• Tidak ada hasil yang ditemukan

54 BAB V

KESIMPULAN DAN SARAN

55 DAFTAR PUSTAKA

Ahmed, S., Annu, Ikram, S., dan Yudha, S., 2016, Biosynthesis of Gold Nanoparticles: A Green Approach, Journal of Photochemistry &

Photobiology, 161: 141-153.

Akbar, M.R.V., Budiarti, L.Y., dan Edyson, 2016, Perbandingan Efektivitas Antibakteri Antara Ekstrak Metanol Kulit Batang Kasturi dengan Ampisilin Terhadap Staphylococcus aureus In-Vitro, Berkala Kedokteran, 12(1): 1-9.

Aljabali, A. A. A., Akkam, Y., Zoubi, M. S. A., Al-Batayneh, K. M., Al-Trad, B., Alrob, O. A., Alkilany, A. M., Benamara, M., dan Evans, D. J., 2018, Synthesis of Gold Nanoparticles Using Leaf Extract if Ziziphus zizyphus and Their Antimicrobial Activity, Nanomaterials, 8(174): 1-15.

Anastas, P.T., dan Warner, J.C., 1998, Green Chemistry: Theory and Practice, Oxford University Press, New York.

Ankamwar, B., Chaudhary, M., dan Sastry, M., 2005, Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing, Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 35(1): 19-26.

Asmathunisha, N., dan Kathiresan. K., 2013, A Review on Biosynthesis of Nanoparticles by Marine Organisms, Colloids and Surfaces B. Biointerfaces, 103: 283-287.

Azizi, S., Namvar, F., Mahdavi, M., Ahmad, M., dan Mohamad, R., 2013, Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract, Materials, 6: 5942-5950.

Backhouse, G., 2012,, Pyura sp., Invertebrates of The Coral Sea.

Bhau, B. S., Ghosh, S., Puri, S., Borah, B., Sarmah, D. K., dan Khan, R., 2015, Green Synthesis of Gold Nanoparticles from The Leaf Extract of Nepenthes khasiana and Antimicrobial Assay, Advanced Materials Letters, 6(1): 55-58.

Bogdanovic, U., Lazic, V., Vodnik, V.V., dan Dimitrijevic-Brankovic, S.I., 2014, Copper Nanoparticles With High Antimicrobial Activity, Material Letters, 128: 75-78.

Boysen, E., Muir, N. C., Dudley, D., dan Peterson, C., 2011, Nanotechnology for Dummies: 2nd Edition, Wiley Publishing, USA.

56 Carbone, M., Nunez-Ponz, L., Paone, M., Castelluccio F., Avila, C., dan Gavagnin, M., 2012, Rossinone-related Meroterpenes From The Antarctic Ascidian Aplidium fuegiense, Tetrahedron, 68 : 3541-3544.

Carter, N.J., dan Keam, S.J., 2010, Trabectedin: A Review of Its Use in Soft Tissue Sarcoma and Ovarian Cancer, Drugs, 70(3): 355-376.

Cauerhff, A., dan Castro, G.R., 2013, Bionanoparticles, A Green Nanochemistry Approach, Electronic Journal of Biotechnology, 16(3): 1-10.

Chasanah, E., 2008, Marine Biodiscovery Research in Indonesia: Challenges and Rewards, Journal of Coastal Development, 12(1): 1-12.

Copp, B.R., Jompa, J., Tahir, A., dan Ireland, C.M., 1998, Styelsamines A−D:

New Tetracyclic Pyridoacridine Alkaloids from the Indonesian Ascidian Eusynstyela latericius, The Journal of Organic Chemistry, 63: 8024-8026.

Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lu, X., dan Jiang, X., 2012, The Molecular Mechanism of Action of Bactericidal Gold Nanoparticles on Escherichia coli, Biomaterials, 33: 2327-2333.

Das, J., dan Velusamy, P., 2014, Catalytic Reduction of Methylene Blue Using Biogenic Gold Nanoparticles from Sesbania grandiflora L, Journal of The Taiwan Institute of Chemical Engineers, 888: 1-6.

