• Tidak ada hasil yang ditemukan

KELAMIN PADA AVES

MATERI DAN METODE Lokasi dan Waktu

Penelitian dilaksanakan pada bulan Februari hingga Mei 2012. Koleksi sampel darah unggas dilakukan di Laboratorium Lapang Fakultas Peternakan, Institut Pertanian Bogor. Koleksi sampel bulu dilakukan di Penangkaran Burung “Megananda Bird Orchid Farm”, Ciluer, Bogor. Analisis identifikasi jenis kelamin Aves dilakukan di Laboratorium Genetika Molekuler Ternak, Bagian Pemuliaan dan Genetik Ternak, Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan, Institut Pertanian Bogor.

Materi Sampel

Sampel yang digunakan dalam penelitian ini yaitu 16 sampel darah unggas yang terdiri dari ayam kampung, puyuh, itik dan merpati serta 5 sampel bulu burung yang terdiri dari kakatua kecil jambul kuning, kakatua molukan dan beo nias (Gambar 3). Identitas sampel penelitian ditampilkan pada Tabel 2.

Pengambilan Sampel

Bahan-bahan yang digunakan untuk pengambilan sampel adalah alkohol 70%, kapas dan EDTA. Alat yang digunakan adalah jarum venojeck, tabung eppendorf 1,5 ml dan pipa kapiler.

Ekstraksi DNA

Bahan yang digunakan untuk ekstraksi DNA darah yaitu sampel darah, RBC lisis buffer, 1 x STE (5M NaCl, 2M tris HCl, 0,2M EDTA), SDS 10% (sodium dodesil sulfat), Proteinase-K 5 mg/ml, fenol, CIAA, NaCl 5M, EtOH absolut, buffer TE 80% (tris EDTA) dan tissue. Peralatan yang digunakan adalah tabung eppendorf 1,5 ml, satu set mikro pipet dan tip, gunting, vortexmixer, sentrifuge, rotary mixer, inkubator, refrigerator, dan freezer. Ektraksi DNA dari bulu dan feses menggunakan kit extraction (ekstraksi kit) dengan menggunakan bahan yang with urea, Proteinase- K 10 mg/ml, PB Buffer dan EB buffer. Alat yang digunakan yaitu tabung spin, sentrifuge, inkubator, dan rotary mixer.

15 Tabel 2. Identitas Sampel Penelitian

Ordo Family Spesies Asal Sampel Jenis

Sampel

Jumlah Sampel

Jenis kelamin yang diketahui

Nama Latin Nama Inggris Nama Indonesia

Galliformes Phasianidae Gallus gallus domesticus Chicken Ayam Kampung Laboratorium

lapang

Darah 4 2♂ & 2♀

Galiformes Phasianidae Coturnix c. Japonica Quail Puyuh Laboratorium

lapang

Darah 4 2♂ & 2♀

Anseriformes Anatidae Anas plathyrynchos Duck Itik Laboratorium

lapang

Darah 4 2♂ & 2♀

Columbiformes Columbidae Columba livia Rock Pigeon Merpati Laboratorium

lapang

Darah 4 2♂ & 2♀

Passeriformes Sturnidae Gracula religiosa robusta Common Hill Mynah Beo nias Penangkaran Bulu 1 -

Psittaciformes Psittacidae Cacatua moluccensis Salmon-crested Cockatoo Kakatua molukan Penangkaran Bulu 2 -

Psittaciformes Psittacidae Cacatua sulphurea Yellow-crested Cockatoo Kakatua kecil jambul kuning

Penangkaran Bulu 2 -

16

Gambar 3. Jenis Sampel: Ayam Kampung Jantan (A.1) dan Betina (A.2), Puyuh Jantan (B.1) dan Betina (B.2), Itik (C), Merpati (D), Beo Nias (E), Kakatua Molukan (F), dan Kakatua Kecil Jambul Kuning (G).

Sumber : Dokumentasi pribadi

Primer Sexing

Primer merupakan molekul oligonukleotida yang berukuran pendek (sekitar 18-24 pasang basa) yang akan menempel pada DNA cetakan di tempat spesifik. Pasangan primer yang digunakan untuk mengamplifikasi gen CHD berdasarkan Griffiths et al. (1998) dengan runutan primer forward 5’- TCT GCA TCG CTA AAT CCT TT-3’, dan primer reverse 5’- CTC CCA AGG ATG AGR AAY TG-3’ dengan produk hasil amplifikasi sepanjang 300-400 bp. Sekuen gen CHD pada spesies didapatkan dari genBank, yaitu ayam (CHD-Z: Nomor Akses AF006659 dan CHD- W: Nomor Akses AF006660), puyuh (CHD-Z: Nomor Akses HQ175997 dan CHD- W: Nomor Akses HQ175998) dan merpati (CHD-Z: Nomor Akses GU289184 dan CHD-W: Nomor Akses GU289183).

