5 SIMPULAN DAN SARAN
5.2 Saran
Penelitian yang dilakukan dengan menggunakan model ELCOM-CAEDYM memerlukan banyak parameter yang berhubungan dengan sifat kimia nutrien, fitoplankton dan zooplankton, bakteri, serta parameter tingkat trofik yang lebih tinggi, akan tetapi nilai-nilai parameter tersebut sangat sulit diperoleh untuk daerah tropis pada umumnya dan Teluk Lampung pada khususnya. Penelitian tentang nilai-nilai parameter tersebut perlu dilakukan secara insitu maupun eksperimen laboratorium untuk mendapatkan gambaran sifat dan karakteristik yang sesuai, sehingga dapat digunakan pada penelitian selanjutnya, baik secara insitu atau dengan pemodelan.
Peran zooplankton dalam dinamika nutrien menunjukan adanya pengaruh musiman yang berkaitan dengan pola produksi fitoplankton. Hubungan antara fitoplankton dengan nutrien menunjukkan pola hubungan yang eksponensial. Untuk mendapatkan gambaran hubungan antara nutrien, fitoplankton dan zooplankton perlu dilakukan penelitian secara spasial dan temporal yang lebih banyak dengan mempertimbangkan keseluruhan spesies yang ada. Untuk mengetahui pola hubungan antara nutrien, fitoplankton dan zooplankton perlu juga dilakukan penelitian sumber nutrien yang diasimilasi dengan menggunakan metode pelacakan radioaktif.
111
DAFTAR PUSTAKA
Alewell, C., and B. Manderscheid, 1998. Use of objective criteria for the assessment of biogeochemical ecosystem model. Ecol. Model. 107, 213 - 224.
Andersen, T and D. O. Hessen. 1992. Carbon, nitrogen and posphorus content of freshwater zooplankton. Limnol. Oceanogr.36:807-814.
Andersen, T., J. J. Elser and D. O. Hessen. 2004. Stoichiometry and population dynamics. Ecology Letters. 7: 884-900.
Archer, D., A. Winguth, D. Lea an N. Mahowald. 2000. What caused the
glacial/interglacial atmospheric pCO2 cycles?. Rev. Geophys. (38):159–189. Arnold, J. G and N. Fohrer. 2005. Current capabilities and research opportunities
in applied watershed modelling. Hydrol. Proc. 19: 563-572.
Arnold, J. G., R. Sinivasan, R. S. Muttiah and J. R. William.1998. Large area hydrologic modelling and assesment part I: model development. J. Am. Wat. Res.Asso. 34: 73-89.
Balseiro, E. G., B. E. Modenutti and C. P. Quueimalinos. 1997. Nutrient recycling and shift in N P ratio by different zooplankton structure in South Andes Lake. Journal of Plankton Research. Vol 19 No. 7: 805 – 817.
Baskoro, W. A. 2009. Kajian pengaruh pembangunan jetti terhadap muara sungai Way Kauripan Kota Bandar Lampung. Thesis Program Pasca Sarjana Teknik Sipil Universitas Diponegoro, Semarang.
Benitez-Nelson, C. 2000. The biogeochemical cycling of phosphorus in marine systems. Earth. Sci. Rev. (51):109–135.
Bergmann, T., G. Fahnenstiel, S. Lohrenz, D. Millie and O. Schofield. 2004. Impact of recurrent resuspension event and variable phytoplankton community composition on remote sensing reflectance. Journal of Geophysical Research-Ocean. 109: C10S15.
Bopp, L., P. Monfray, O. Aumont, J. L. Dufresne, H. L. Treut, G. Madec, L. Terray and J. C. Orr. 2001.Potential impact of climate change on marine export production. Global Biogeochem. Cy. (15):81–99.
Boyd, P. W. and S. C. Doney. 2002. Modeling regional responses by marine pelagic ecosystems to global climate change. Geophys Res. Lett. (29):1806, doi: 10.1029/2001GL014130.
Breteler, W. C. M. K and N. S. S. Rampen. 2005. Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar Ecol Prog Ser. Vol. 291: 125–133.
BPS. 2008. Lampung dalam angka 2007. Badan Pusat Statistik Propinsi Lampung. Bandar Lampung.
