• Tidak ada hasil yang ditemukan

Simpulan

1 Karbohidrat dan serat kasar yang terkandung pada limbah pengolahan karagenan K. alvarezii Dotty masing-masing sebesar 11.36% dan 11.64% berpotensi untuk diproses menjadi bioetanol.

2 Konsentrasi H2SO4 yang optimum untuk hidrolisis limbah karagenan K. alvarezii Dotty adalah 1 % selama 15 menit dan kadar gula pereduksi

sebesar 17.90% (b/v).

3 Adaptasi S. cerevisiae kedua mampu bertahan dengan kondisi hidolisat limbah karagenan Dotty yang ada dengan konsumsi gula yang dihasilkan sebesar

6.22% (b/b) dan menunjukkan adanya peningkatan kepadatan sel khamir sebesar 1.5 x 10 sel/ml.

4 Fermentasi yang optimum pada limbah karagenan K. alvarezii Dotty selama

empat hari dengan rendemen dan kadar etanol masing-masing sebesar 0.41% (v/v) dan 4.78%.

Saran

1 Penelitian selanjutnya disarankan menggunakan jenis khamir selain S. cerevisiae atau kombinasi dengan jenis mikrrorganisme lainnya dan

penambahan sumber nutrien molase.

2 Dilakukan proses pencucian dan demineralisasi pada bahan baku.

41 DAFTAR PUSTAKA

[AOAC] Association of Official Analytical Chemist. 2007. Official of Analysis of the Association of Official Analytical of Chemist. Arlington (USA). The Association of Official Analytical of Chemist, Inc.

[AOAC] Assosiation of Official Analytical Chemist. 1995. Official Analysis of The Assosiation of Official Analytical Chemist. Arlington (USA): The Association of Official Analytical Chemist.

[AOAC] Association of Official Analitycal Chemist. 1984. Official methods analysis the association of official analytical chemist. 14th ed. Arlington (USA). Association of Official Analytical of Chemist, Inc.

Adams JM, Toop TA, Gallagher JM, Donnison LS. 2011. Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour Technol. 102.9976–9984.

Adams JM, Gallagher JA, Donnison IS. 2008. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol. 21(5).569–574.

Alves LA, Felipe MGA, Silva JB, Silva SS, Prata AMR. 1998. Pre treatment of sugar cane bagasse hemicellulose hydrolyzate for xylitol production by Candida guilliermondii. J Appl Biochem Biotechnol. 70–72:89–98.

Bixler HJ, Porse H. 2011. A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. 23:321-355.

Bruhn A, Dahl A, Nielsen HB, Nikolaisen L, Markager S, Olesen B, Arias C, Jensen D. 2010. Bioenergy potential of Ulva lactuca, biomass yield, methane production and combustion. Bioresour Technol. 10(010):1-10. Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB. 2009. A review of the

potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Irel Rep. 1-88

Chang HN, Kim NJ, Kang J, Jeong CM. 2010. Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng. 15:1-10.

Devis HF. 2008. Bioetanol berbahan dasar ampas rumput laut Kappaphycus alvarezii [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Fardiaz S. 1992. Mikrobiologi Pangan. Bogor (ID). Pusat Antar Universitas. Institut Pertanian Bogor.

Fardiaz S. 1989. Fisiologi Fermentasi. Bogor (ID). Pusat Antar Universitas. Institut Pertanian Bogor.

Goh CS, Lee KT. 2010. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay

for renewable and sustainable development. Renew Sustain Energy. 14:842–848.

Gomez KA, Gomez AA. 1995. Prosedur Statistik untuk Penelitian Pertanian ed ke-2. Jakarta (UI) Press. Universitas Indonesia.

Hambali E. 2007. Teknologi Bioenergi. Jakarta (ID). PT.Agromedia Pustaka. Jang SS, Shirai Y, Uchida M, Wakisaka. 2012a. Production of mono sugar from

acid hydrolysis of seaweed. Biotechnol. 11(8):1953-1963.