17

Amplifikasi DNA

Amplifikasi DNA menggunakan bahan-bahan yaitu sampel DNA, buffer, MgCl2, dNTP (deoxy Nukleotida Triposfat), enzim Taq Polymerase, destilated water

(DW) dan pasangan primer. Alat-alat yang digunakan dalam amplifikasi DNA yaitu satu set mikropipet dan tip, mesin thermocycler, sentrifuge, rak, vortex dan tabung eppendorf.

Elektroforesis

DNA yang telah diamplifikasi dielektroforesis menggunakan gel agarose konsentrasi 2%. Bahan yang digunakan untuk elektroforesis gel agarosa adalah produk PCR, agarose, loading dye, marker 100 bp, 0,5 x TBE, dan Ethidium Bromide. Alat yang digunakan adalah tip pipet, mikropipet 10 P Gilson, gelas kimia, gelas ukur, stirrer, microwave, gel tray, pencetak untuk sumur (comb), power supply electrophoresis 100 volt, alat foto UV trans iluminator, dan sarung tangan.

Prosedur Ekstraksi DNA

Ekstraksi DNA dilakukan dari darah dan bulu. Prosedur ekstraksi DNA darah mengikuti metode phenol-chloroform (Sambrook et al., 1989) dan ekstraksi DNA dari bulu dilakukan dengan menggunakan kit ekstraksi.

Ekstraksi DNA Darah. Sampel darah diambil sebanyak 50 µl dipindahkan ke dalam tabung 1,5 ml dan ditambahkan 800 µl RBC lisis buffer kemudian dihomogenkan menggunakan vortex selama ± 5 menit. Campuran tersebut kemudian disentrifugasi dengan kecepatan 8000 rpm (rotation per minutes) selama 5 menit dan bagian supernatannya dibuang. Bagian sel darah yang diperoleh ditambahkan dengan 40 µl SDS 10%, 10 µl Prot K 5 mg/ml dan 300 µl 1 x STE, dikocok pelan dalam inkubator pada suhu 55 ºC selama 2 jam. Molekul DNA dimurnikan dengan cara penambahan larutan fenol sebanyak 400 µl, 400 µl CIAA dan 40 µl NaCl 5M, kemudian dikocok pelan pada suhu ruang selama 1 jam.

Molekul DNA yang larut dipisahkan dari fase phenol dengan alat sentrifugasi pada kecepatan 12.000 rpm selama 5 menit. Bagian DNA (bening) sebanyak ± 400 µl dipindahkan dengan menggunakan pipet ke tabung 1,5 ml baru dan ditambahkan 800 µl EtOH absolut serta 40 µl NaCl 5M, kemudian dibekukan selama satu malam.

18 Molekul DNA kemudian dipisahkan dari EtOH absolut dengan disentrifugasi pada kecepatan 12.000 rpm selama 5 menit kemudian dibuang bagian supernatan sehingga diperoleh endapan molekul DNA. Endapan tersebut didiamkan dalam keadaan terbuka hingga kering dan disuspensikan dalam 100 µl TE (tris-EDTA) 80% dan disimpan dalam freezer sampai akan digunakan.

Ekstraksi DNA Bulu. Ekstraksi DNA dari bulu dilakukan dengan kit ekstraksi. Sampel calamus dipotong kecil lalu diletakkan di tabung effendorf 1,5 ml, kemudian ditambahkan “yang with urea” 1000 µl, dan prot K 10 mg/ml kemudian diinkubasi sambil digoyang pada suhu 38 ºC selama satu malam. Sampel diberi prot K 10 mg/ml 20 µl dan diinkubasi pada suhu 55 ºC selama 2 jam lalu disentrifugasi dengan kecepatan 2000 rpm selama 5 menit. Sampel sebanyak 500 µl ditambahkan 2500 µl PB buffer, kemudian sampel diambil 750 µl dan dipindahkan ke tabung spin lalu disentrifugasi dengan kecepatan 13000 rpm selama satu menit dan diulangi hingga semua campuran sampel dan PB buffer habis. Tabung ungu dipindahkan ke tabung 1,5 ml, ditambahkan 100 µl EB, didiamkan selama 5 menit dan disentrifugasi dengan kecepatan 13000 rpm selama satu menit. Sampel DNA akan tertampung di tabung 1,5 ml.