Bronk, D. A. 2002. Dynamics of DON. In: Hansell, D. A. and C. A. Carlson (eds.) Biogeochemistry of Marine Dissolved Organic Matter, Academic Press, London, pp. 153–247.
Bruce, L. C., D. Hamilton, J. Imberger, G. Gal, M. Gophen, T. Zohary, and K. D. Hambright. 2006. A numerical simulation of the role in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling. 193: 412-436.
Buhring, C. 2001. East asian monsoon variability on orbital and milenial to sub decadal time scale. Ph.D. Thessis.Christian-Albrechts Universitat zu Kiel. Capone, D. G. 2000. The marine microbial nitrogen cycle. Pp 455-494 in
Kirchman, D. L. (ed.). microbial ecology of the ocean, Willey-Liss, Inc.New York.
Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howart, A. N. Sharpley, V. H. Smith. 1998. Nonpoint pollution of surface water with phosphorous and nitrogen. Ecological Application. Vol. 8. No. 3: 559-568.
Carter, C. M., A. H. Ross, D. R. Schiel, C. Howard-Williams and B. Hayden. 2005. In situ microcosm experiments on the influence of nitrate and light on phytoplankton community composition. J. Exp. Mar. Biol. Ecol. (326):1–13. Cassulli, V and R. T. Cheng. 1992.Semi implicite finite difference method for
three dimensional shallow water flow. International Journal for Numerical Methods in Fluids. Vol 15: 629-648.
Cassuli, V and E. Cattani. 1994. Stability, accuracy and efficiency of a semi implicite method for three dimensional shallow water flow. Computers Math. applic. Vol 27: 4
Chapra, 1997. Surface water quality modelling. McGraw-Hill.Singapore. Chen, C., R. Ji. L. Zheng, M. Zhu and M. Rawson. 1999. Influences of Physical
processes on the ecosystem in Jiaozhou bay: A coupled physical and biological model experiment. Journal of Geophysical Research. Vol.104 No.C12:29,925 -29,949.
Cheng, R. T., V. Casulli and J. W. Gartner. 1993. Tidal, residual, intertidal mudflat (TRIM) model and its applications to San Fransisco Bay, California. Estuarine, Coastal and Shelf Science. 36:235 - 280 Copping , A. E and C. J. Lorenzen. 1980. Carbon Budget of a marine
phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25(5):873-882.
Cottingham, K. L and D. E. Schindler. 2000. Effect grazer community structure on phytoplankton respone to nutrient pulses. Ecology. Vol. 81. N0. 1: 183- 200.
Cottingham, K. L., S. Glaholt and A. C. Brown. 2004. Zooplankton community structure affect how phytoplankton respond to nutrient pulses. Ecology. Vol 85. No. 1: 158-171.
Damar, A. 2003. Effect of enrichment on nutrient dynamics, phytoplankton dynamics and productivity in Indonesian tropical watontoplankter: a comparison between Jakarta Bay, Lampung Bay and Semangka Bay. zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel.
Durbin, E. G and A. G. Durbin. 1992. Effect of temperature and food abundance on grazing and short-term weight change in the marine copepod Acartia hudsonica. Limnol. Oceanorgr. Vol 37 (2): 362-378.
DWAF. 1996. South African water quality guidelines. Vol.7: Aquatic ecosystem. Department of Water Affair and Forestry. South Africa.
Edwards, C. H., H. P. Batchelder and T. M. Powell. 2000. Modelling microzooplankton and macrozooplankton dynamic within a coastal upwelling system. Journal of Plankton research. Vol 22(9): 1619-1648.
Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann and R. W. Sterner. 2000. Nutritional constraints in terrestrial and freshwater foodweb. Nature 408: 578-580.
Elser, J.J, L. Gudex, M. Kyle, T. Ishikawa and J. Urabe. 2001. Effects of zooplankton on nutrient availability and seston C :N:P stoichiometry in inshore waters of Lake Biwa, Japan. Limnology 2:91–100.
Falkowski, P and J. A. Raven. 2007. Aquatic photosynthesis. Princton University Press.
Field, C. B., M. J. Behrenfeld, J. T. Randerson and P. Falkowski. 1998. Primary production of the biosphere: integrating terrestrial and oceanic component. Science 281: 237-240.