El-Nour, A.K.M.M., Eftaiha, A., Al-Warthan, A., dan Ammar., A.A.A., 2010 Synthesis and Application of Silver Nanoparticles, Arab J. Chem 3(3): 135-140.

El-Sayed, M.A., 2001, Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes, Acc. Chem. Res., 34: 257-264.

Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., dan Venketesan, R., 2010, Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect With Antibiotics: A Study Against Gram-Positive and Gram-Negative Bacteria, Nanomedicine, 6(1): 103-109.

Gabor L.H., Joydeep D., Harry F.T. dan Anil K.R., 2008, Introduction to Nanoscience, Boca Raton: CRC press Taylor & Francis group. 108-175.

Gnanadesigan, M., Anana, M., Ravikumar, S., Maruthupandy, M., Ali, M.S., Vijayakumar, V., dan Kumaraguru, A.K., 2011, Antibacterial Potential of Biosynthesised Silver Nanoparticles Using Avicennia Marine Mangrove Plant, Application of Nanoscience, 2: 143-147.

57 Gurunathan, S., Karishwaralal, K., Deepak, V., dan Ram, K.P.S., 2009, Biological Synthesis of Gold Nanocubes from Bacillus licheniformis, Bioresource Technology, 100(21): 5356-5358.

Hamed, M.R., Givianrad, M.H., dan Moradi, A.M., 2015, Biosynthesis of Silver Nanoparticles Using Marine Sponge Haliclona, Oriental Journal of Chemistry, 31(4): 1961-1967.

Han, Q.H., Fan, C.Q., Lu, Y.N., Wu, J.P., Liu X., dan Yin, S., 2013, Chemical Constituents From The Ascidian Aplidium Constellatum, Biochemical Systematics and Ecology, 48 : 6-8.

Holland, L.Z., 2012, Current Biology Magazine, CellPress.

Horikoshi, S., dan Serpone, N., 2013, Microwaves in Nanoparticle Synthesis:

Fundamentals and Application, Wiley‐VCH Verlag GmbH & Co. KGaA, Germany.

Ibanez, E., Herrero, M., Mendiola, J.A., dan Castro-Puyana, M., 2012, Marine Bioactive Compounds: Sources, Characterization and Application, Springer Science+Business Media, Spain.

Inbakandan, D., Venkatesan, R., dan Khan, S.A., 2010, Biosynthesis of Gold Nanoparticles Utilizing Marine Sponge Acanthella elongate (Dendy, 1905), Colloids and Surface B: Biointerfaces, 81: 634-639.

Inbakandan, D., Sivaleela, G., Peter, D.M., Kiurbagaran, R., Venkatesan, R., dan Khan, S.A., 2012, Marine Sponge Extract Assisted Biosynthesis of Silver Nanoparticles, Materials Letters, 87: 66-68.

Islam, N. U., Jalil, K., Shahid, M., Rauf, A., Naveed, M., Khan, A., Shah, M. R., dan Khan, M. A., 2015, Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix alba, Arabian Journal of Chemistry, 1-12.

Jayaseelan, C., Ramkumar, R., Rahuman, A.A., dan Perumal, P., 2013, Green Synthesis of Gold Nanoparticles Using Seed Aqueous Extract of Abelmoschus esculentus and its Antifungal Activity, Industrial Crops and Products, 45:

423-429.

Keat, C.L., Aziz, A., Eid, A.M., dan Elmarzugi, N.A., 2015, Biosynthesis of Nanoparticles and Silver Nanoparticles, Bioresources and Bioprocessing, 2(47): 1-11.

Kelsall, R., Hamley, I.W., dan Geoghegan, M., 2005, Nanoscale Science and Technology, Wiley Online Library, USA.

58 Khan, H.A., Sakharkar, M.K., Nayak, A., Kishore, U., dan Khan, A., 2018, Nanoparticles for Biomedical Applications: An Overview, Nanobiomaterials, 357-384.

Khan, S., Bakht, J., dan Syed, F., 2018, Green Synthesis of Gold Nanoparticles using Acer pentapomicum Leaves Extract its Characterization, Antibacterial, Antifungal and Antioxidant Bioassay, Digest Journal of Nanomaterials and Biostructures, 13(2): 579-589.