Kualitas DNA

Kualitas DNA dapat diketahui dengan cara spektrofotometer dan elektroforesis. Sampel 3 µl dan 597 µl destilated water (DW) dan blanko kemudian dispektrofotometer untuk mengetahui kualitas DNA dari sampel. Selain itu sampel 5 µl dicampurkan dengan loading dye kemudian dielektroforesis pada gel agarose 1,5 %.

Amplifikasi Gen CHD

Amplifikasi gen CHD secara in vitro menggunakan teknik PCR dengan mesin thermocycler. Pereaksi PCR terdiri dari sampel DNA 1 µl, destilated water (DW) 18,9 µl, primer 0,3 µl, dNTP 0,2 µl, MgCl2 1 µl, dream taq

buffer 2,5 µl, enzim taq Polymerase 0,1 µl dengan volume akhir 23 µl. Campuran tersebut kemudian diamplifikasi secara in vitro dalam mesin thermocycle dengan kondisi pra-denaturasi 95 ºC selama lima menit, tahapan selanjutnya terdiri dari 35 siklus dengan masing-masing siklus terdiri dari denaturasi 95 ºC selama 30 detik,

19 anneling pada suhu 60 ºC selama 45 detik, dan elongasi pada suhu 72 ºC selama satu menit. Kemudian tahap terakhir adalah elongasi akhir 72 ºC selama lima menit.

Elektroforesis

Produk PCR sebanyak 5 µl dicampurkan dengan loading dye (bromothymol blue 0,01%, xylene cyanol 0,01%, dan gliserol 50%) sebanyak 1 µl dengan menggunakan mikropipet lalu dimasukkan dalam sumur-sumur gel dan satu sumur gel dimasukkan marker sebanyak 2 µl yang digunakan sebagai penanda. Kemudian gel ditempatkan ke dalam gel tray elektroforesis yang sudah berisi larutan buffer dan dialiri listrik 100 volt selama 30 menit, molekul DNA yang bermuatan negatif pada pH netral akan bergerak (bermigrasi) ke arah positif. Gel agarose yang telah selesai dielektoforesis kemudian diambil untuk melihat panjang pita DNA dengan menggunakan sinar ultraviolet dalam trans illuminator. Panjang pita DNA dapat diketahui dengan cara menarik garis lurus masing-masing pita sampel DNA dengan posisi pita DNA marker.

Rancangan dan Analisis Data Genotyping

Jenis kelamin setiap individu ditentukan berdasarkan pita-pita yang muncul pada gel agarosa dan poliakrilamid. Jenis kelamin jantan menghasilkan satu pita dan betina dua pita (Griffith et al., 1998). Penentuan genotipe dari setiap individu ditampilkan pada Gambar 3.

Gambar 4. Penentuan Genotipe Gen CHD pada Aves

20

HASIL DAN PEMBAHASAN Isolasi DNA

Sumber DNA pada Aves biasanya berasal dari darah. Selain itu bulu juga dapat dijadikan sebagai alternatif sumber DNA. Hal ini karena pada sebagian jenis Aves memiliki pembuluh darah yang kecil seperti kakatua (Psittacidae) dan beo (Sturnidae) sehingga ekstraksi DNA dari darah sulit dilakukan. Selain itu penggunaan bulu dapat mengurangi stres pada burung dan mempermudah pengambilan sampel pada jenis Aves yang ukuran tubuhnya kecil (Bello et al., 2001). Cerit dan Avanus (2007b) menambahkan bahwa penggunaan bulu dapat menghindari rasa sakit pada burung dan menurunkan resiko kontaminasi sehingga biaya yang dibutuhkan lebih rendah.

Metode ekstraksi DNA dari sampel harus ditentukan dengan tepat. Ekstraksi DNA pada penelitian ini dilakukan secara konvensional dan menggunakan extraction kit (kit). Ekstraksi DNA yang berasal dari darah dilakukan dengan menggunakan metode konvensional atau phenol chloroform, sedangkan ekstraksi DNA yang berasal dari bulu dilakukan dengan menggunakan kit. Hal ini karena darah merupakan sumber DNA yang paling umum digunakan sehingga dapat digunakan metode phenol chloroform untuk efisiensi biaya. Dubiec dan Zagalska-Neubaurer (2005) menjelaskan bahwa ekstraksi DNA dengan metode phenol chloroform (Sambrook et al., 1989) menghasilkan kualitas dan kuantitas DNA yang optimal dengan biaya lebih murah. Hickman et al. (1984) menyatakan bahwa sumber DNA pada bulu didapat dari pangkal bulu (calamus) yang banyak mengandung sel epitel dan mengandung penghambat (inhibitor) yaitu keratin sehingga proses ekstraksi menjadi cukup sulit. Hasil ekstraksi DNA dengan menggunakan kit menghasilkan kualitas DNA yang lebih baik, namun penggunaaan kit akan meningkatkan biaya.