Fasham, M. J. R, H. W. Ducklow and S. M. McKelvie. 1990. Nitrogen based model of plankton dynamic in the oceanic mixed layer. Journal of Marine Research. 48:591-639.
Fennel, K., M. R. Abbott, Y. H. Spitz, J. G. Richman, and D. M. Nelson. 2003. Modeling controls of phytoplankton production in the southwest Pacific sector ofthe Southern Ocean. Deep Sea Research. Vol II (50):769-798. Govindjee and B. Z. Braun. 1974. Light absorption, emmision and photosynthesis
in W. D. P. Stewart (ed.). Fitoplanktonl physiology and biochemistry. Blackwell Scientific Publication. Oxford. pp. 346-390.
Graham, L. E and L. W. Wilcox. 2000. Algae. Prentice Hall. Upper Saddle River. Granéli, E and J. T. Turner. 2001. Top-down regulation in ctenophore-copepod-
ciliate-diatome-phytoflagellate communities in coastal waters: a mesocosm study. Mar. Ecol. Prog. Ser. Vol 239: 57-68.
Gregoire, M and J. M. Becker. 2004. modelling the nitrogen fluxes in the Black Sea using a 3D coupled hydrodynamical-biogeochemical model, transport versus biogeochemical processes, exchange across the shelf break and comparison of the shelf and deep sea ecodynamic. Biogeoscience Discussion. (1): 107-166.
Griffin, S. L., M. Herzfeld, D. P. Hamilton. 2001. Modelling the impact of zooplankton grazing on phytoplankton biomass during a dinoflagellate bloom in the Swan River estuari Western Australia. Ecological Engineering. (16): 373 – 394.
Hang, N. T. M., N. C. Don, H. Araki, H. Yamanishi, and K. Koga. 2009. Applications of a new ecosystem model to study the dynamics of
phytoplankton and nutrients in the Ariake Sea, west coast of Kyushu, Japan. Journal of Marine Ecosystem. (75):1-16.
Hays, G. C., A. J. Richardson and C. Robinson. 2005. Climate change and marine plankton. Trends. Ecol. Evol. (20):337–344.
Heinze, C., E. Maier-Reimer and K. Winn K. 1991. Glacial pCO2 reduction by the World Ocean: experiments with the Hamburg carbon cycle model. Paleoceanography. (6):395–430.
Helfinalis. 2000. Pendugaan karakteristik arus pasang surut dan pola sebaran sedimentasi di perairan Teluk Lampung. Pesisir Pantai Indonesia. P3O-LIPI. Jakarta.
Hendiarti, N., H. Siegel and T. Ohde. 2002. Distiction of different water masses in around The Sunda Strait: satelite observation and in situ measurement. Proceeding Vol II. Pan Ocean Remote Sensing Conference (PORSEC): Remote Sensing and Ocean Science for Marine Resources Eploration and Environment, Bali, Indonesia. Pp. 681-686.
Hessen, D. O., P. J. Faerovig and T. Andersen. 2002. Light, nutrient and P:C ratio in algae: grazer performance related to food quality and quantity. Ecology 83: 1886-1898.
Hipsey, M.R., J.P.Antenucci and D. Hamilton. 2009. Computational Aquatic Ecosystem Dynamics Model:CAEDYM v3.2 Science Manual. Centre for Water Research. University of Western Australia.
Hipsey, M. R., G. Gal, J. P. Antenucci, T. Zohary, V. Makler and J. Imberger. 2006. Lake Kinneret water quality modelling. Proceeding of the 7th
international conference on hydroscience and engineering. Drexel niversity. Philadelphia. USA.
Hodges, B. R and C. J. Dalimore. 2010. The estuary and lake computer model ELCOM Science manual. Centre for Water Research, University of Western Australia. Available on
http://www2.cwr.uwa.edu.au/~ttfadmin/model/elcom/.
Holligan, P. M., E. Fern´andez, J. Aiken, W. M. Balch, P. Boyd, P. H. Burkill, M. Finch, S. B. Groom, G. Malin, K. Muller, D. A. Purdie, C. Robinson, C. C. Trees, S. M. Turner and P. van der Wal. 1993. A Biogeochemical Study of the Coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem Cycles .(7):879–900.