Khanna, P.K., dan Nair, K., 2009, Synthesis of Silver Nanoparticles Using Cod Liver Oil (Fish Oil): Green Approach to Nanotechnology, International Journal of Green Nanotechnology: Physics and Chemistry, 1: 3-9.

Kobayashi, J., Cheng, J-F., Nakamura, H., Hirata, Y., Sasaki, T., Walchli, dan Ohizumi, Y., 1988, Cystodytins A-C, Novel Tetrcyclic Aromatic Alkaloids With Potent Antineoplastic Activity from The Okinawan Tunicate Cystodytes dellechiajei, Journal of Natural Products, 53: 1800-1804.

Kobayashi, J., Tsuda, M., Tanabe, A., Ishibashi, M., Cheng, J-F., Yamamura, S., dan Sasaki, T., 1991, Cystodytins D-I, New Cytotoxic Tetracyclic Aromatic Alkaloids From The Okinawan Marine Tunicate Cystodytes dellechiajei, Journal of Natural Products, 54(6): 1634-1638.

Kollef, M.H., Zilberberg, M.D., Shorr, A.F., Vo, L., Schein, J., Micek, S.T., dan Kim, M., 2011, Epidemiology, Microbiology and Outcomes of Healthcare-Associated and Community-acquired Bacteremia: A Multicenter Cohort Study, Journal of Infections, 62(2): 130-135.

Korbekandi, H., dan Iravani, S., 2012, Silver Nanoparticles, INTECH, Iran.

Kott, P., 1989, Form and function in the ascidiacea. Bulletin of Marine Science, 45: 253-276.

Kundu, S., 2017, Gold Nanoparticles: Their Application Antimicrobial Agents and Vehicles of Gene Delivery, Advances in Biotechnology and Microbiology, 4(5): 1-4.

Lay, B. W., 1994, Analisis Mikroba di Laboratorium, Edisi 1, Raja Grafindo Persada, Jakarta.

Lekshmi, P., Shini, B., Jeeva, S., dan Bharath, S., 2015, Synthesis of Silver Nanoparticles Using Haemolymph of Marine Crabs (Carcinus maenas and Ocypode quadrata) and Its Influence on Clinical Pathogens, Journa of Chemical and Pharmaceutical Research, 7(2) :598-606.

59 Lemire, J.A., Harrison, J.J., dan Turner, R.J., Antimicrobial Activity of Metals:

Mechanisms, Molecular Targets and Applications, Nature Reviews Microbiology, 11(6): 371-384.

Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., Sahar, A., Riley, M. A., dan Rotello, V. M., 2014, Functional Gold Nanoparticles as Potent Antimicrobial Agents against Multi-Drug Resistant Bacteria, ACS Nano, 8(10): 10682-10686.

Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E., dan Kalinina, N.O., 2014, “Green” Nanotechnologies:

Synthesis of Metal Nanoparticles Using Plant, Acta Naturae, 6(1): 35-44.

Malik, P., Shankar, R., Malik, V., Sharma, N., dan Mukherjee, T.P., 2014, Green Chemistry Based Benign Routes for Nanoparticle Synthesis, Journal of Nanoparticle, 1-14.

Malvern, 2015, Particle Characterization Guide, Malvern Instruments Limited, USA.

Manivasagan, P., Venkatesan, J., Sivakumar, K., dan Kim, S.K., 2014, Actinobacteria Mediated Synthesis of Nanoparticles and Their Biological Properties, Critical Review of Microbiology, 28: 1-13.

Marliana, S.D., Suryanti, V., dan Suyono, 2005, Skrining Fitokimia dan Analisis Kromatografi Lapis Tipis Komponen Kimia Buah Labu Siam (Sechium edule Jacq. Swartz.) dalam Ekstrak Etanol, Biofarmasi, 3(1): 26-31.

Mayer, A.M., dan Lehmann, V.K., 2001, Marine Pharmacology in 1999:

Antitumor and Cytotoxic Compounds, Anticancer Res, 21(4) : 2489-2500.