Kualitas DNA

Kualitas DNA berkorelasi dengan kemurnian dan intensitas molekul dari DNA. Pengujian kemurnian dan konsentrasi DNA hasil ekstraksi dapat diketahui dengan menggunakan alat spektrofotometer dan intensitas molekul DNA dapat diketahui dengan melihat intensitas cahaya dari pita DNA pada gel (Muladno, 2002).

21 Pengukuran jumlah DNA dengan spektrofotometer didasarkan pada prinsip iradiasi sinar ultraviolet yang diserap oleh nukleotida dan protein dalam larutan. Analisis asam nukleat umumnya dilakukan untuk penentuan konsentrasi rata-rata dan kemurnian DNA yang terdapat dalam sampel. Jumlah dan kemurnian tertentu diperlukan untuk kinerja optimal sampel DNA yang digunakan. Asam nukleat menyerap sinar ultraviolet dengan pola tertentu. Sampel ditembus sinar ultraviolet dan fotodetektor cahaya pada 260 nm, semakin besar cahaya yang diserap sampel, maka semakin tinggi konsentrasi asam nukleat dalam sampel (Sambrook & Russel 2001). Hasil kemurnian dan konsentrasi DNA darah disajikan pada Tabel 3.

Tabel 3. Nilai Kemurnian dan Konsentrasi DNA Darah

Sumber DNA Kemurnian (A260/A280) Konsentrasi (µg/µl)

Ayam 1 1,546 1670 Ayam 2 1,438 230 Ayam 3 0,965 5640 Ayam 4 1,741 1010 Puyuh 1 1,417 340 Puyuh 2 1,417 170 Puyuh 3 1,391 320 Puyuh 4 1,100 110 Itik 1 1,100 110 Itik 2 1,200 60 Itik 3 1,433 2020 Itik 4 1,611 580 Merpati 1 1,571 110 Merpati 2 1,667 100 Merpati 3 1,429 100 Merpati 4 1,500 150 Rataan 1,408 795

Konsentrasi DNA yang digunakan dalam penelitian ini yaitu 50 μg/ml, adapun untuk sampel yang memiliki konsentrasi DNA di atas 50 μg/ml dilakukan pengenceran dengan menambahkan air destilata. Penggunaan sampel dengan konsentrasi DNA yang sama dilakukan agar keberhasilan amplifikasi seragam. Tabel 3 menunjukkan konsentrasi DNA darah hasil ekstraksi memiliki nilai yang bervariasi antara 60 sampai 5640 μg/ml. Hal ini disebabkan sampel darah yang diekstraksi berasal dari sumber yang berbeda sehingga memiliki pengotor DNA yang berbeda.

22 Adanya bahan pengotor pada sumber DNA akan mempengaruhi konsentrasi DNA yang diperoleh.

Hasil rasio absorbansi pada panjang gelombang 260/280 nm menunjukkan tingkat kemurnian dari DNA. Tabel 3 menunjukkan bahwa rata-rata kemurnian DNA darah sebesar 1,408 yang berarti DNA yang dihasilkan tidak terlalu murni. Sambrook et al. (1989) menjelaskan DNA dapat dikatakan murni apabila rasio absorbansi pada panjang gelombang 260/280 nm dalam kisaran 1,8 – 2,0. Hal ini disebabkan oleh adanya pengotor yang terdapat pada darah seperti protein sehingga menjadi sumber kontaminan pada DNA. Selain itu enzim proteinase tidak bekerja secara optimal saat proses ekstraksi DNA darah yang dilakukan dengan metode konvensional. Sambrook et al, (1989) menjelaskan bahwa rasio A260/A280 akan semakin besar atau kecil dari

nilai 1,8-2,0 jika ditemukan kontaminasi dari protein atau fenol. Secara umum DNA darah hasil ekstraksi dapat digunakan untuk proses amplifikasi.

Bulu burung merupakan suatu modifikasi dari jaringan kulit yang menanduk. Bulu dapat dijadikan sebagai alternatif sebagai sumber DNA. Hasil kemurnian dan konsentrasi DNA bulu disajikan pada Tabel 4.

