referensi adalah angka 1, kode untuk bus generator adalah angka 2, dan kode untuk bus beban adalah angka 3. Untuk lebih jelasnya dari pembagian tipe dan kode bus, dapat dilihat dari Tabel 2.1 berikut ini :
Tabel 2.1 Tipe Bus Dalam Sistem Tenaga Listrik.
Tipe bus Kode Bus Nilai yang diketahui Nilai yang dihitung Bus beban 3 P, Q V, δ Bus generator 2 P, V Q, δ Bus referensi 1 V, δ P, Q
2.3.2 Persamaan aliran daya
Sistem tenaga listrik tidak hanya terdiri dari 2 bus, melainkan terdiri dari beberapa bus yang akan diinterkoneksikan satu sama lain. Daya listrik yang diinjeksikan oleh generator kepada salah satu bus, bukan hanya dapat diserap oleh beban bus tersebut, melainkan juga dapat diserap oleh beban di bus yang lain. Kelebihan daya pada bus akan dikirimkan melalui saluran transmisi ke bus-bus lain yang kekurangan daya.
Diagram satu garis beberapa bus dari suatu sistem tenaga diperlihatkan pada Gambar 2.2.
10
Gambar 2.2 Diagram Satu Garis dari N-Bus dalam Suatu Sistem Tenaga Arus pada bus I dapat ditulis:
= + − + − + … + � − �
= + + + … + � − − − … − � � (2.1)
Kemudian, kita definisikan:
= + + + … + �
= − = −
↓
� = − �
11 = [ … � � ⋮ ⋮ ⋮ … � ] (2.2)
Sehingga Ii pada Persamaan (2.1) dapat ditulis menjadi:
= + + + … + � � (2.3) Atau dapat ditulis:
= + ∑��= � �
�≠ (2.4)
Persamaan daya pada bus I adalah:
− � = ∗ ; dimana ∗ adalah conjugate pada bus i
= − �∗ (2.5) Dengan melakukan substitusi Persamaan (2.5) ke Persamaan (2.4) maka diperoleh:
−
�∗ = + ∑��= � �
�≠ (2.6)
Dari Persamaan (2.6) terlihat bahwa persamaan aliran daya bersifat tidak linier dan harus diselesaikan dengan metode numerik iteratif.
2.3.3 Metode Newton-Raphson
Kecepatan relatif dari bermacam-macam metode analisis aliran beban sukar dipastikan. Salah satu metoda untuk menghitung aliran daya adalah metode
Newton-Raphson. Metode ini memiliki perhitungan lebih baik untuk sistem tenaga
yang lebih besar dan tidak linier. Metode ini juga memiliki keuntungan dalam hal konvergensi yang jauh lebih cepat dan persamaan aluran daya yang dirumuskan
12
dalam bentuk polar. Dimana penurunan rumus nya dapat dilihat sebagai berikut [4] :
Pada suatu bus dimana besarnya tegangan dan daya reaktif yang tidak diketahui, nilai real dan imajiner tegangan untuk setiap iterasi didapatkan dengan menghitung nilai daya reaktif terlebih dahulu. Dari Persamaan (2.5) diperoleh: −
�∗ = + ∑��= � �
�≠ (2.7)
Dimana i = n, sehingga diperoleh:
− � = ∗∑� � �
�= (2.8)
= − �{ ∗∑� � �
�= } (2.9)
Untuk menerapkan metode Newton-Raphson pada penyelesaian persamaan aliran kita menyatakan tegangan bus dan admitansi saluran dalam bentuk polar. Jika kita pilih bentuk polar dan kita uraikan Persamaan (2.7) ke dalam unsur real dan imajiner maka didapatkan:
= | | ∠� � = | �| ∠�� � = | �| ∠�� Sehingga didapatkan: − � = ∑� | � �| �= ∠��+ ��− � (2.9) = ∑� | � �| �= cos ��+ ��− � (2.10) = − ∑� | � �| �= sin ��+ ��− � (2.11)
Persamaan (2.10) dan Persamaan (2.11) merupakan langkah awal perhitungan aliran daya dengan metode Newton-Raphson. Penyelesaian aliran menggunakan proses iterasi (k+1). Untuk iterasi pertama menggunakan nilai k = 0
13
merupakan nilai perkiraan awal yang diterapkan sebelum dimulai perhitungan aliran daya.