McDonald, L.A., Eldredge, G.S., Barrows, L.R., dan Ireland, C.M, 1994, Inhibition of Topoisomerase II Catalytic Activity by Pyridoacridine Alkaloids from a Cystodytes sp. Ascidian: A Mechanism for the Apparent Intercalator-Induced Inhibition of Topoisomerase II, Journal of Medical Chemistry, 37:

3819-3827.

Menna, M., dan Aiello, A., 2012, Handbook of Marine Natural Products, Media B.V., Italy.

Mittal, A.K., Chisti, Y., dan Banerjee, U.C., 2013, Synthesis of Metallic Nanoparticles Using Plant Extracts, Biotechnology Advances, 31: 346-356.

Moghaddam, K.M., 2010, An Introduction to Microbial Metal Nanoparticle Preparation Method, The Journal of Young Investigators, 19(19): 1-6.

60 Mpila, D., Fatimawali, F., dan Wiyono, W., 2012, Uji Aktivitas Antibakteri Ekstrak Etanol Daun Mayana (Coleus atropurpureys [L] Benth) Terhadap Staphylococcus aureus, Escherichia coli dan Pseudomonas aeruginosa secara In-Vitro, Pharmacon, 1(1): 13–21.

Muharni, Fitrya dan Farida, S., 2017, Uji Aktivitas Antibakteri Ekstrak Etanol Tanaman Obat Suku Musi di Kabupaten Musi Banyuasin, Sumatera Selatan, Jurnal Kefarmasian Indonesia, 7(2): 127-135.

Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Kumar, R., dan Sastry, M., 2002, Extracelullar Synthesis of Gold Nanoparticles by The Fungus Fusarium oxysporum, Chembiochem, 3(5): 461-463.

Mulvaney, P., 1996, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, 12(3): 788-800.

Mythili, R., Selvankumar, T., Srinivasan, P., Sengottaiyan, A., Sabastinraj, J., Ameen, F., Al-Sabri, A., Kamala-Kannan, S., Govarthanan, M., dan Kim, H., 2018, Biogenic Synthesis, Characterization and Antibacterial Activity of Gold Nanoparticles Synthesized from Vegetable Waste, Journal of Molecular Liquids, 262: 318-321.

Narayanan, K. B., dan Sakthivel, N., 2008, Coriander Leaf Mediated Biosynthesis of Gold Nanoparticles, Material Letters, 62: 4588-4590.

Nath, D., dan Banerjee, P., 2013, Green Nanotechnology- A New Hope For Medical Biology, Environmental Toxicology anf Pharmacology, 36: 997-1014.

Nazar, N., Bibi, I., Kamal, S., Iqbal, M., Nouren, S., Jalani, K., Umair, M., dan Atta, S., 2017, Copper Nanoparticles Synthesis Using Biological Molecule of P. granatum Seeds Extract As Reducing and Capping Agent: Growth Mechanism and Photo-Catalytic Activity, International Journal of Biological Macromolecules, 106: 1203-1210.

Newman, D.J., dan Cragg, G.M., 2012, Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010, Journal of Natural Products, 75(3): 311-335.

Oda, T., Fujiwara, T., Liu, H., Ukai, K., Mangindaan, R.E.P., Mochizuki, M., dan Namikoshi, M., 2006, Effects of Lissoclibadins and Lissoclinotoxins, Isolated from a Tropical Ascidian Lissoclinum cf. badium, on IL-8 production in a PMA-stimulated Promyelocytic Leukemia Cell Line, Marine Drugs, 4: 15-21.

Patel, B.H., Channiwala, M.Z., Chaudhari, S.B., Mandot, A.A., 2016, Biosynthesis of Copper Nanoparticles; Its Characterization and Efficacy

61 Against Human Pathogenic Bacterium, Journal of Environmental Chemical Engineering, 4: 2163-2169.

Pearce, A.N., Chia, E.W., dan Berridge, M.V., Anti-Inflammatory Thiazine Alkaloids Isolated From The New Zealand Ascidian Aplidium sp. Inhibitors of The Neutrophil Respiratory Burst In A Model of Gouty Arthritis, Journal of Natural Products, 70(6): 936-940.