Horsted, S, J., T. G. Nielsen, B. Riemann, J. P. Steen and P. K. Bjornsen.1988. Regulation of zooplankton by suspension-feeding bivalves and fish in estuarine enclosure. Mar. Ecol. Prog. Ser. Vol 48: 217-224.
Jones, R. H., K. J. Flynn, and T. R. Anderson. 2005. Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tons.Mar Ecol Prog Ser. Vol. 235: 147–156.
Kagami, M., T.B. Gurung, T. Yoshida and J. Urabe. 2006. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr., 51(6), 2775–2786.
Kawamiya, M., M. J. Kishi, Y. Yamanak, and N. Suginohara. 1995. An ecological-physical coupled model applied to station papa. Journal of Oceanography, vol 51, pp.635-664.
Kishi, M. J. and M. Uchiyama. 1995. A three dimensional numerical model for mariculture nitrogen cycle; case study in Shizugawa Bay, Japan. Fish Oceanogr. 4:4,pp.303-316.
Koropitan, A. F. 2003. Pemodelan ekosistem perairan di Teluk Lampung. Thesis magister Program Khusus Oseanografi, Program Studi Oseanografi dan Sain Atmosfer. Program Pasca Sarjana, Institut Teknologi Bandung.
Laws, E. A., P. G. Falkowski, W. O. Smith Jr, H. Ducklow and J. J. McCarthy. 2000. Temperature effect on export production in the open ocean. Global Biochemical Cycle. Vol 14 (4): 1231-1246.
Lehman, J. T. 1991. Interacting growth and loss rate:the balance of top-down and bottom-up controls in plankton communities. Limnol.Oceanogr. 36(8):1546- 1554.
Lomas, M. W. 2004. Nitrate reductase and urease enzyme activity in the marine diatom Thalassiosira weissflogii (Bacillariophyceae): interactions among nitrogen substrates. J. Mar Biol . (144):37–44.
Lindehoff, E, Edna Granelli and P. M. Glibert. 2010. Influence of prey and nutritional status on the rate of nitrogen uptake by prymnesium parvum. Journal of The American Water Ressources Association. Vol 46 (1): 121- 132.
Lynch, M and J. Saphiro. 1981. Predation, enrichment and phyplankton community structure. Limnol. Oceanogr. 26(1): 86-102.
Megrey, B. A., K. A. Rose, R. A. Klumb, D. E. Hay, F. E. Werner, D. L. Eslinger, and S. L. Smith. 2006. A bioenergetic-based population dynamic model of pacific herrring (Clupea herengus pallasi) coupled a lower trophic level nutrient-phytoplankton-zooplankton model:Description, calibration, and sensitivity analysis. Ecological Modelling. (4552) 21p.
Mihardja, D. K., I. M. Radjawane dan M. Ali. 1995. Studi penyebaran air panas di Tarahan, Lampug. PT. Wiratman dan Assosiates. Jakarta..
Moll, A. 1998. Regional distribution of primary production in the North Sea simulated by a three dimensional model. J. Mar. Syst. (16): 151-170. Moll, A. and G. Radach. 2001. Synthesis and a new conception of North Sea
Research (SYCON). Workiing group 6: review of three dimensional ecological modelling realted to the North Sea Shelf System. Zentrum fur Meeres-und Klimaforschund der Universitat Hamburg.
Nontji, A. 2005. Laut nusantara. Edisi revisi cetakan ke empat. Djambatan. Jakarta.
Neuman, T. 2000. Towards a 3D-ecosytem model of The Baltic Sea. J.Mar.Syst.(25): 405-419.
Nybakken, J. W. 1992. Biologi laut: suatu pendekatan ekologis. PT. Gramedia pustaka Utama. Jakarta.
Pariwono, J. I. 1998. Kondisi oseanografi perairan pesisir Lampung. Coastal Resources Center University of Rhode Island. CRMP-Proyek Pesisir Publication. Jakarta.
Parson, T. R. M. Takashi, and B. Hargrave. 1984. Biological oceanographic processes. Third Edition Pergamon press Oxford.