Jeong GT, Park DH. 2010. Production of sugar and levulinic acid fro, marine biomass Gelidium amansii. Appl Biochem Biotechnol. 161:41-53.

42 Jeong TS, Kim YS, Oh KK. 2012. A kinetic assessment of glucose production from pretreated Gelidium amansii by dilute acid hydrolysis. Renewable Energy. 42:207-211

Jeong, TS, Kim, YS, Oh KK. 2011. Two-stage acid saccharification of

fractionated Gelidium amansii minimizing the sugar decomposition. Bioresour Technol. 102 (22).0529–10534.

Jeong GT, Park DH. 2010. Production of sugar and levulinic acid fro, marine biomass Gelidium amansii. Appl Biochem Biotechnol. 161:41-53.

Jorgensen H. 2009. Effect of nutrients on fermentation of pretreated wheat straw

at very high dry matter content by Saccharomyces cerevisiae. Appl Biochem Biotechnol. 153:44–57.

Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, Eswaran

K, Ghosh PK. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol. 103:180–185.

Kim NJ, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol. 7466–7469.

Kim NJ GS, Shin MK, Kim YJ, Oh KK, Kim JS, Ryu HJ, Kim KH. 2010. Method of producing biofel using sea algae. WO 2008/105618 A1. World intellectual property organization.

Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad CR. 2013. Bioethanol production from Gracilaria verrucosa a red alga in a biorefinery approach. Bioresour Technol. xxx:xxx-xxx.

Larsson S, Palmqvist E, Hagerdal BH, Tengborg C, Stenberg K, Zacchi G, Nils-Olof N. 1999. The generation of fermentation inhibitors during dilute

acid hydrolysis of softwood. Enzyme Microb Technol. 24:151–159.

Licht FO. 2006. World ethanol markets the outlook to 2015. Agra informa tunbridgewells. UK.

Meinita MDN, Kang JY, Jeong GT, Koo H, Park S, Hong YK. 2012a. Bioethanol production from the acid hydrolysate of the carrageenanophyte Kappaphycus alvarezii (cottonii). J Appl Phycol. 24: 857-862.

Meinita MDN, Hong YK, Jeong GT. 2012b. Comparison of sulfuric and hydrochloric acids as catalyst in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng. 35:123-128.

Miller GL, Blum R, Glennon WE, Burton AL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3)426-428.

Moat AG, Foster JW, Spector MP. 2002. Microbial Physiology 4th ed. New York (USA). Wiley-Liss.

Raamsdonk LM. 2000. Physiological responses of carbon fluxes to deletion of specific genes in Saccharomyces cerevisiae [disertasi]. Amsterdam (NED): University of Amsterdam.

Rajasulochana P, Krishnamoorthy P, Dhamatharan R. 2010. Amino acids, fatty acids and minerals in Kappaphycus sps. ARPN J Agricultur Biological Sci. Setyaningsih DS, Windarwati I, Khayati N, Muna, Hernowo P. 2012. Acid

hidrolysis technique and yeast adaption to increase red macroalgae bioethanol production. Int J Environ Bioener. 3(2):98-110.

43 Singh A, Olsen SI. 2011. A critical review of biochemical conversion,

sustainability and life cycle assessment of algal biofuels. Appl Energy. 88:3548–3555.

Sulfahri, Mushlihah S, Sunarto E, Irvansyah MY, Utami RS, Mangkoedihardjo S.

2011. Ethanol production from alga Spirogyra with fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. J Basic Appl Sci

Res. 1(7):589-593.

Van Soest PJ. 1963. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Ass Offic Anal

Chem. 46:829-835.

Yanagisawa M, Kanami N, Osamu A, Kiyohiko N. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Proc Biochem. 46:2111-2116.

Yeon JH, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol. 21(3):323-331.

44

Dokumen terkait