Rai, A., Prabhune, A., dan Perry, C.C., 2010, Antibiotic Mediated Synthesis of Gold Nanoparticles with Potent Antimicrobial Activity and Their Application in Antimicrobial Coatings, Journal of Material Chemistry, 20: 6789-6798.

Rai, M.K., Deshmukh, S.D., Ingle, A.P., dan Gade, A.K., 2012, Silver Nanoparticles: The Powerful Nanoweapon Against Multidrug-Resistant Bacteria, Journal of Applied Microbiology, 112(5): 841-852.

Rajathi, F.A.A., Parthiban, C., Kumar, V.G., dan Anantharaman, P., 2012, Biosynthesis of Antibacterial Gold Nanoparticles Using Brown Alga, Stoechospermum marginatum, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99: 166-173.

Ramakrishna, M., Babu, D.R., Gengan, R.M., dan Chandra, S., 2016, Green Synthesis of Gold Nanoparticles Using Marine Algae and Evaluation of Their Catalytic Activity, Journal of Nanostructure Chemistry, 6: 1-13.

Ramkumar, V.S., Prakash, S., Ramasubburayan, R., Pugazhendhi, A., Kumar, G., Kannapiran, E., dan Rajendran, R.B., 2016, Seaweeds: A Resource for Marine Bionanotechnology, Enzyme and Microbial Technology, 95: 45-57.

Ravinder, K., Reddy A.V., Krishnaiah, P., Ramesh, P., Ramakrishna, S., Laatsch, H., dan Venkateswarlu, Y., 2005, Isolation and Synthesis of A Novel β-carboline Guanidine Derivative Tiruchanduramine From the Indian Ascidian Synoicum macroglossum, Tetrahedron Letters, 46(33): 5475-5478.

Ruppert, E.E., Fox, R.S., dan Barnes, R.D., 2004, Invertebrate Zoology: A Functional Evolutionary Approach, Thomson Brooks/Cole, USA.

Sanghi, R., dan Verma, P., 2010, pH Dependant Fungal Proteins in the “Green”

Synthesis of Gold Nanoparticles. Advanced Materials Letters, 1 : 193-199.

Saravanan, M., dan Nanda, A., 2010, Extracellular Synthesis of Silver Bionanoparticles from Aspergillus clavatus and Its Antimicrobial Activity Against MRSA and MRSE, Colloids and Surface B: Biointerfaces, 77(2):

214-218.

62 Sawle, B.D., Salimath, B., Deshpande, R., Bedre, M.D., Prabhakar, B.K., dan Venkataraman, A., 2008, Biosynthesis and Stabilization of Au and Au-Ag Alloy Nanoparticles by Fungus, Fusarium semitectum, Science and Technology of Advanced Materials, 9: 1-6.

Senthilkumar, S., Kashinath, L., Ashok, M., dan Rajendran, A., 2017, Antibacterial Properties and Mechanism of Gold Nanoparticles Obtained from Pergularia Daemia Leaf Extract, 6(1): 1-5.

Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., dan Naseem, S., 2016, Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen, Nanomaterials, 6(71): 1-10.

Shams, S., Shahram, P., dan Raisi, M., 2013, Green Synthesis of Silver Nanoparticles in The Presence of Lens culinaris Seed Exudates, International Journal of Agriculture Crop Science, 5(23): 2812-2815.

Shi, X., Xue, C., Yu, F., Chen, T., Zhu, H., Xin, H., dan Wang, X., 2014, Functional Nanomaterials Engineered by Microorganisms, Manufacturing Nanostructures, 13: 358-380.

Sibanda, T., dan Okoh, A.I., 2007, The Challenges of Overcoming Antibiotic Resistance: Plant Extracts as Potential Sources of Antimicrobial and Resistance Modifying Agents, African Journal of Biotechnology, 6(25): 2886-2896.

Singh, R., Sahu, S.K., dan Thangaraj, M., 2014, Biosynthesis of Silver Nanoparticles by Marine Invertebrate (Polychaete) and Assessment of Its Efficacy against Human Pathogens, Journal of Nanoparticles, 2: 1-7.