Hasil perhitungan daya menggunakan Persamaan (2.10) dan Persamaan (2.11) akan diperoleh nilai dan . Hasil ini digunakan untuk menghitung nilai ∆ dan ∆ menggunakan persamaan berikut:
∆ = � − (2.12)
∆ = � − (2.13)
Hasil perhitungan Persamaan (2.12) dan Persamaan (2.13) digunakan untuk membentuk matriks Jacobian. Persamaan matriks Jacobian disusun sebagai berikut: [ ∆ : ∆ � ∆ : ∆ � ] = [ � �� … ��� � : : : � � �� … � � ��� � �|� | … ��|� �| : : : � � �|� | … � � �|��| � �� … ��� � : : : � � �� … ��� � � �|� | … ��|� | : : : � � �|� | … � � �|��|][ ∆� : ∆� ∆| � | : ∆| � |] (2.14)
Secara umum Persamaan (2.14) dapat disederhanakan ke dalam bentuk:
[∆∆ ] = [ ][∆| | ]∆� (2.15)
Unsur Jacobian diperoleh dengan membuat turunan parsial dari Persamaan (2.10) dan Persamaan (2.11) dan memasukkan nilai tegangan perkiraan pada iterasi pertama. Dimana dalam menentukan matriks Jacobian adalah sebagai berikut:
Jumlah baris dan kolom matriks dibuat berdasarkan dengan [(2n-2-m) x (2n-2-m)] dan jumlah baris dan kolom J1 dibuat berdasarkan [(n-1) x (n-1)],
14
jumlah baris dan kolom J2 dibuat berdasarkan [(n-1) x (n-1-m)], jumlah baris dan kolom J3 dibuat berdasarkan [(n-1-m) x (n-1)], lalu jumlah baris dan kolom J4 dibuat berdasarkan [(n-1-m) x (n-1-m)].
Komponen diagonal dan off diagonal dari J1 adalah :
�
�� = ∑� | � �|
�≠ cos ��+ �� − � (2.16)
�
�� = −| � �| cos ��+ ��− � j ≠ 1 (2.17)
Komponen diagonal dan off diagonal dari J2 adalah :
�
�� = | cos � + ∑� | |
�≠ cos ��+ �� − � (2.18)
�
�� = −| �| cos �� + ��− � j ≠ 1 (2.19)
Komponen diagonal dan off diagonal dari J3 adalah :
�
�� = ∑� | � �|
�≠ cos ��− ��+ � (2.20)
�
�� = −| � �| cos ��− ��+ � j ≠ 1 (2.21)
Komponen diagonal dan off diagonal dari J4 adalah :
�
�� = − | sin � − ∑� | |
�≠ sin ��+ ��+ � (2.22)
�
�� = −| �| sin ��+ ��− � j ≠ 1 (2.23)
Setelah mendapatkan nilai matriks Jacobian selanjutnya dilakukan perhitungan pada nilai ∆� dan ∆| | dengan cara melakukan inverse matriks
Jacobian, sehingga diperoleh bentuk sebagai berikut:
15
Setelah nilai ∆� dan ∆| | didapat, kita dapat menghitung nilai tersebut untuk iterasi berikutnya, yaitu dengan menambahkan nilai ∆� dan ∆| | , sehingga diperoleh persamaan berikut:
� + = � + ∆� (2.25)
| | + = | | + ∆| | (2.26)
Hasil perhitungan Persamaan (2.25) dan Persamaan (2.26) digunakan lagi dalam proses iterasi selanjutnya, yaitu dengan memasukkan nilai hasil ke dalam Matriks (2.14) sebagai langkah awal perhitungan aliran daya. Proses ini dilakukan secara terus menerus sampai diperoleh nilai yang konvergen.
Secara ringkas, metode penyelesaian aliran daya menggunakan metode
Newton-Raphson dapat dilakukan dengan langkah-langkah sebagai berikut:
1. Tentukan nilai-nilai dan yang mengalir ke dalam sistem pada setiap bus untuk nilai yang diperkirakan dari besar tegangan (V)
dan sudut fasanya (δ) untuk iterasi pertama atau nilai tegangan yang
ditentukan paling akhir untuk iterasi berikutnya 2. Hitung � pada setiap rel
3. Hitung nilai-nilai untuk Jacobian dengan menggunakan nilai-nilai perkiraan atau yang ditentukan dari besar dan sudut fasa tegangan dalam persamaan untuk turunan parsial yang ditentukan dengan persamaan diferensial Persamaan (2.10) dan Persamaan (2.11)
4. Inverse matriks Jacobian dan hitung koreksi-koreksi tegangan ∆� dan ∆| | pada setiap rel
5. Hitung nilai yang baru dari | | dan � dengan menambahkan nilai ∆� dan ∆| | pada setiap rel
16
6. Kembali ke langkah 1 dan ulangi proses tersebut dengan menggunakan nilai besar dan sudut fasa tegangan yang ditentukan oleh nilai hasil terakhir sehingga semua nilai yang diperoleh lebih kecil dari indeks ketepatan yang dipilih.
