• Tidak ada hasil yang ditemukan

vi DAFTAR LAMPIRAN

1.3 Ruang Lingkup

Ruang lingkup penelitian ini adalah sebagai berikut :

1. Netralisasi MESA (Metil Ester Sulfonat Acid) off grade dengan larutan NaOH, sehingga mencapai pH 7-8 agar dapat digunakan sebagai agen pembersih.

2. Uji sifat fisko kimia MESA off grade sebagai agen pembersih meliputi uji visikositas, dan bobot jenis (densitas).

3. Uji kinerja surfaktan MESA off grade sebagai agen pembersih meliputi stabilitas emulsi, tegangan permukaan, daya pembusaan, stabilitas busa dan daya deterjensi.

3

II.

TINJAUAN PUSTAKA

2.1

Surfaktan

Surface active agent (surfactant) merupakan senyawa aktif penurun tegangan permukaan (surface active agent) yang bersifat ampifatik, yaitu senyawa yang mempunyai gugus hidrofobik dan hidrofilik, serta molekul yang cenderung terpartisi pada antar permukaan fasa cairan yang berbeda tingkat kepolaran dan ikatan hidrogennya (Cooper dan Zajic, 1980; Desai dan Banat, 1997; Suryani et. al., 2000). Gugus hidrofobik terdiri dari rantai asam lemak yang panjang, sedangkan gugus hidrofilik terdiri dari karbohidrat, asam amino, peptida siklik, fosfat, dan asam karboksil alkohol (Kosaric, 1993).

Molekul surfaktan dapat divisualisasikan seperti berudu atau bola raket mini yang terdiri atas bagian kepala dan ekor (Gambar 1). Bagian kepala yang bersifat hidrofilik (suka air) merupakan bagian yang sangat polar, sedangkan bagian ekor bersifat hidrofobik (benci air) merupakan bagian nonpolar. Gugus polar dapat bermuatan negatif, positif, ataupun tidak bermuatan (nonionik) dan memiliki afinitas yang tinggi terhadap pelarut polar. Gugus nonpolar pada surfaktan terdiri atas rantai hidrokarbon, linear ataupun bercabang, serta mengandung lebih dari delapan atom karbon serta memiliki afinitas yang rendah terhadap pelarut polar (Schueller dan Romanousky, 1996; Gervasio, 1996; Tadros, 1992). Swern (1979), menyatakan bahwa kemampuan surfaktan untuk meningkatkan kestabilan emulsi tergantung dari kontribusi gugus polar (hidrofilik) dan gugus nonpolar (lipofilik).

Hidrofobik Hidrofilik

Gambar 1. Ilustrasi model surfaktan (Moroi, 1992)

Berdasarkan gugus hidrofiliknya, surfaktan dibagi menjadi empat kelompok yaitu surfaktan kationik, amforterik, nonionik, dan anionik (Reiger, 1985; Rosen, 2004). Surfaktan kationik merupakan surfaktan yang memiliki muatan positif pada gugus antar muka hidrofobik (hydrophobic surface active). Sifat hidrofilik umumnya disebabkan karena keberadaan garam ammonium, seperti

Quaternary Ammonium Salt (QUAT). Surfaktan ini biasanya digunakan sebagai bahan untuk

deodorant, pelembut pakaian, penyegar mulut, lotion, shampo dan lainnya.

Surfaktan amforterik, seperti alkilbetain, alkildimetilamin dan turunan imidazolinium, memiliki fungsi asam dan basa yang muatannya bergantung pada pH, sehingga bersifat kationik pada pH rendah. Menurut Matheson (1996), muatan surfaktan amforterik bergantung pada pH, pada pH rendah surfaktan akan bermuatan positif, sedangkan surfaktan akan bermuatan negatif pada pH tinggi. Surfaktan ini juga memiliki sifat iritasi yang rendah dan mampu menurunkan sifat iritasi dari surfaktan anionik. Surfaktan jenis amforterik ini masih terbatas penggunaannya dikarenakan harganya yang mahal, sehingga surfaktan jenis ini kalah bersaing dengan surfaktan jenis lain.

Surfaktan nonionik merupakan surfaktan yang tidak bermuatan atau tidak terjadi ionisasi pada molekulnya. Beberapa surfaktan jenis ini dapat digunakan pada berbagai nilai pH dan toleran pada konsentrasi elektrolit. Surfaktan ini dibagi menjadi dua kelompok, yaitu jenis ester asam lemak

4

pada polihidrik alkohol (gliseril stearat, propilen glikol ester, sorbitan ester dan gula ester) dan turunan polialkoksilat (Reiger, 1985).