Tabel 4. Nilai Kemurnian dan Konsentrasi DNA Bulu

Sumber DNA Kemurnian (A260/A280) Konsentrasi (µg/µl)

Beo nias 1,429 200

Kakatua molukan 1 1,273 280

Kakatua molukan 2 1,643 230

Kakatua kecil jambul kuning 1 1,250 200

Kakatua kecil jambul kuning 2 1,400 210

Rataan 1,399 224

Nilai konsentrasi DNA bulu hasil ekstraksi memiliki hasil yang seragam dengan kisaran antara 200 sampai 280 μg/ml (Tabel 4). Hal ini disebabkan oleh metode ekstraksi pada bulu dilakukan dengan menggunakan kit ekstraksi. Hasil rasio absorbansi pada panjang gelombang 260/280 nm menunjukkan tingkat kemurnian dari DNA. Rata-rata kemurnian DNA bulu yaitu 1,399 yang berarti DNA yang dihasilkan berada dibawah kisaran DNA murni yaitu 1,8 – 2,0. Hal ini karena bulu banyak mengandung protein (keratin) yang dapat menjadi pengotor DNA maupun penghambat (inhibitor) saat ekstraksi (Schill, 2007).

23 Pengujian kualitas DNA dengan menggunakan gel ditentukan oleh intensitas cahaya dari pita DNA pada media gel. Penilaian kualitas DNA dilakukan dengan elektroforesis pada gel agarose 1,5% dengan tegangan 100 volt selama 45 menit. Hasil uji kualitas DNA pada gel agarose 1% disajikan pada Gambar 5.

Darah Bulu M

Gambar 5. Elektroforesis DNA Hasil Ekstraksi pada Gel Agarose 1,5%

Pita DNA darah lebih terang daripada pita DNA bulu pada gel agarose 1,5% (Gambar 5). Hal ini disebabkan oleh konsentrasi DNA darah yang lebih tinggi dibandingkan konsentrasi DNA bulu. Hasil ekstraksi darah pada gambar terlihat ada bagian smear. Smear merupakan bagian DNA yang terdegradasi sehingga menghasilkan DNA dalam berbagai ukuran. Sampel DNA yang berkualitas baik, tidak mengandung DNA yang terdegradasi. Tebalnya smear yang terlihat pada gambar dapat disebabkan oleh kurangnya TE (Tris-EDTA) ketika melarutkan sampel DNA.

Amplifikasi Gen Chromo Helicase DNA Binding (CHD)

Penelitian ini menggunakan gen Chromo Helicase DNA Binding (CHD) untuk mengidentifikasi jenis kelamin pada Aves dengan metode Polymerase Chain Reaction (PCR). Primer spesifik yang digunakan pada penelitian ini yaitu primer P2 dan P8 karena primer ini yang paling sering digunakan untuk identifikasi jenis

24 kelamin pada Aves. Griffith et al. (1998) membuktikan bahwa primer P2 dan P8 ini berhasil mengamplifikasi 27 jenis dari 28 spesies burung yang diteliti.

Amplifikasi gen Chromo Helicase DNA Binding (CHD) dilakukan pada mesin thermal cycler dengan suhu annealing 60 ºC. Penentuan jenis kelamin dengan primer P2 dan P8 dilakukan dengan melihat jumlah pita hasil elektroforesis. Jantan memiliki satu pita dan betina memiliki dua pita. Hal ini karena Aves memiliki kromosom sex yang berbeda dengan mamalia. Sifat heterogametik pada burung dimiliki oleh betina (ZW) sedangkan jantan merupakan homogametik (ZZ) (Ellergren, 1996). Gen CHD (Chromo Helicase DNA binding) dapat menunjukkan perbedaan antara alel Z dan W pada betina (Griffiths et al,. 1996). Perbedaan ini terjadi karena adanya keterpautan (linkage) antara posisi gen CHD dengan kromosom kelamin pada Aves (kromosom Z dan W) (Griffith dan Korn, 1997).

Sebanyak 21 sampel Aves telah berhasil diamplifikasi dengan menggunakan primer P2 dan P8. Hasil amplifikasi gen CHD menggunakan primer P2 dan P8 disajikan pada Gambar 6.

Gambar 6. Hasil Amplifikasi Gen CHD Menggunakan Primer P2 dan P8 pada Ayam Kampung (A), Puyuh (B), Itik (C), Merpati (D), Beo Nias (E), Kakatua Molukan (F) dan Kakatua Kecil Jambul Kuning (G) dengan Elektroforesis Gel Agarose 2%.