Perissinoto, R. 1995. Encyclopedia of environmental biology, Vol.2: Marine Productivity. Academic Press Inc.
Peterson, N., G. G Ganf, and J. Saphiro. 1983. Feeding and assimilation rates of Daphnia pulex fed Aphanixomenon flos-aquae. Limnol. Oceanorgr: 28(4) 687-687.
Pomeroy, L. R., P. J. B. Williams, F. Azam, and J. E. Hobie. 2007. The microbial loop. Journal of Oceanography Society. Vol 20(2): 28-33.
Pranowo, W. S. 2002. Model numerik sebaran senyawa nitrogen di Pantai Kedung, Jepara. Thesis Magister Bidang Khusus Oseanografi, Program Studi Oseanografi dan Sain Atmosfer, Program Pascasarjana, Institut Teknologi Bandung.
Rees, T. A. V and V. J. Allison. 2006. Evidence for an extracellular L-amino acid oxidase in nitrogen-deprived Phaeodactylum tricornutum
(Bacillariophyceae) and inhibition of enzyme activity by dissolved inorganic carbon. Phycologia 45:337–342.
Reynolds, C. S. 2006. Ecology of phytoplankton. Cambridge University Press. Cambridge.
Riebesell, U. 2004. Effects of CO2 enrichment on marine phytoplankton. J. Oceanogr. (60):719–729.
Rost, B and U. Riebesell. 2004. Coccolithophores and the biological pump: responses to environmental changes. In: H. R. Thierstein HR and J. R. Young (eds.) Coccolithophores, From Molecular Processes to Global Impact, Springer, Berlin, pp. 99–125.
Scavia, D, G.A. Lang and J. F. Kitchel. 1988. Dynamic of Lake Michigan
plankton: a model evaluation of nutrient loading, competition and predation. Journal of Fish Aquatic Science. 45: 165-177.
Simanjuntak, M. 2000. Konsentrasi silikat di perairan Teluk Lampung. Pesisir Pantai Indonesia. P2O-LIPI. Jakarta.
Small, L. F, M. R. Landry, R. W. Eppley, F. Azam, A. F. Carlucci. 1989. Role of plankton in the carbon and nitrogen budget of Santa Monica basin,
California. Mar.Ecol.Prog.Ser. Vol.56:57-74.
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor an H. L. Miller(eds.). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Spillman, C. M., J. Imberger, D. P. Hamilton, M.R. Hipsey, and J. R. Romero. 2007. Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea. Journal of Marine System. (68):167-200.
Sterner, R. W. 1990. The ratio of nitrogen to phosphorous resupplied by herbivores: zooplankton and the algal competitive arena. The American Naturalist. Vol. 136, No.2.
Sterner, R. W and D. O. Hessen. 1994. Algal Nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Syst. 25:1-29.
Striebel, M. 2008. Plankton Dynamic: the influence of light, nutrient dan diversity. Dissertation zur erlangung des doktorgrades der
naturwissenschaften der Ludwig Maximilians Universitat Munchen. Sugimoto, R., A. Kasai, T. Miyajima, and K. Fujita. 2010. Modeling
phytoplankton production in Ise Bay, Japan: Use of nitrogen isotopes to identify dissolved inorganic nitrogen sources. Estuarine, Coastal and Shelf Science. (86):450-466.
Thomas, C. M., R. Perissinoto, and I. Kibirigie. 2005. Phytoplankton biomass and size structure in two south african eutrophic, temporarily open/closed estuaries. Eastuarine, Coastal, and Shelf Science, 65: 223- 238.
Tomascik, T., A. J. Mah, A. Nontji, and M. K. Moosa. 1997. The ecology of The Indonesian Seas. Part I. periplus Edition (HK) Ltd. Singapore.pp.99-100.
Turner, J. T. 2004. The Importance of Small Planktonic Copepods and Their Roles in Pelagic Marine Food Webs. Zoological Studies 43(2): 255-266. Urabe, J and R. W. Sterner. 1996. Regulation of herbivore growth by the balance
of light and nutrient. Proceeding of the National academy of Sciences of the United State of America. 93:8465-8469.