Surfaktan anionik adalah bahan aktif permukaan yang pada bagian hidrofobiknya berhubungan dengan gugus anion (ion negatif). Surfaktan ini memiliki gugus ionik yang biasanya berupa golongan sulfat dan sulfonat, sehingga memiliki karakteristik hidrofilik, dengan kation yang biasanya digunakan Na+, NH4+, dan triethanolamonium. Sebagian besar surfaktan jenis ini digunakan sebagai emulsifier, pembersih dan pembentuk busa sabun. Menurut Matheson (1996), kelompok surfaktan ini merupakan kelompok surfaktan terbesar yang diproduksi. Data jumlah konsumsi surfaktan dunia menunjukkan bahwa surfaktan anionik merupakan surfaktan yang paling banyak digunakan yaitu sebesar 50%, kemudian disusul non-ionik 45%, kationik 4%, dan amfoterik 1% (Watkins, 2001).

Dalam media cair, molekul surfaktan anionik terdisosiasi menjadi gugus kation yang bermuatan postif dan gugus anion yang bermuatan negatif. Gugus anion merupakan pembawa sifat aktif permukaan pada surfaktan anionik. Contoh khas surfaktan anionik adalah alkohol sulfat dan ester sulfonat, selain itu surfaktan Metil Ester Sulfonat (MES) termasuk ke dalam golongan surfaktan anionik.

Setiap tahunnya jutaan ton surfaktan digunakan untuk beragam aplikasi yang berbeda (Flider, 2001). Menurut Hui (1996), surfaktan digunakan untuk pencucian dan pembersihan (washing and cleaning), serta untuk pertambangan, cat dan pelapis, kertas, tekstil, bahan pembusaan dan

emulsifier pada industri kosmetik dan farmasi, industri cat, serta sanitasi pada industri pangan. Surfaktan sebagai bahan aktif dalam deterjen memiliki fungsi tertentu dalam proses pencucian. Surfaktan berfungsi untuk menurunkan tegangan permukaan, berperan dalam peristiwa adsoprsi, pembentukan micelle dan deterjensi.

1. Penurunan Tegangan Permukaan

Surfaktan mampu menurunkan tegangan permukaan diantara dua fasa. Sifat kepolaran yang berbeda diantara kedua fasa mengakibatkannya tidak dapat saling terlarut, dengan adanuya molekul surfaktan yang memiliki kecenderungan terhadap kedua fasa tersebut keduanya dapat saling bercampur. Molekul-molekul cairan yang ada dipermukaan mengalami resultan gaya ke arah dalam badan cairan. Hal ini mengakibatkan molekul-molekul tersebut cenderung menekan atau berdesakan ke dalam (menghindari permukaan, dimana molekul-molekul di dalam cairan mengalami resultan gaya yang seimbang. adanya kecenderungan ke dalam badan cairan menghasilkan gaya, besar daya yang diperlukan untuk memecah permukaan cairan sehingga terbentuk satu luasan baru pada permukaan disebut dengan tegangan permukaan (Hargreaves, 2003).

Molekul-molekul non polar tidak mampu menyeimbangkan gaya molekul pada permukaan cairan polar sehingga terdapat batas antara cairan polar dan non polar. Pada gugus polarnya surfaktan menyeimbangkan gaya molekul permukaan cairan dan rantai nonpolarnya mengarah pada molekul-molekul hidrofobik.Setiap molekul dalam cairan mengalami gaya dalam tiga dimensi (arah) dari molekul tetangga. Molekul yang berada di permukaan cairan mengalami defisiensi di posisi atas, tetapi kuat di tiga arah gaya lainnya. Gambar 2 menyajikan interaksi antar molekul air pada permukaan yang menyebabkan terjadinya tegangan permukaan.

5

Gambar 2. Ilustrasi molekul air pada permukaan (Hargreaves, 2003)

Penurunan tegangan permukaan dapat dijadikan sebagai salah satu faktor penentu banyaknya konsnetrasi surfaktan yang terdapat dalam suatau cairan. Apabila surfaktan ditambahkan ke suatu cairan pada konsentrasi rendah, maka dapat menurunkan tegangan permukaan cairan tersebut. Jika surfaktan dalam konsentrasi 0.1% ditambahkan ke dalam suatu cairan, maka akan menurunkan tegangan permukaan air dari 72 menjadi 32 mN m-1 (dyne cm-1). Hal ini terjadi karena molekul-molekul dalam sebagian besar cairan saling tertarik satu sama lain oleh gaya van der Walls yang menggantikan ikatan hidrogen air (Hargreaves, 2003).

