• Tidak ada hasil yang ditemukan

Source of further information and advice

Dalam dokumen Anthropometry, Apparel Sizing and Design (Halaman 195-200)

STAGE 3 : Sizing system

7.6 Source of further information and advice

Some further information and advices of project “functional dimensions” can be found in these proceedings and articles:

l Motion-oriented 3D analysis of body measurements. Proceedings of AUTEX World Textile Conference 2017, Korfu, Greece.

l Design of a motion-oriented size system. Proceedings of 12th Joint International Conference CLOTECH 2017, Lodz, Poland.

l Design of a motion-oriented size system for optimizing professional clothing and personal protective equipment. Proceedings of ITMC 2017—International Conference on Intelligent Textiles and Mass Customization, Gent, Belgium

l Design of a motion-oriented size system for optimizing professional clothing and personal protective equipment. J. Fash. Technol. Text. Eng. S4, 014. https://doi.org/10.4172/2329-9568.S4-014.

The project “mobility restrictions” is currently in the processing state (duration: from 01.05.2018 to 30.04.2020). Further information about 4-D scanner systems and scan-ning of movement is given in the proceedings of the last 3DBODY.TECH conference http://www.3dbody.tech/cap/home.html.

Acknowledgments

The IGF projects 18993 N and 20163 N under the auspices of the Research Association Forschungskuratorium Textil e.V., Reinhardtstraße 12-14 10117 Berlin, were sponsored via the AIF as part of the program to support “Industrial Community Research and Development”

(IGF), with funds from the Federal Ministry of Economics and Energy (BMWi) following an order by the German Federal Parliament.

References

3Dcopysystems, 2019. 3DCOPYSYSTEMS [Online]. Available from:https://3dcopysystems.

com/(Accessed 15 June 2018).

3dMd, 2019. Temporal-3dMD Systems (4D) [Online]. Available from:http://www.3dmd.com/

3dmd-systems/dynamic-surface-motion-capture-4d/(Accessed 30 July 2018).

Adams, D.R., 2000. Protective Ensembles for Firefighting Challenge the Balance and Stability of Firefighters. National Fire Academy, Osceola County, FL, USA.

Adams, P.S., Keyserling, W.M., 1993. Three methods for measuring range of motion while wearing protective clothing: a comparative study. Int. J. Ind. Ergon. 12, 177–191.

Aguiar, E.D., 2014. Performance Capture Methods. European Conference on Computer Vision (ECCV), Z€urich.

Akbar-Khanzadeh, F., Bisesi, M.S., Rivas, R.D., 1995. Comfort of personal protective equip-ment. Appl. Ergon. 26, 195–198.

Alexander, M., Laubach, L., 1973. The effects of personal protective equipment upon the arm-reach capability of USAF pilots. In: Interagency Conference on Management and Tech-nology in the Crew System Process.

Ashdown, S.P., 2011. Improving body movement comfort in apparel. In: Song, G. (Ed.), Improving Comfort in Clothing. Woodhead Publishing, Cambridge (GB).

Ashdown, S.P., Slocum, A.C., Lee, Y.-A., 2005. The third dimension for apparel designers:

visual assessment of hat designs for sun protection using 3-D body scanning. Cloth. Text.

Res. J. 23, 151–164.

Baytar, F., Aultman, J., Han, J., 2012. 3D body scanning for examining active body positions: an exploratory study for re-designing scrubs. In: 3rd International Conference on 3D Body Scanning Technologies, Lugano (CH).

Boorady, L.M., 2011. Functional clothing—principles of fit. Indian J. Fibre Text. Res.

36, 344–347.

Botspot, 2019. Available from:https://www.botspot.de/(Accessed 15.06.2018).

Bougourd, J., 2014. National size and shape surveys for apparel design. In: Gupta, D., Zakaria, N. (Eds.), Anthropometry, Apparel Sizing and Design. Woodhead Publishing, Cambridge (GB).

Coca, A., Roberge, R., Shepherd, A., POWELL, J.B., Stull, J.O., Williams, W.J., 2008. Ergo-nomic comparison of a chem/bio prototype firefighter ensemble and a standard ensemble.

Eur. J. Appl. Physiol. 104, 351–359.

Coca, A., Williams, W.J., Roberge, R.J., Powell, J.B., 2010. Effects of fire fighter protective ensembles on mobility and performance. Appl. Ergon. 41, 636–641.

DIN Deutsches Institut f€ur Normung e.V, 2005. Ergonomie—K€orpermaße des Menschen—Teil 2: Werte. DIN Deutsches Institut f€ur Normung e.V. DIN 33402–2.

Gersak, J., 2014. Wearing comfort using body motion analysis. In: Gupta, D., Zakaria, N. (Eds.), Anthropometry, Apparel Sizing and Desing. Woodhead Publishing, Cambridge (GB).

Gill, S., 2018. Human measurement and product development for high-performance apparel.

In: Mclaughlin, J., Sabir, T. (Eds.), High-Performance Apparel. Woodhead Publishing, Cambridge, GB.