Urabe,J. , J. Clasen and R. W. Sterner. 1997. Phosphorus limitation of Daphnia growth: Is it real?. Limnol. Oceanogr., 42(b), , 1436-1443.
Valiela, I. 1984. Marine ecological Processes. Springer-Verlag. New York. Vanni, M. J. 2002. Nutrient cycling by animals In freshwater ecosystems. Annu.
Rev. Ecol. Syst. 33:341–70.
Vollenweider, R. A. 1970. Scientific fundamental of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorous as a factor in eutrophication. Organization for economic co-operation and development, Paris, France.
Walmsey, R. D. 2000. A review and discussion document. Prespective on
eurtophicaton of surface waters: policy/research needs in south africa. WRC report No. KV129/00, Water Research Commission, Pretoria. South Africa. Wang, X. J., M. Behrenfeld, R. Le Borgne, R. Murtugudde, E. Bos. 2008.
Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrient and temperature in the equatorial pacific ocean: abasin scale model. Biogeoscience discussion. (5): 3869-3903.
Wattayakorn, G. 1998. Nutrient cycling in estuarine.paper presented in the project on research and its application to management of the mangrove of Asia and Pacific, Ranong, Thailand. 17pp.
Wiryawan, B., B. Marsden, H. A. Susanto. A. K. Mahi, M. Ahmad and H. Poespitasari. 1999. Lampung coastal resources atlas. Government of Lampung, Coastal Resources Management Project (CRMP) (Coastal Resources Center, University of Rhode Island) and Coastal and Marine Resource Study (PKSPL) (Bogor Agriculture University). Bandar Lampung. Indonesia 109p.
Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt and J. Bijma. 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus. (51)B:461–476.
Yamaguchi, H., M. Yamaguchi, K. Fukami, M. Adachi and T. Nishijima. 2005. Utilization of phosphate diester by the marine diatom Chaetoceros
ceratosporus. J Plankton Res. (27):603–606.
Yanagi, T., K-i. Inoue, S. Montani, and M. Yamada. 1997. Ecological modelling as a tool for coastal zone management in Dokai Bay, Japan.J. Mar. Syst. (13); 123-136.
119
LAMPIRAN
121 Lampiran 1 Parameterisasi untuk siklus nutrien umum yang disimulasikan dalam simulasi CAEDYM di Teluk Lampung
Parameter Deskripsi Satuan
Nilai yang
digunakan Nilai dari Literatur Ket.
Koefisien ekstingsi cahaya pada air alami m-1 0.25 - Diestimasi dari rata-rata kedalaman sechidisk fraksi fotosintetik aktif dari radiasi matahari yang datang - 0.45 0.45c
koefisien atenuasi cahaya spesifik terhadap DOC m-1(gCm-3)-1 0.001 0.008g koefisien atenuasi cahaya spesifik terhadap POC m-1(gCm-3)-1 0.05 0.05c Kebutuhan oksigen sedimen maksimum pada 25oC gm-2hari-1 0.9 0.9c konstanta setengan jenuh DO pengaruh dari SOD g DO m-3 3.2 3.2c
temperatur pengganda untuk SOD - 1.08 1.02-1.14h tunning
Kesamaan DO pada inteface air dan udara g DO m-3 Persamaan Doatm=f(p,T,S)c koefisien transfer oksigen yang tergantung dari kecepatan angin m s-1 Persamaan kO2 = f(u, T,S)c tekanan parsial CO2 di interface air dan udara atm 3.50E-04 3.50E-04c
kecepatan transfer gas untuk CO2 m s-1 Persamaan kpCO2 = f u, T,S) c
produksi ion air - Persamaan KW = f(T) d
konstanta keasaman pertama dan kedua - Persamaan Ka1,2 = f (T) c
rasio stoikiometri DO terhadap C selama fotosintesis dan respirasi g DO (g C)-1 2.67 hubungan stoikiometri rasio stoikiometri DO terhadap N selama nitrifikasi g DO (g N)-1 3.43 hubungan stoikiometri kecepatan settling detritus partikulat POM digunakan untuk POC,
PON, POP m s
-1
Persamaan dihitung dari hukum Stoke
diameter partikel POM m 5.00E-06 5.00E-06c
densitas partikel POM kg m-3 1030 1070e tunning
Laju dekomposisi maksimum POC terhadap DOC pada 25oC hari-1 0.07 0.0700c
Laju dekomposisi maksimum POP terhadap DOPpada 25oC hari-1 0.03 0.01 - 0.1e tunning laju denitrifikasi maksimum pada keadaan anoksia pada 25oC hari-1 0.04 0.01e,f; 0.09b; tunning
122 Lampiran 1 (Lanjutan) Parameterisasi untuk siklus nutrien yang disimulasikan dalam simulasi CAEDYM di Teluk Lampung
Parameter Deskripsi Satuan
Nilai yang
digunakan Nilai dari Literatur
Ket.