Singh, C.R., Kathiresan, K., dan Anandhan, S., 2015, A Review on Marine Based Nanoparticles and Their Potential Applications, African Journal of Biotechnology, 14(18): 1525-1532.

Singh, M.J., 2016, Green Nano Actinobacteriology- An Interdisciplinary Study, InTech, 377-387.

Singh, P., Pandit, S., Garnaes, J., Tunjic, S., Mokkapati, V.R., Sultan, A., Thygesen, A.., Mackevica, A., Mateiu, R.V., Daugaard, A.E., Baun, A., dan Mijakovic, I., 2018, Green Synthesis of Gold and Silver Nanoparticles from Cannabis sativa (industrial hemp) and Their Capacity for Biofilm Inhibition, International Journal of Nanomedicine, 13: 3571-3591.

Sorbiun, M., Mehr, E.S., Ramazani, A., dan Malekzadeh, A.M., 2018, Biosynthesis of Metallic Nanoparticles Using Plant Extracts and Evaluation of Their Antibacterial Properties, Nanochem Res, 3(1): 1-16.

63 Subakanmani, S., Murugan, S., dan Devi, P. U., 2015, Green Synthesis of Gold Nanoparticles Using Hypericum hookerianumm and Its Antiparkinson like Effect in Haloperidol Induced Swiss Albino Mice, International Journal of Biological Chemistry, 9(5): 220-234.

Tiwari, P.K., dan Soo, L.Y., 2013, Gene Delivery in Conjunction With Gold Nanoparticles and Tumor Treating Electric Field, Journal of Applied Physic, 114(5): 1-5.

Umayaparvathi, S., Muthuvel, A., Saravanan, M., dan Thangavel, B., 2013, Biosynthesis of Silver Nanoparticles Using Oyster Saccostrea cucculata (Born, 1778): Study of In-Vitro Antimicrobial Activity, International Journal of Science and Nature, 4(1): 199-203.

Vijayan, S. R., Santhiyagu, P., Singamuthu, M., Ahila, N. K., Jayaraman, R., dan Ethiraj, K., 2014, Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinara conoides, and Their Antimicrofouling Activity, The Scientific World Journal, 1-10.

Vinod, V.T.P., Saravanan, P., Sreedhar, B., Devi, D.K., dan Sashidhar, R.B., 2011, A Facile Synthesis and Characterization of Ag, Au and Pt Nanoparticles using A Natural Hydrocolloid Gum Kondagogu (Cochlospermum gossypium), Colloids and Surfaces B: Biointerfaces, 83: 291-298.

Zeng, L., dan Swalla, B. J., 2005, Molecular Phylogeny of The Protochordates:

Chordate Evolution, Canadian Journal of Zoology, 83: 24-33.

64 Lampiran 1. Diagram Alur Penelitian

Preparasi Sampel

Ekstraksi

Optimasi Konsentrasi HAuCl4 dan Komposisi.

Sintesis Nanopartikel Emas

Karakterisasi

Uji Antibakteri

Spektrofotometer UV-Vis

PSA XRD FTIR

Uji Fitokimia

65 Lampiran 2. Bagan Kerja Preparasi Sampel

- Dibersihkan - Dikeringkan

- Dihaluskan dengan mesin penggiling - Ditimbang sebanyak 5 gram

- Direbus dengan akuabides 100 mL hingga suhu 80-90 oC

- Didinginkan

- Disaring dengan menggunakan kertas saring Whatmann 41

Sampel

Ekstrak

66 Lampiran 3. Pembuatan Larutan HAuCl4

- Ditimbang sebanyak 1 gram - Dilarutkan dengan aquaregia

- Dimasukkan ke dalam labu ukur 1000 mL

- Ditambahkan dengan akuades hingga tanda batas - Dihomogenkan

- Dipipet sebanyak 2, 4, 6 dan 8 mL - Dimasukkan ke dalam labu ukur 100 mL

- Ditambahkan dengan akuades hingga tanda batas - Dihomogenkan

Serbuk emas

Larutan HAuCl4 5 mM

Larutan HAuCl4 0,1 mM, 0,2 mM, 0,3 mM, 0,4 mM

67 Lampiran 4. Bagan Kerja Optimasi [HAuCl4]

- Dimasukkan ke dalam erlenmeyer dengan masing-masing konsentrasi 0,1 mM; 0,2 mM; 0,3 mM dan 0,4 mM sebanyak 25 mL