Gambar 6 menunjukkan bahwa pola pita pada ayam, puyuh dan itik tidak berbeda antara jantan dan betina yaitu sama-sama memiliki pita tunggal pada gel agarose 2%. Berbeda halnya pada merpati, beo nias, kakatua molukan dan kakatua kecil jambul kuning yang memiliki pola pita berbeda antara jantan dan betina pada

25 gel agarose 2%. Penelitian ini menggunakan sembilan spesies Aves yang berbeda sehingga setiap spesies memiliki ukuran fragmen yang berbeda pula karena memiliki urutan basa yang berbeda. Panjang produk hasil amplifikasi gen CHD pada penelitian ini dengan menggunakan primer P2 dan P8 berkisar antara 300-400 bp. Hal ini sesuai dengan Griffiths et al. (1998) yang menemukan panjang produk hasil amplifikasi gen CHD menggunakan primer P2 dan P8 dengan kisaran yang sama. Fridolfsson & Ellergen (1999) dan Jensen et al. (2003) menjelaskan bahwa perbedaan ukuran antara fragmen spesifik Z dan W pada primer P2 dan P8 sekitar 10-80 bp.

Hasil amplifikasi gen CHD pada ayam kampung (Gallus gallus domesticus) tidak menunjukkan pola pita yang berbeda antara jantan dan betina pada gel agarose 2% (Gambar 6). Sekuen gen CHD yang ditemukan dari genBank berasal dari ayam hutan (Gallus gallus) memiliki panjang fragmen spesifik Z dan W yaitu 345 bp dan 362 bp yang diketahui dari sekuen gen CHD-Z (GenBank Nomor Akses AF006659) dan CHD-W (GenBank Nomor Akses AF006660) sehingga memiliki perbedaan fragmen Z dan W sebesar 17 bp (Gambar 7). Sekuen gen ini dapat dijadikan sebagai acuan untuk ayam kampung dengan perbedaan fragmen yang tidak jauh berbeda dengan ayam hutan (Gallus gallus).

Hasil amplifikasi gen CHD pada puyuh yang tidak menunjukkan pola pita yang berbeda antara jantan dan betina (Gambar 6). Hal ini disebabkan oleh perbedaan ukuran pita Z dan W yang tipis yang mengakibatkan pita Z dan W berimpit. Hal ini terbukti dengan panjang fragmen spesifik Z dan W adalah 385 dan 379 dari sekuen gen CHD-Z (GenBank Nomor Akses HQ175997) dan CHD-W (GenBank Nomor Akses HQ175998) (Gambar 7). Perbedaan ukuran fragmen hanya 6 bp yang mengakibatkan pita Z dan W tidak terpisah pada gel agarose 2%. Morinha et al. (2011) menyebutkan dalam penelitiannya bahwa primer P2 dan P8 tidak berhasil membentuk pola pita yang berbeda antara jantan dan betina di gel agarosa, namun mendapat hasil yang berbeda dengan menggunakan resolusi gel yang sangat tinggi yaitu PCR-SSCP pada Coturnix c. japonica.

Hasil amplifikasi gen CHD pada itik tidak menunjukkan pola pita yang berbeda antara jantan dan betina (Gambar 6). Hal ini diduga bahwa perbedaan ukuran pita Z dan W yang relatif sedikit sehingga tidak dapat dipisahkan pada media

26 gel agarose 2%. Informasi mengenai sekuen gen CHD-Z dan CHD-W pada itik belum ditemukan sehingga perbedaan ukuran fragmen spesifik Z dan W belum dapat diketahui.

Gambar 7. Sekuen Gen CHD-Z dan CHD-W pada Merpati (Cl), Puyuh (Ccj), Ayam (Gg) dan Posisi Primer (warna kuning) (gen bank code ; GU289183, GU289184, HQ175997, HQ175998, AF006659, dan AF006660)

forward (P8) Cl_CHD-Z : CTCCCAAGGATGAGGAACTGTGCAAAACAGGTGTGTCTTGGTTCTGATTGACTTGTGCTTTTGTGTTGCT Cl_CHD-W : CTCCCAAGGATGAGGAACTGTGCAAAACAGGTATCTCTGGGTTTTGACCAACTAACTTCTTGTTGTTGTG Ccj_CHD-Z : CTCCCAAGGATGAGGAACTGTGCAAAACAGGTACCTCTGGGTTTTGACTGTATTGTGTTTTTATTTTGAT Ccj_CHD-W : CTCCCAAGGATGAGGAACTGTGCAAAACAGGTATCGTTGGGTTTTGACTGATTTTTTTTCTTTGATACTT Gg_CHD-Z : CTCCCGAGGATGAGAAACTGTGCAAAACAGGTACCTCTGGGTTTTGACTGTCTTGCGTCTTTATGTTGAT Gg_CHD-W : CTTCCAAGAATGAGAAACTGTGCAAAACAGGTATCTCTGGGTTCTGACTGATTTTTTTCTTTGATACTTC