temperatur pengganda denitrifikasi - 1.05 1.08e tunning
konstanta setengah jenuh denitrifikasi yang tergantung oksigen g DO m-3 0.04 2.0e;0.015a tunning
laju nitrifikasi maksimum dibawah oksigen jenuh pada 25oC hari-1 0.03 0.02e;0.05b;0.1a tunning temperatur pengganda nitrifikasi - 1.08 1.08e
konstanta setengah jenuh nitrifikasi yang tegantung oksigen g DO m-3 3 2.0e; 2.5-10a tunning
temperatur pengganda fluks nutrien sedimen - 0.05 0.0693d tunning
laju pelepasan maksimum PO4 dari sedimen pada 25oC g m-2 hari-1 0.004 0.0037e tunning
konstanta setengah jenuh pelepasan PO4 dari sedimen tergantung pada DO g DO m-3 0.05 0.05c
laju pelepasan maksimum NH4 dari sedimen pada 25oC g m-2 hari-1 0.09 0.003-0.03e tunning
konstanta setengah jenuh pelepasan NH4 dari sedimen tergantung pada DO g DO m-3 0.05 0.05c
laju pelepasan maksimum NO3 dari sedimen pada 25
o
C g m-2 hari-1 -0.03 -0.03e
konstanta setengah jenuh pelepasan NO3 dari sedimen tergantung pada DO g DO m-3 0.03 0.03c
laju pelepasan maksimum DOC dari sedimen pada 25oC g m-2 hari-1 0.05 0.05c
konstanta setengah jenuh pelepasan DOC dari sedimen tergantung pada DO g DO m-3 0.5 0.5c
Laju dekomposisi maksimum PON terhadap DON pada 25oC hari-1 0.05 0.05c Keterangan: a Gregoire&Becker, 2004 b Hang et al., 2009 c Hipsey et al., 2006 d Megrey et al., 2006 e Spillman et al., 2007 f Sugimoto et al., 2010 g Wang et al., 2008 h Wanninkhof, 1992 122
Lampiran 2 Parameterisasi untuk fitoplankton yang disimulasikan dalam simulasi CAEDYM di Teluk Lampung
Parameter Deskripsi Satuan
Nilai yang digunakan
Nilai dari literatur Ket.
x y x y
Laju pertumbuhan potensial maksimum hari-1 0.35 0.8 0.24 – 4.56e; 3b
0.8d;1.1-1.4a tunning x
Cahaya jenuh untuk produksi maksimum µE m-2 s-1 600 440 80-600e 104.b;440-710e Koefisien atenuasi spesifik m-1 (g C m-3)-1 0.1 0.1 0.449e;0.08a 0.1e
Konstanta setengah jenuh untuk uptake fosfor g P m-3 0.0024 0.003
0.001 – 0.0048e;0.05f ;0.2a
0.003d;0.17b;0.1
2g tunning x
Konstanta setengah jenuh untuk uptake nitrogen g N m-3 0.2 0.2 0.38
e
;0.2a;0. 02g
0.0006e;0.2- 2b;0.12g Rasio N internal minimum g N (g C)-1 0.030 0.02 0.03e;2.8g 0.02-0.84e;2.5g Rasio N internal maksimum g N (g C)-1 0.09 0.3 0.09e;6.5g 0.06-0.330e; 5.0g
Laju uptake N maksimum g N (g C)-1 hari-1 0.020 0.005 0.0043e tunning x,y
Rasio P internal minimum g P (g C)-1 0.003 0.005 0.040e tunning x,y
Rasio P internal Maksimum g P ( gC)-1 0.02 0.03 0.0187e tunning x,y
Laju Uptake P maksimum g P (g C)-1hari-1 0.010 0.01 0.0006 – 0.006e
tunning x,y
Laju Fiksasi N g N (g C)-1hari-1 0 0 0e Pengurangan pertumbuhan dibawah fiksasi N - 1.00 1 1e
Temperatur pengganda untuk pertumbuhan - 1.07 1.08 1.08g 1.08g
Temperatur standar oC 20 20 20g 19f; 16-20c tunning x,y
Temperatur optimum oC 25 25 25-30d;27g 15e;33g tunning x,y
Temperatur Maksimum oC 35 35 32g 39c;29-39c tunning x,y
124 Lampiran 2 (Lanjutan) Parameterisasi untuk fitoplankton yang disimulasikan dalam simulasi CAEDYM di Teluk Lampung
Parameter Deskripsi Satuan
Nilai yang digunakan
Nilai dari literatur Ket.