Goodwin, J., Clark, C., Deakes, J., Burdon, D., Lawrence, C., 1992. Clinical methods of goni-ometry: a comparative study. Disabil. Rehabil. 14, 10–15.

Graveling, R., Hanson, M., 2000. Design of UK firefighter clothing. In: Kuklane, K., Holmer, I.

(Eds.), Ergonomics of Protective Clothing. National Institute for Working Life, Stockholm.

Gregoire, H., Call, D.W., Omlie, C.R., Spicuzza, R.J., 1985. An automated methodology for conducting human factors evaluations of protective garments. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 29, pp. 916–919.

Guan, P., Reiss, L., Hirshber, D.A., Weiss, A., Black, M.J., 2012. Drape: DRessing Any PErson.

ACM Trans. Graph. (Proc. SIGGRAPH). 31 (4) 35:1–35:10.

Guan, P., Weiss, A., Balan, A.O., Black, M.J., 2009. Estimating human shape and pose from a single image. In: International Conference on Computer Vision, pp. 1381–1388.

Gupta, D., 2014. Anthropometry and teh design and production of apparel: an overview.

In: Gupta, D., Zakaria, N. (Eds.), Anthropometry, Apparel Sizing and Desing.

Woodhead Publishing, Cambridge (GB).

Han, H., Nam, Y., Choi, K., 2010. Comparative analysis of 3D body scan measurements and manual measurements of size Korea adult females. Int. J. Ind. Ergon. 40, 530–540.

Heindl, C., Bauer, H., Ankerl, M., 2015. ReconstructMe SDK: a C API for real-time 3D scan-ning. In: 6th International Conference on 3D Body Scanning Technologies, Lugano (CH).

Hohenstein Institute and Human Solutions GMBH, 2008. Size GERMANY Homepage [Online]. Available from:www.sizegermany.de(Accessed 17.07.2018).

Hsiao, H., Halperin, W., 1998. Occupational safety and human factors. In: ROM, W.N. (Ed.), Environmental and Occupational Medicine. Lippincott-Raven, Philadelphia, PA, USA.

Hsiao, H., Whitestone, J., Kau, T.-Y., Whisler, R., Routley, J.G., Wilbur, M., 2014. Sizing fire-fighters: method and implications. Hum. Factors 56, 873–910.

Huck, J., 1988. Protective clothing systems: a technique for evaluating restriction of wearer mobility. Appl. Ergon. 19, 185–190.

Huck, J., 1991. Restriction to movement in fire-fighter protective clothing: evaluation of alter-native sleeves and liners. Appl. Ergon. 22, 91–100.

Human Solutions Gmbh, n.d., ANTHROSCAN [Online]. Available from: http://www.human-solutions.com/fashion/front_content.php?idcat¼141&lang¼5(Accessed 31.07.2018).

ISO—International Organisation F€ur Standardization, 1989. ISO 8559:1989: Garment Con-struction and Anthropometric Surveys—Body Dimensions. First Edition 1989–07-01 ed.

ISO—International Organisation F€ur Standardization, 2010. ISO 20685:2010 3-D Scanning Methodologies for Internationally Compatible Anthropometric Databases. ISO 20685:2010. ISO, Genf (CH).

ISO—International Organisation F€ur Standardization, 2011. ISO 26800:2011 Ergonomics—

General Approach, Principles and Concepts. ISO 26800:2011. ISO, Genf (CH).

J€urgens, H.W., Mathdorff, I., Windberg, J., 1998. Internationale anthropometrische Daten als Voraussetzung f€ur die Gestaltung von Arbeitspl€atzen und Maschinen. Bundesanstalt f€ur Arbeitsschutz und Arbeitsmedizin.

Kirchd€orfer, E., 2009. SizeGERMANY—Erl€auterungen zu den Gr€oßentabellen—Frauen.

unver€offentlicht.

kle-point. n.d., Studie in Uedem: T€ubinger Forscher analysiert F€uße mit 3D-Scanner in der Bewegung [Online]. Available from: http://www.kle-point.de/aktuell/neuigkeiten/

eintrag.php?eintrag_id¼54227(Accessed 31.01.2017).

Klepser, A., 2017. Grundlagenuntersuchung zur Erschließung der 4D-BodyScanner-Technologie f€ur die Analyse bekleidungsbedingter Mobilit€atsrestriktionen (Unpublished Project Proposal) IGF Nr. 20163N. Hohenstein Institut fuer Textilinnovationen gGmbH, B€onnigheim.

Kouchi, M., 2014. Anthropometric methods for apparel design: body measurement devices and techniques. In: Gupta, D., Zakaria, N. (Eds.), Anthropometry, Apparel Sizing and Design.

Woodhead Publishing, Cambridge (GB).

Lane, C., 2013. The potential for dense dynamic 4D surface capture illustrated with actual case studies. In: 4th International Conference on 3D Body Scanning Technologies, Long Beach (USA).

