3.3. Metode Analisis
3.3.4. Uji Kriteria Statistik
Uji kebaikan model dapat dilakukan melaui beberapa langakah. Langkah- langkah tersebut terdiri dari uji multikolinieritas, autokorelasi, dan heteroskedastisitas.
(1) Multikolinieritas
Menurut Sumodiningrat (2001) istilah multikolinearitas digunakan untuk menunjukkan adanya hubungan linier diantara variabel-variabel bebas dalam model regresi. Bila variabel-variabel bebas berkorelasi secara sempurna, maka
disebut “multikoliniearitas sempurna”(Perfect multicollinearity). Penggunaan kata multikolineritas disini dimaksudkan untuk menunjukkan adanya derajat kolinieritas yang tinggi diantara variabel-variabel bebas. Variabel-variabel dikatakan orthogonal jika variabel-variabel tersebut tidak berkorelasi. Hal ini merupakan salah satu kasus tidak adanya masalah multikolinieritas.
Jika diantara dua variabel bebas terdapat multikolinieritas sempurna maka akan menyebabkan masalah berikut ini.
- Penaksir-penaksir kuadrat terkecil tidak dapat ditentukan (indeterminate). - Varian dan kovarian dari penaksir-penaksir menjadi tak terhingga besarnya
(infinitely large).
Bekerja dengan model-model yang mengandung multikolineritas lebih sulit jika dibandingkan dengan mendeteksi masalah multikolinieritas. Para pakar ekonometri memberikan saran untuk melakukan berbagai prosedur untuk mengatasi masalah tersebut, dimana prosedur tersebut tergantung pada parah tidaknya masalah multikolinetitas, tersedianya sumber data lain, dan pentingnya variabel-variabel yang bermultikolinerasi di dalam model.
Ada beberapa cara untuk mengetahui multikolinearitas dalam suatu model. Salah satunya adalah dengan melihat koefisien korelasi melalui output komputer. Jika terdapat koefisien korelasi yang lebih besar dari |0.8|, maka terdapat gejala multikolinear. Dalam Gujarati (1978) disebutkan bahwa tanda yang paling jelas dari multikolinearitas adalah ketika Nilai R-squared sangat tinggi, tetapi tidak satu pun koefisien regresi penting (signifikan) secara statistik atas dasar pengujian t yang konvensional. Berdasarkan ketentuan dari uji Klein dalam Koutsoyiannis
(1997) disebutkan bahwa masalah korelasi sederhana antara variabel penjelas bisa diabaikan apabila nilai koefisien korelasinya lebih kecil daripada nilai koefisien determinasi atau keragamannya (korelasi keseluruhannya).
Terdapat tiga prosedur koreksi yang dapat digunakan untuk menghilangkan multikolinieritas.
- Memperbesar ukuran sampel
Multikoinieritas diharapkan dapat hilang atau berkurang jika ukuran sampel diperbesar, atau jumlah sampel ditambah. Dengan ukuran sampel yang semakin besar maka kovarian diantara parameter-parameter dapat dikurangi karena kovarian berhubungan terbalik dengan ukuran sampel. Hal ini hanya akan benar dilakukan jika interkorelasi terjadi hanya di dalam sampel dan bukan dalam populasi. Jika variabel-variabel tersebut berkolinier dalam populasi, maka prosedur memperbesar ukuran sampel tidak akan dapat membantu mengurangi multikolinieritas.
- Memasukkan persamaan tambahan ke dalam model
Masalah multikolineritas mungkin dapat diatasi dengan menyajikan hubungan diantara variabel-variabel yang bermultikolinear secara eksplisit. Penambahan persamaan baru ini akan mengubah model persamaan tunggal (model asli) menjadi model persamaan simultan. Selanjutnya, untuk menghilangkan multikolineritas, dapat diterapkan metode penyederhanaan (reduce form) sbagaimana yang biasa digunakan untuk menaksir model- model persamaan simultan.
- Penggunaan informasi ekstra
Informasi ekstra adalah informasi yang diperoleh dari sumber-sumber lain diluar sampel yang digunakan untuk penaksiran. Informasi ekstra ini diperoleh dari teori ekonomi atau beberapa hasil penelitian empiris sejenis yang pernah dilakukan. Tiga metode yang menggunakan informasi ekstra untuk menghilangkan masalah multikolineritas yaitu metode penggunaan informasi awal (prior information), metode transformasi variabel, serta metode pooling data cross –section dan data times series.
(2) Autokorelasi
Sumodiningrat (2001) menyatakan bahwa autokorelasi adalah korelasi (hubungan) yang terjadi diantara anggota-anggota dari serangkaian pengamatan yang tersusun dalam rangkaian waktu (seperti pada data runtun waktu atau time series data) atau yang tersusun dalam rangkaian ruang (seperti pada data silang waktu atau cross section).
Gujarati (1995) menyebutkan bahwa adanya autokorelasi dapat menyebabkan dua masalah.
- Varians yang diperoleh dari estimasi dengan OLS bersifat underestimate, yaitu nilai varians parameter yang diperoleh lebih kecil daripada nilai varians sebenarnya.
- Prediksi yang didasarkan pada metode OLS bersifat inefisien, artinya prediksi dengan metode ini variansnya lebih besar dibandingkan dengan metode ekonometrika lainnya.