2.3.4 Contoh perhitungan aliran daya menggunakan metode Newton-Raphson Contoh :
Dilakukan perhitungan aliran daya menggunakan metode Newton-Raphson seperti yang dijelaskan sebelumnya. Dimisalkan sebuah jaringan distribusi seperti digambarkan pada Gambar 2.3 mempunyai satu slack bus, satu bus generator dan satu bus beban.
Gambar 2.3 Single Line Diagram Sistem Distribusi dengan Tiga Bus
Didapatkan nilai matriks Y dari jaringan distribusi tersebut sebagai berikut:
17 = [ − − − − − − ] = [− + �− � − + �± � − + �− + � − + � − + � − � ]
Dengan menggunakan Persamaan (2.9), didapatkan:
= | || || | cos � − � + � + | | | | cos � − � + � + | | | | cos � = −| || || | sin � − � + � − | | | | sin � − � + � − | | | | sin � = | || || | cos � − � + � + | | | | cos � − � + � + | | | | cos �
Setelah didapatkan nilai P2 dan nilai Q2, dilakukan perhitungan untuk mendapatkan nilai ∆ dan ∆ sesuai Persamaan (2.12) dan Persamaan (2.13) sebagai berikut:
∆ = ℎ − ℎ ��
∆ = ℎ − ℎ ��
Dimana matriks jacobian dibentuk dengan persamaan : �
�� = | || || | sin � − � + � + | | | | | | sin � − � + � |
�
18 � 2 ��2 = | || | cos � − � + � + | || | cos � − � + � + | | | | cos � � �� = −| | | | | | sin � − � + � � �� = | || || | sin � − � + � + | | | | | | sin � − � + � | � � = −| | | | cos � − � + � � �� = | || || | cos � − � + � + | | | | | | sin � − � + � | � �� = −| | | | | | cos � − � + � � 2 ��2 = −| || | cos � − � + � − | || | sin � − � + � − | | | | sin � ℎ = - + = − − � . pu ℎ = = 2 pu ∆ = ℎ− = -4 - (-1,14) = -2,86 ∆ = ℎ− = -2,5-(-2,28) = -0,22 ∆ = ℎ− = 2 – 0,5616 = 1,4384 Lalu masukan semua nilai pada element matriks Jacobian.
19 [− ,, − , ] = [ , , , , , , , , , ][ ∆� ∆� ∆ ]
Dimana, hasil perhitungan dari atas akan didapatkan :
∆� = − , ∆� = ,
∆ = − ,
Lalu hasil selisih di atas ditambahkan dengan nilai awal � = 0 + (-0,045263) = 0,045263
� = + − , = ,
= + − , = ,
Lalu nilai yang didapatkan di atas, dimasukan lagi ke dalam matriks jacobian untuk dilakukan perhitungan pada interasi ke 2, lalu dilanjutkan sampai nilai menjadi konvergen. Lalu nilai ahkir yang akan didapatkan adalah sebagai berikut :
� = 0,047058 + (-0,0000038) = 0,04706
� = , + − , = ,
= , + − , = ,
Lalu nilai di atas dimasukan ke dalam Persamaan 2.9 untuk mencari besar daya aktif dan daya reaktif pada bus 3 dan bus 1
20 = −| || || | sin � − � + � − | | | | sin � − � + � − | | | | sin � = | || || | cos � − � + � + | | | | cos � − � + � + | | | | cos � = −| || || | sin � − � + � − | | | | sin � − � + � − | | | | sin �
Maka hasil yang didapatkan adalah sebagai berikut
= 1,4085 pu
= 2,1842 pu
= 1,4617 pu
Hasil perhitungan tersebut masih belum akurat sepenuhnya dan dibutuhkan iterasi lanjutan untuk menghasilkan data yang konvergen. Perhitungan iterasi yang terlalu banyak menjadi alasan digunakan simulasi menggunakan program komputer dalam melihat aliran daya pada suatu sistem kelistrikan.
Distributed generation
2.4.1 Defenisi Distributed generation
Terdapat berbagai pengertian tentang Distributed generation. beberapa hal tentang pengertian DG adalah sebagai berikut [7] :
1) Electric Power Research Institute mengartikan bahwa DG adalah
21
2) Preston and Rastler mengartikan bahwa DG adalah pembangkit yang
berskala dari beberapa KW hingga 100 MW.