2. Adsorpsi

Surfaktan memiliki gugus hidrofilik dan hidrofobik, sehingga akan berdifusi dan teradsorpsi pada antar muka air dan udara atau pada antar muka air dan minyak. Ketika molekul surfaktan berada di dalam air, gugus hidrofilik surfaktan ditarik menuju molekul air (molekul polar ditarik molekul polar yang lain), sedangkan molekul lipofilik surfaktan berada pada permukaan cairan. Efek molekul surfaktan pada permukaan dikenal sebagai adsorpsi, yang berakibat terhadap penurunan tegangan permukaan (Hargreaves, 2003).

Adsorbsi surfaktan mempunyai perananan penting pada aplikasi agen pembersih seperti pada proses pembusaan dan emulsifikasi. Hal ini tergantung dari kefektifitasan difusi surfaktan. Proses adsorbsi dipengaruhi oleh elastisitas dan viskositas dari surfaktan untuk kestabilan dari busa dan emulsi yang dihasilkan.

3. Pembentukan Micelle

Pada konsentrasi yang cukup tinggi, gugus lipofilik surfaktan akan beragregat membentuk sebuah struktur melingkar yang disebut micelle, dimana ekor lipofilik berada pada pusat agregatdan kepala hidrofilik akan kontak dengan air, sehingga berorientasi keluar micelle. Struktur ini didorong oleh adanya gaya van der Walls yang terjadi sepanjang ekor lipofilik dan gaya tolak ionik dari gugus hidrofilik. Ilustrasi pembentukan micelle dapat dilihat pada Gambar 3.

Gambar 3. Ilustrasi pembentukan micelle (Hargreaves, 2003)

Molekul air dipermukaan ditarik oleh molekul air lain

6

Gambar 4 menjelaskan tentang pengaruh konsentrasi surfaktan yang disebut dengan critical micelle concentration (CMC). Pada konsentrasi surfaktan dibawah CMC, tegangan permukaan dan antar muka turun dengan meningkatnya konsentrasi, namun pada saat konsentrasi mencapai taraf CMC atau lebih tinggi dari itu, tidak terjadi penurunan tegangan permukaan dan antar muka atau penurunannya sangat rendah (Schueller dan Romanousky, 1998).

Gambar 4. Grafik Hubungan antara Konsentrasi Surfaktan dengan Tegangan Permukaan dan Antarmuka Cairan (Tadros, 1992) 4. Deterjensi

Deterjensi merupakan proses penghilangan kotoran dari suatu permukaan (Anonima, 2009). Faktor yang mempengaruhi deterjensi, antara lain sifat alamiah kotoran, substrat atau permukaan dimana kotoran menempel, proses yang dilibatkan dalam penghilangan kotoran, jenis air yang digunakan dan suhu. Proses pencucian yang efektif dipengaruhi oleh kondisi selama proses penghilangan kotoran, antara lain netralisasi komponen-komponen kotoran yang bersifat asam, emulsifikasi minyak dan lemak, deflokulasi partikel kotoran, pengendapan kotoran dan pencegahan proses redeposisi (Anonima, 2009).

Bagaimana deterjen bekerja merupakan kajian yang kompleks karena melibatkan banyak fungsi bahan yang berbeda, variasi substrat dan campuran berbagai jenis pengotor (soiling). Efektifitas dalam menurunkan tegangan antarmuka antara air, partikel pengotor (soil) dan subtrat (permukaan bahan yang dicuci) merupakan faktor penting agar proses wetting dapat berlangsung dengan baik (Hargreaves, 2003).

Molekul yang diadsorpsi pada tegangan antarmuka air-udara tidak secara langsung berpengaruh terhadap deterjensi, tetapi membentuk busa yang berperan sebagai indikator yang menunjukkan telah terjadi proses pembersihan. Surfaktan dengan konsentrasi tinggi (nilai CMC yang tinggi) akan efektif dalam proses deterjensi (Hargreaves, 2003). Proses penghilangan kotoran minyak oleh surfaktan dapat dilihat pada Gambar 5.

Gambar 5 mengilustrasikan oily soil dihilangkan dari substrat (permukaan bahan yang dicuci) yang melibatkan surfaktan di dalam air. Pada gambar, ekor lipofilik ditarik menuju oily soil dan teradsorpsi ke dalamnya dengan kepala hidrofilik mengarah ke luar menuju air. Oily soil

terdispersi ke dalam air dengan cara yang hampir sama dengan formasi emulsi oil-in-water

(O/W). Secara simultan, molekul surfaktan teradsorbsi menuju permukaan subtrat dengan gugus hidrofilik mengarah ke air, mencegah oily soil teredeposisi kembali. Ketika konsentrasi surfaktan dalam jumlah tinggi membentuk misela, sebagian oily soil dapat dihilangkan dengan cara solubilisasi membentuk busa mikro-emulsi (Hargreaves, 2003).

7

Gambar 5. Mekanisme pembersihan oleh surfaktan (Hargreaves, 2003).

Dokumen terkait