Pengujian untuk mendeteksi gejala autokorelasi dapat dilakukan dengan menggunakan uji Breush and Godfrey Serial Correlation lagrange Multiplier Test dengan hipotesis (Eviws User’s Guide, 2002) :
H0 : ρ = 0 (tidak terdapat serial korelasi) H1 : ρ≠ 0 (terdapat serial korelasi) Kriteria uji yang digunakan :
- Apabila nilai probability Obs*R-squared-nya > taraf nyata (α) yang digunakan, maka persamaan tidak mengalami autokorelasi;
- Apabila nilai probability Obs*R-squared-nya < taraf nyata (α) yang digunakan, maka terdapat autokorelasi dalam persamaan tersebut.
Apabila setelah dilakukan uji, pada data yang diamati ternyata menunjukkan terdapat masalah autokorelasi, maka solusi yang dapat diambil tergantung pada penyebabnya, jika penyebabnya sebagai berikut :
- Dihilangkannya variabel yang sebenarnya berpengaruh terhadap variabel tak bebas. Maka cara mengatasinya adalah dengan memasukkan variabel tersebut ke dalam model;
- Kesalahan spesifikasi model. Maka cara mengatasinya adalah dengan mentransformasi model, misalnya dari model linier menjadi model nonlinier, atau sebaliknya;
- Kesalahan spesifikasi U. Maka cara mengatasinya adalah dengan mentransformasi model tersebut.
(3) Heteroskedastisitas
Suatu model regresi linear harus memiliki varians yang sama (Gujarati 1978). Jika asumsi tersebut tidak terpenuhi, maka akan terdapat masalah heteroskedastisitas.
Apabila terjadi heteroskedastisitas, maka akan mengakibatkan tiga masalah. - Estimasi dengan menggunakan OLS tidak akan memiliki varians yang
minimum atau estimator tidak efisien.
- Prediksi (nilai Y untuk X tertentu) dengan estimator dari data yang sebenarnya akan mempunyai varians yang tinggi, sehingga prediksi menjadi tidak efisien. - Tidak dapat diterapkannya uji nyata tidaknya koefisien atau selang
kepercayaan dengan menggunakan formula yang berkaitan dengan nilai varians.
Pengujian yang dapat dilakukan untuk melihat gejala ini adalah dengan menggunakan uji Heteroskedasticity dengan hipotesis (Eviews User’s Guide, 2002) :
H0 : γ = 0 (tidak terdapat heteroskedastisitas) H1 : γ≠ 0 (terdapat serial heteroskedastisitas) Kriteria uji yang digunakan :
- Apabila nilai probability Obs*R-squared-nya > taraf nyata (α) yang digunakan, maka persamaan tidak mengalami heteroskedastisitas;
- Apabila nilai probability Obs*R-squared-nya < taraf nyata (α) yang digunakan, maka terdapat heteroskedastisitas dalam persamaan tersebut.
Berkembangnya bank syariah di negara-negara Islam telah berpengaruh ke Indonesia. Pada awalnya dimulai dari diskusi-diskusi para tokoh tentang bank syariah sebagai pilar ekonomi Islam. Kemudian berlanjut pada uji coba dalam skala kecil dalam bentuk pendirian Baitul Mal Wattamwil (BMT) yang ternyata berhasil dengan cukup mengesankan. Akhirnya berdirilah bank syariah pertama di Indonesia dengan nama PT. Bank Muamalat Indonesia Tbk, (PT. BMI) pada tahun 1992.
Pada awal operasinya, keberadaan Bank Muamalat belum mendapatkan perhatian optimum dalam tatanan industri perbankan nasional. Undang-undang Perbankan No. 7 Tahun 1992 yang dikeluarkan oleh pemerintah, belum bisa menjadi landasan hukum yang lengkap yang dapat menunjang perkembangan bank syariah. Walaupun demikian, peran yang ditempuh Bank Muamalat Indonesia telah mampu meningkatkan kesadaran masyarakat bahwa sistem “bank bagi hasil” dalam tatanan ekonomi syariah telah menunjukkan keberadaannya dan kebenarannya, serta telah teruji dalam krisis yang menimpa Indonesia. Sejak dikeluarkannya Undang-undang Perbankan No. 10 Tahun 1998 yang memberikan perhatian lebih pada pengembangan bank syariah, pertumbuhan bank syariah di Indonesia menjadi sangat penting dan signifikan.
Kehadiran perbankan syariah dalam sistem perbankan nasional bukan hanya semata-mata untuk mengakomodasi kepentingan penduduk Indonesia yang sebagian besar beragama Islam. Tetapi lebih kepada terdapatnya faktor
keunggulan atau manfaat lebih dari perbankan syariah dalam menjembatani kegiatan ekonomi yang lebih imun terhadap krisis. Seiring dengan hal itu, ternyata telah tumbuh sebuah kecenderungan spiritual yang mulai melihat mudharatnya sistem bunga (Interest rate banking). Bersamaan dengan hal tersebut, telah tumbuh pula kerinduan akan pelayanan bank yang memberikan solusi sesuai keyakinan bahwa bunga bank adalah haram.