Cl_CHD-Z : GTTGGTTTAGTTTGTTGGGGATTGTTGTTGGGTTTTGTTTTTTTAGGGTTTTTTCCGTTTTCTGAACACG Cl_CHD-W : TTTCTTTGTTTTTTCATTACTGTTGTTTTTGGCTTGTACTTTTCACCCCCCATTTTTGACAGGCTAGATA Ccj_CHD-Z : ATTTTGATTTTGGTTTTTGCCTTCGTGTTTTGTTTTGTTTTGTTTTTTGTTTGTTTTTTGGTTTTTTTCT Ccj_CHD-W : CCATTGCTGATGTTTTGGCTTGTACTTTTGTGTTGCGTGGTTTTCATCTGTTTTCCCCCCCAAATATTTT Gg_CHD-Z : ATTTTCATTTGAGTTTTTGCCTTTTTTCCCCCTTCTCTGAATTCATATTTTTGTCAGGCTAGATAAGACT Gg_CHD-W : TATTGCTGATGTTTTGACTTGTACTTTTGTGTTGTGTGGTTTTCGTGTGTTTTTCCCCCAAAATATTTTT Cl_CHD-Z : TATTTTTGACAGGTTAGGCAAAACTTGACCTGTGTTTGTCAATCGCATAGCTTTGAACTACTTATTCTGA Cl-CHD-W : GCACATTATTAAAATGTTTTAGTCACATAGCTTTGAACTACTTAATCTGAAATTCCAGATCAGCTTTAAT Ccj_CHD-Z : CCTTCTCTGAATTCATATTTTTGTCAGGCTAGATAAGACTTTACTGTGTGTGAGTAAATCATGTAGTTTT Ccj_CHD-W : TAATGGACAACATTAAAACACGTGACTTAAACAACACATAAGTTGTTTTAGTCACGTAGCTTTGAACTAG Gg_CHD-Z : TTACTATGTTTGAGATAATCATGTGGTTTTGAATTCTCATGCTGAAATTCCAGATCAGCTTTAATGGGAG Gg_CHD-W : ATGGACTAGGTAACACATAAATAAAATGTTTTAGTCATGTAGCTTTGAACTAGTTACTCTGAAATTCCAG Cl_CHD-Z : AATTCCAGATCAGCTTTAATGGAAGTGAAGGAAGGCGCAGTAGGAGCAGAAGATACTCTGGATCTGATAG Cl_CHD-W : GGAAGTGAAGGGAAATGCAGTAGAAGCAGAAGATATTCTGGATCTGATAGTGACTCCATGTCAGAAAGAA Ccj_CHD-Z : GAATTCTTATTCTGAAATTCCAGATCAGCTTTAATGGAAGTGAAGGAAGACGTAGTAGGAGCAGAAGATA Ccj_CHD-W : TTACTCTGAACTTCCAGATCAGCTTTAATGGAAAGGAAGGGAGATGCAGTAGGATCAGAAGATATTCTGA Gg_CHD-Z : TGAAGGAAGACGCAGTAGGAGCAGAAGATATTCTGGATCTGATAGTGACTCCATCACAGAAAGAAAACGG Gg_CHD-W : ATCAGCTTTAATGGAAATGAAGGGAGATGCAGTAGGAGCAGAAGATATTCTGGATCTGATAGTGATTCCA Cl_CHD-Z : TGACTCCATATCAGAAAGAAAACGGCCAAAAAAACGTGGAAGACCA Cl_CHD-W : AACGACCAAAAAAACGTGGACGACCACGAACTATTCCTCGAGAAAA Ccj_CHD-Z : TTCCGGATCTGATAGTGACTCCATCACAGAAAGAAAACGGCCAAAA Ccj_CHD-W : ATCTGATAGTGATTCCATCTCAGAAAGAAAACGACCAAAAAAACGT Gg_CHD-Z : CCAAAAAAGCGTGGAAGACCTCGAACCATTCCTCGAGAAAATATTA Gg_CHD-W : TCTCAGAAAGAAAACGACCAAAAAAACGTGGACGACCACGAACTAT Cl_CHD-Z : CGAACCATTCCTCGAGAAAATATTAAAGGATTTAGCGATGCAGA (370) Cl_CHD-W : TATTAAAGGATTTAGCGATGCAGA (350) Ccj_CHD-Z : AAGCGTGGGAGACCTCGAACTATTCCTCGAGAAAATATTAAAGGATTTAGCGATGCAGA (385) Ccj_CHD-W : GGACGACCACGAACTATTCCCCGTGAAAACATTAAAGGATTTAGCGATGCAGA (379) Gg_CHD-Z : AAGGATTTAGTGATTGCAGA (345) Gg_CHD-W : TCCCCGTGAAAACAATTAAAGGATTTAGTGATGCAGA (362) reverse (P2)