3) Cardell mengartikan bahwa DG adalah pembangkit berskala 500 kW
dan 1 MW.
Akan tetapi umumnya, pengertian Distributed generation adalah sebuah pembangkit yang teletak di daerah sistem distribusi ataupun pada daerah dekat beban [7].
DG memiliki rating berdasarkan definisi yang diperoleh berdasarkan literatur. Rating maksimum yang dapat dikoneksikan pada sebuah sistem distribusi tergantung pada beban dari sistem distribusi tersebut. Meskipun tidak ada ketentuan yang pasti untuk menentukan klasifikasi tingkat dari DG, namun berdasarkan besar daya yang dihasilkan, dapat disimpulkan bahwa klasifikasi DG atas [7] :
1) Micro : ~1 Watt sampai dengan < 5 kW 2) Small : 5 kW sampai dengan < 5 MW 3) Medium : 5 MW sampai dengan 50 MW 4) Large : 50 MW sampai dengan ~ 300 MW
2.4.2 Teknologi dari DG
DG dapat dibedakan berdasarkan energi utama yang digunakan, yaitu [9][10]:
A.Internal Combustion Engines (ICE)
ICE merupakan salah satu teknologi yang umum digunakan untuk DG. ICE merupakan contoh DG dengan biaya modal rendah dan ukuran yang besar,
22
dari beberapa kW hingga MW. ICE juga memiliki efisiensi dan keandalan operasi yang tinggi. Karakteristik ini dikombinasikan dengan kemampuan mesin untuk memulai kerja yang cepat selama terjadi pemadaman. Hal ini membuat ICE menjadi pilihan utama dalam keadaan darurat atau menjadi cadangan daya listrik.
Kelemahan utama dari ICE adalah:
1) Biaya perawatan (maintenance) dan bahan bakar yang tinggi (tertinggi di antara teknologi DG lain)
2) Emisi NOX yang tinggi (tertinggi di antara teknologi DG lain) 3) Tingkat kebisingan yang tinggi
B. Turbin Gas
Turbin gas dengan segala ukuran dewasa ini telah luas digunakan. Turbin gas ukuran kecil 1-20 MW umum digunakan dalam aplikasi Combined Heat and
Power (CHP). Turbin gas kecil ini khususnya sangat berguna ketika dibutuhkan
uap dengan temperatur yang tinggi. Biaya perawatan dan emisi yang dihasilkan oleh turbin gas sedikit lebih rendah dibandingkan dengan ICE. Tetapi tingkat kebisingan untuk turbin gas masih tergolong tinggi.
C.Combined Cycle Gas Turbines (CCGT)
Pada CCGT, campuran udara pembuangan sisa bahan bakar bertukar energi dengan air di boiler untuk menghasilkan uap air yang digunakan untuk menggerakkan turbin uap. Pergerakan turbin uap bertujuan untuk mengubah energi gerak tersebut menjadi tambahan energi listrik pada generator. Kemudian, aliran uap dari turbin mengalami kondensasi dan kembali ke boiler.
23
Teknologi CCGT menjadi cukup populer dikarenakan efisiensi yang tinggi. Namun, instalasi turbin gas di bawah 10 MW umumnya bukan merupakan
combined-cycle.
D.Microturbines
Microturbines menghasilkan daya ac dengan frekuensi tinggi. Sebuah
inverter daya digunakan untuk mengubah frekuensi ini ke dalam kisaran frekuensi yang dapat digunakan. Unit individu dari microturbines berkisar dari 30-200 kW. Tetapi beberapa microturbines dapat digabungkan menjadi beberapa unit (multiple unit). Temperatur pembakaran yang rendah membuat emisi NOX menjadi sangat rendah. Microturbines juga menghasilkan tingkat kebisingan yang lebih rendah dibandingkan teknologi pembangkit lain yang memiliki ukuran sama.
Kebanyakan Microturbines menggunakan gas alam. Penggunaan energi terbarukan seperti ethanol sangat memungkinkan untuk digunakan. Kekurangan utama dari microturbines adalah biaya bahan bakar yang lebih tinggi bila dibandingkan dengan ICE.
E.Fuel Cells
Fuel cells merupakan peralatan elektrokimia yang merubah energi kimia
dari sebuah bahan bakar menjadi energi yang dapat digunakan (listrik dan panas) tanpa pembakaran.
Fuel cells menghasilkan listrik dengan efisiensi yang tinggi hingga
24
berarti. Hal ini yang menjadi keuntungan utama dari fuel cells. Tantangan utama dalam pengembangan fuel cells adalah biaya investasi yang tinggi.