- Ditambahkan 5 mL ekstrak air Pyura sp. ke dalam masing-masing erlenmeyer

- Distirrer selama 7 jam

- Dianalisis dengan menggunakan spektrofotometer UV-Vis

HAuCl4

Data

68 Lampiran 5. Bagan Kerja Optimasi Komposisi

- Dipipet sebanyak 1 mL kedalam Erlenmeyer yang berisi 5 mL HAuCl4 0,3 mM - Distirrer selama

7 jam

- Dipipet sebanyak 1 mL kedalam Erlenmeyer yang berisi 10 mL HAuCl4 0,3 mM - Distirrer selama

7 jam

- Dipipet sebanyak 1 mL kedalam Erlenmeyer yang berisi 15 mL HAuCl4 0,3 mM - Distirrer selama

7 jam

- Dipipet sebanyak 1 mL kedalam Erlenmeyer yang berisi 20 mL HAuCl4 0,3 mM - Distirrer selama

7 jam

AuNP 1:5 AuNP 1:10 AuNP 1:15 AuNP 1:20

- Dianalisis dengan menggunakan

spektrofotometer UV-Vis

Data Ekstrak Pyura sp.

69 Lampiran 6. Bagan Kerja Uji Fitokimia

Catatan : 1. Terbentuknya endapan hijau menandakan adanya tannin

2. Terbentuknya endapan berwarna kuning (penambahan timbal asetat) dan endapan berwarna oranye (penambahan asam sulfat) menandakan adanya kandungan flavonoid

3. Terbentuknya busa yang banyak menandakan adanya saponin

Catatan: 1. Terjadinya perubahan warna dari ungu menjadi biru atau hijau menandakan adanya kandungan steroid

2. Terbentuknya warna merah pada lapisan antarmuka (interface) menujukkan adanya kandungan terpenoid

Uji Terpenoid

- diambil sebanyak 5 mL - ditambahkan 2 mL

CHCl3

- ditambahkan 3 mL H2SO4 secara perlahan hingga terbentuk lapisan

Ekstrak Pyura sp.

- diambil

sebanyak 2 mL - dicampur

dengan 2 mL akuades - ditambahkan

beberapa tetes FeCl3

Hasil

- diambil

sebanyak 2,5 mL - ditambahkan

beberapa tetes akuades

- dikocok dengan kencang

Hasil

Uji Tanin Uji Flavonoid Uji Saponin

- dimasukkan ke dua tabung reaksi

- tabung reaksi pertama ditambahkan beberapa tetes Pb(CH3COO)2

- tabung reaksi kedua

ditambahkan beberapa tetes H2SO4

Hasil

Ekstrak Batang Binahong

- diambil sebanyak 5 mL

- ditambahkan 2 mL anhidrida asetat - ditambahkan 2 mL

H2SO4 secara perlahan

Hasil

Uji Steroid

Hasil

70 Catatan : Terbentuknya endapan berwana oranye pada saat penambahan reagen Dragendorff dan endapan berwarna krem kekuning-kuningan pada saat penambahan reagen Mayer menandakan adanya kandungan alkaloid.

Ekstrak Pyura sp.

- diambil sebanyak 3 mL

- ditambahkan 3 mL HCl 1 % lalu diaduk di atas penangas

- dimasukkan ke dalam dua tabung reaksi berbeda masing-masing sebanyak 1 mL

Uji Alkaloid

- ditambahkan beberapa tetes reagen Dragendorff

- ditambahkan beberapa tetes reagen Mayer

Hasil Hasil

71 Lampiran 7. Bagan Kerja Sintesis Nanopartikel Emas

Larutan Nanopartikel Emas

- Disentrifuse pada kecepatan 14000 rpm selama 15 menit pada suhu 26oC

- Dibiarkan tumbuh selama 8 hari

- Disentrifuse kembali pada 14000 rpm selama 30 menit - Dikeringkan dalam freeze drier pada suhu 60oC selama