x y x y
Koefisien laju kehilangan metabolis hari-1 0.039 0.02 0.03e 0.021e Temperatur pengganda untuk kehilangan metabolis - 1.05 1.05 1.05-1.12e 1.05e Fraksi produksi yang hilang selama fotosintesis - 0.014 0.014 0.14e 0.14e Fraksi respirasi relatif terhadap total kehilangan metabolis - 0.25 0.25 0.25e 0.25e Fraksi laju kehilangan metabolik menjadi DOM - 0.2 0.2 0.2e 0.2e Kecepatan migrasi maksimum ke kedalaman cahaya
optimum m s
-1
0.0003 0 0.0003a 0e Kecepatan migrasi maksimum ke kedalaman N optimum m s-1 5.5e-5 0 5.5e-5e 0e
Diameter sel µm 7.84 5.5 1.0-5.5e 5.5e
kecepatan penenggelaman m s-1 0.1 0.17 0.1e 0.17g;0.03f Keterangan : x, y menyatakan kelompok fitoplankto, x adalah dinoflagelata; y adalah kelompok diatom
a
Fennel et al., 2003;
b
Gregoire and Becker, 2004;
c Griffin et al., 2001; d Hang et al., 2009; e Hipsey et al., 2006; f Spillman et al., 2007 g Sugimoto et al., 2010; 124
125 Lampiran 3 Parameterisasi untuk zooplankton yang disimulasikan dalam simulasi CAEDYM di Teluk Lampung
Parameter Deskripsi Satuan Nilai yang
digunakan
Nilai dari literatur Keterangan
Laju Grazing g C m-3(g Z m-3)-1 hari-1 1.03 1.0
d
; 0.72-1.92b; 0.9a;
0.009e;0.2c tunning
Efisiensi Grazing - 0.75 0.75a
Koefisien laju respirasi hari-1 0.04 0.32d;0-2.0b;0.05c tunning
koefisien laju mortalitas hari-1 0.02 0.025c tunning
Fraksi faecal pellet dari grazing hari-1 0.058 0.058d Fraksi ekskresi dari grazing hari-1 0.05 0.13d;0.05a Fraksi faecal pellet yang tenggelam langsung ke
sedimen
- 0.8 0.8d
Temperatur pengganda untuk pertumbuhan - 1.07 1.1d tunning
Temperatur Standar oC 20 20b,d
Temperatur Optimum oC 27 29d;33b tunning
Temperatur Maksimum oC 35 34d;39b tunning
Respirasi yang tergantung temperatur - 1.1 1.1d
Konstanta setengah jenuh untuk grazing g C m-3 0.15 0.14d tunning
Rasio Internal Nitrogen terhadap karbon g N (g C)-1 0.184 0.184d Rasio internal fosfor tehadap karbon g P (g C)-1 0.005 0.005d kesukaan zooplankton pada peridinium - 0.05 0.05d kesukaan zooplankton pada zooplankton pemangsa - 0.00 0.11-0.28b kesukaan zooplankton pada makro zooplankton - 0.00 0-0.23b kesukaan zooplankton pada mikro zooplankton - 0.00 0.0b
kesukaan zooplankton pada POC - 0.05 0.05d
Keterangan:
a