F. Solar Photovoltaic (PV)
Sistem Photovoltaic (PV) melibatkan perubahan langsung dari cahaya matahari menjadi listrik. Penerapan dari sistem PV sangat didukung dengan ketersediaan sinar matahari sepanjang hari, siklus kerja yang lama, perawatan yang mudah, biaya operasi yang rendah, ramah lingkungan, serta waktu untuk mendesain, menginstal, dan kemampuan untuk memulai kerja yang cepat. Umumnya modul individu PV mempunyai kisaran daya dari 20 W hingga 100 kW. Beberapa penghalang untuk sistem PV yaitu biaya instalasi PV yang relatif tinggi dibandingkan teknologi DG lain.
G.Tenaga Angin
Tenaga angin memainkan peran yang penting dalam pembangkitan listrik dari energi terbarukan. Tantangan utama dari teknologi tenaga angin adalah penyaluran listrik yang masih sering terputus dan keandalan jaringan. Hal ini dikarenakan teknologi tenaga angin memanfaatkan kekuatan alam yang tidak bisa hadir sepanjang waktu. Tantangan lain dalam pengembangan teknologi ini adalah ketersedian pembangkit tersebut dikarenakan lokasi terbaik untuk pembangunan teknologi ini adalah pada daerah terpencil tanpa akses ke jaringan transmisi yang sesuai.
25
H. Small Hydropower (SHP)
Small Hydropower (SHP) umumnya digunakan untuk menunjukkan tenaga
air dengan kapasitas daya kurang dari 10 MW. Istilah lain yang sering digunakan adalah mini hydropower dengan kapasitas di antara 100 KW dan 1 MW dan micro
hydropower dengan kapasitas di atas 100 KW.
I. Solar Thermal
Sistem solar thermal menghasilkan listrik dengan mengkonsentrasikan cahaya matahari yang datang dan kemudian memerangkap panas dari cahaya matahari tersebut yang digunakan untuk menaikkan temperatur cairan ke derajat temperatur yang sangat tinggi untuk menghasilkan uap air dan menghasilkan listrik.
Pengembangan konsentrasi cahaya matahari sekarang memungkinkan pembangkitan daya listrik dari beberapa kilowatt hingga ratusan megawatt.
J. Panas Bumi
Energi panas bumi tersedia sebagai panas yang diemisikan dari dalam bumi, biasanya dalam bentuk air panas atau uap. Pembangkit listrik tenaga panas bumi membutuhkan biaya modal yang tinggi tetapi dengan biaya operasi yang rendah. Teknologi panas bumi ini juga ramah lingkungan tanpa ada emisi CO2 selama beroperasi.
26
2.4.3 Dampak dari pemasangan DG pada jaringan
Terpasangnya DG pada jaringan menyebabkan beberapa dampak yang perlu diperhatikan yaitu faktor perubahan arah aliran daya, rugi – rugi daya pada saluran, dan perubahan profil tegangan pada sistem.
Jaringan konvensional merupakan jaringan dengan aliran daya satu arah. Namun dengan adanya DG maka aliran daya tidak dapat dianggap bergerak pada satu arah lagi. DG berada di daerah dekat beban dan di daerah sistem distribusi. Munculnya DG menyebabkan jaringan menjadi dua arah, dimana hal ini dapat ditunjukan pada Gambar 2.4 dan 2.5 di bawah ini.
27
Gambar 2.5 Aliran Daya Dua Arah
Perubahan pola aliran daya yang terjadi pada saluran mengakibatkan perubahan nilai arus yang mengalir pada jaringan distribusi. Hal ini mengakibatkan perubahan nilai rugi – rugi daya pada jaringan. Faktor yang mempengaruhi nilai rugi – rugi pada jaringan adalah resistansi dari penghantar, serta besar arus yang melalui penghantar tersebut. Bertambah besarnya daya yang disalurkan dari sebuah sumber daya ke beban melalui sebuah penghantar mengakibatkan penghantar tersebut akan menghantarkan arus yang lebih besar, sehingga rugi – rugi pada penghantar pun lebih besar.
28
Gambar 2.6 Diagram Aliran Daya dengan Koneksi DG
Dari Gambar 2.6 didapatkan persamaan sebagai berikut :
S = P + jQ (2.27) I = � � (2.28) I = + � (2.29) ∆U = − (2.30) ≈ �� � – �� + �� �− ± �� (2.31)
Dari persamaan di atas diketahui, bahwa nilai drop tegangan berubah, semakin bertambah atau berkurang, tergantung jika DG menyerap daya reaktif atau memberi daya reaktif. Jika DG menyerap daya reaktif terlalu besar, maka