24 jam

Nanopartikel Emas Larutan HAuCl4 0,3 mM

- Dipipetkan sebanyak 100 mL ke dalam erlenmeyer

- Distirrer

- Ditambahkann sebanyak 20 mL ekstrak tunikata kedalam erlenmeyer - Distirrer selama 7 jam sambil

dipanaskan

- Diamati perubahan warna yang terjadi

72 Lampiran 8. Bagan Kerja Karakterisasi Nanopartikel

,

Gugus-gugus fungsi yang berperan dalam proses reduksi logam

- Nanopartikel tembaga sebanyak 2 mg dicampur dengan 100 mg KBr kemudian dibuat pelet

- Pelet yang telah dibuat dianalisis dengan FTIR

Analisis FTIR

Koloid Nanopartikel Emas

Spektrofotometri UV-Vis

Konfirmasi terbentuknya nanopartikel serta

Distribusi ukuran nanopartikel - dikarakterisasi

Analisis PSA

- Dipipet sebanyak 4 mL kedalam kuvet

- Dilakukan pengukuran pada panjang gelombang 185 – 700 nm

- Dipipet sebanyak 3 mL kedalam kuvet kuarsa - Dilakukan pengukuran

ukuran partikel

Koloid Nanopartikel Emas

73 Lampiran 9. Bagan Kerja Uji Bioaktivitas Antibakteri

- Ditimbang sebanyak 5 gram dimasukkan kedalam gelas kimia - Dilarutkan dengan 250 mL akuades di dalam labu erlenmeyer

- Dihomogenkan dengan stirrer diatas penangas air hingga mendidih dan diatur pH nya menjadi pH 7.

- Nutrien agar dimasukkan ke dalam tabung reaksi sebanyak ± 5 mL - Disterilkan dalam autoklaf pada suhu 121oC tekanan 2 atm selama 15

menit

- Didinginkan hingga suhu mencapai 40 – 45oC pada kemiringan 30o

- Bakteri Escherichia coli sebanyak 2-3 ose di gores ke dalam medium nutrient agar miring secara aseptis

- Diinkubasi dalam inkubator pada suhu 37oC selama 18-24 jam

- Diswab merata pada permukaan media Mueller Hinton Agar (MHA) yang terdapat pada cawan petri

- Didiamkan selama 5 menit -

- Nanopartikel emas ditimbang sebanyak 7.2 mg kemudian dilarutkan dengan 2 mL akuades steril.

- Kertas cakram dicelupkan kedalam larutan nanopartikel, HAuCl4 0,3 mM, ekstrak tunikata, ampisilin (kontrol positif) dan akuades (kontrol negatif) selama 15 menit.

- Diletakkan diatas media MHA yang telah berisi bakteri - Diinkubasi pada suhu 37oC selama 2×24 jam

- Diamati dan diukur diameter hambat yang terbentuk

Catatan: Diberikan perlakuan yang sama berdasarkan bagan kerja diatas untuk bakteri Staphylococus aureus.

Nutrien Agar

Media Uji Bioaktivitas Bakteri

Daya Hambat Bakteri Nutrien Agar Miring

Bakteri Uji

74 Lampiran 10. Dokumentasi Penelitian

Sampel Pyura sp sebelum dihaluskan

Sampel Pyura sp setelah dihaluskan

Ekstrak Pyura sp. Koloid Nanopartikel Emas

75 Lampiran 11. Hasil Uji Fitokimia

Foto Uji Tanin Foto Uji Flavonoid 1 Foto Uji Flavonoid 2

Foto Uji Saponin Foto Uji Steroid Foto Uji Terpenoid

Foto Uji Alkaloid 1 Foto Uji Alkaloid 2

76 Lampiran 12. Data FTIR Ekstrak H2O Pyura sp

77 Lampiran 13. Data FTIR Nanopartikel Emas

78 Lampiran 14. Data XRD Nanopartikel Emas

79 Lampiran 15. Data PSA Nanopartikel Emas

80

81

82

83

84

85

Dokumen terkait