27 Hasil amplifikasi gen CHD menunjukkan pola pita yang berbeda antara jantan dan betina pada merpati (Gambar 6). Hal ini dibuktikan dengan ukuran fragmen pita Z dan W yaitu 350 bp (GenBank Nomor Akses GU289184) dan 370 bp (GenBank Nomor Akses GU289183) sehingga memiliki perbedaan ukuran fragmen sebesar 20 bp (Gambar 7). Perbedaan 20 bp dapat membentuk pola pita yang terpisah antara jantan dan betina.

Hasil amplifikasi gen CHD pada beo nias, kakatua molukan dan kakatua kecil jambul kuning menunjukkan terdapat perbedaan pola pita antara jantan dan betina (Gambar 6). Hal ini diduga bahwa perbedaan ukuran fragmen pita Z dan W relatif besar sehingga dapat terpisah pada media gel agarose 2%. Belum adanya informasi mengenai sekuen gen CHD-Z dan CHD-W dari spesies-spesies tersebut menyebabkan perbedaan ukuran pita Z dan W belum dapat diketahui. Sekuen gen CHD-Z pada merpati (Columba livia), puyuh (Coturnix coturnix japonica) dan ayam (Gallus gallus) ditampilkan pada Gambar 7.

Implementasi Penentuan Jenis Kelamin secara Molekuler dalam Pengembangan Riset dan Studi Keilmuan

Hasil yang didapatkan dalam penelitian ini menunjukkan bahwa primer spesifik P2 dan P8 dapat mengidentifikasi jenis kelamin pada merpati, kakatua kecil jambul kuning, kakatua molukan dan beo Nias. Namun primer spesifik P2 dan P8 belum bisa mengidentifikasi jenis kelamin pada ayam, puyuh dan itik.

Identifikasi jenis kelamin sangat penting dilakukan untuk memperbaiki manajemen dalam budidaya ternak. Ayam dan itik telah dapat diketahui jenis kelaminnya sejak masih anakan, namun pada puyuh sulit dilakukan sehingga saat ini anakan puyuh masih dijual dipasaran secara unsex. Saat ini para peternak telah mengetahui cara menentukan jenis kelamin pada ayam, puyuh maupun itik baik secara fenotipik maupun vent sexing yang berdasarkan kloaka. Identifikasi jenis kelamin secara molekuler pada ayam, puyuh dan itik dalam penelitian ini dilakukan sebagai acuan lebih lanjut dalam studi molekuler.

Saat ini populasi burung endemik Indonesia mengalami penurunan drastis akibat permintaan konsumen yang luar biasa. Selain itu burung endemik Indonesia memiliki nilai jual yang tinggi. Soehartono & Mardiastuti (2002) menjelaskan bahwa semua burung paruh bengkok Indonesia terdaftar dalam Appendix CITES yaitu

28 Appendix I (terancam punah) sebanyak 4 spesies dan Appendix II (genting) sebanyak 73 spesies. Salah satu spesies yang termasuk dalam Appendix I yaitu kakatua molucan (Cacatua moluccensis) dan kakatua kecil jambul kuning (Cacatua shulpurea) termasuk dalam Appendix II.

Upaya yang dapat dilakukan untuk meningkatkan populasi burung endemik Indonesia yaitu pengembangbiakan, salah satunya penangkaran. Penangkaran burung endemik masih belum berkembang di Indonesia. Hal ini karena para penangkar masih sulit untuk menentukan jenis kelamin. Identifikasi jenis kelamin merupakan hal yang utama dalam pengembangbiakan burung endemik Indonesia karena sebagian besar burung termasuk jenis yang monomorfik. Identifikasi jenis kelamin ini dapat bermanfaat untuk memperbaiki manajemen penangkaran, seperti pemasangan ring pada anakan, menyatukan anakan jantan dan betina pada satu

Dokumen terkait