Lashawnda, M., Istook, C., 2002. Body scanning: the effects of subject respiration and foot posi-tioning on the data integrity of scanned measurements. J. Fash. Mark. Manag. 6, 103–121.

Li, G., Citrin, D., Camphausen, K., Mueller, B., Burman, C., Mychalczak, B., Miller, R.W., Song, Y., 2008. Advances in 4D medical imaging and 4D radiation therapy. Technol. Can-cer Res. Treat. 7, 67–81.

Lim, N.Y., Yu, W., Fan, J., Yip, J., 2006. Innovation of girdles. In: Yu, W. (Ed.), Innovation and Technology of Women’s Intimate Apparel. Woodhead Publishing, Cambridge (GB).

Lockhart, J.M., Bensel, C.K., 1977. The Effects of Layers of Cold Weather Clothing and Type of Liner on the Psychomotor Performance of Men. Army Natick Research and Develop-ment Labs.

Lu, J.M., Wang, M.J.J., 2010. The evaluation of scan-derived anthropometric measurements.

IEEE Trans. Instrum. Meas. 59, 2048–2054.

Morlock, S., 2015a. Entwicklung eines ergonomisch- und bewegungsorientierten Gr€oßensystems f€ur Funktionsmaße zur optimierten Gestaltung von Berufs- und Schutzbekleidung.

IGF Nr. 18993N (unpublished project proposal). Hohenstein Institut f€ur Textilinnovation gGmbH.

Morlock, S., 2015b. Passformgerechte u. bekleidungsphysiologisch optimierte Bekleidungsko-nstruktion f€ur M€anner mit großen Gr€oßen unterschiedl. K€orpermorphologien, Hohenstein:

HIT.

Morlock, S., Schenk, A., 2016. 3D-basierte Entwicklung eines innovatven Verfahrens zur Passformdiagnose von Bekleidung. Hohenstein Institut f€ur Textilinnovation gGmbH.

Morlock, S., Wendt, E., Kirchd€orfer, E., Rupp, M., Krzywinski, S., R€odel, H., 2009.

Grundsatzuntersuchung zur Konstruktion passformgerechter Bekleidung f€ur Frauen mit starken Figuren. Bekleidungsphysiologisches Institut Hohenstein; Technische Universit€at Dresden, Hohenstein.

Morlock, S., L€orcher, C., Schenk, A., 2018. Entwicklung eines ergonomisch- und bewegungsorientierten Gr€oßensystems f€ur Funktionsmaße zur optimierten Gestaltung von Berufs- und Schutzbekleidung. IGF Nr. 18993N. Hohenstein Institut f€ur Textilinnovation gGmbH.

Park, S.I., Hodgins, J.K., 2006. Capturing and animating skin deformation in human Motio.

ACM Trans. Graph. 25 (3), 881–889.

Rivera-Rivera, L.A., Turski, P., Johnson, K.M., Hoffman, C., Berman, S.E., Kilgas, P., Rowley, H.A., Carlsson, C.M., Johnson, S.C., Wieben, O., 2015. 4D flow MRI for intra-cranial hemodynamics assessment in Alzheimer’s disease. J. Cereb. Blood Flow Metab 36 (10), 1718–1730.

Rose, B., Murphy, M., 2015. Mapping Wearer Mobility for Clothing Design. European Publi-cation Server, Cambridge.

Saul, E.V., Jaffe, J., 1955. Effects of Clothing on Gross Motor Performance. U. S. Army Natick Laboratories, Natick, MA (USA).

Scheffler, C., Sch€uler, G., 2013. KAN-Studie 51: Rohfassung eines Leitfadens f€ur die richtige Auswahl und Anwendung anthropometrischer Daten Sankt Augustin. KAN Kommission Arbeitsschutzund Normung.

Schmid, U., Mecheels, J., 1981. Kr€afte an Textilien und N€ahten der Kleidung in Abh€angigkeit von K€orperbewegungen und Kleidungsschnitt. Bekleidung W€asche 2, 77–82.

Schreibmann, E., Crocker, I., Schuster, D.M., Curran, W.J., Fox, T., 2014. Four-dimensional (4D) motion detection to correct respiratory effects in treatment response assessment using molecular imaging biomarkers. Technol. Cancer Res. Treat. 13, 571–582.

Schwarz-M€uller, F., Marshall, R., Summerskill, S., 2018. Development of a positioning aid to reduce postural variability and errors in 3D whole body scan measurements. Appl. Ergon.

68, 90–100.

Sinfomed. n.d., AWB-Mapper 4D [Online]. Available from: http://www.sinfomed.de/4D-Wirbelsaeulenvermessung/(Accessed 30.07.2018).

Smith, A., Chudleigh, T., Maxwell, D., 2005. Incorporating 3D and 4D ultrasound into clinical practice. Ultrasound 13, 4–11.

Son, S.Y., Bakri, I., Muraki, S., Tochihara, Y., 2014. Comparison of firefighters and non-firefighters and the test methods used regarding the effects of personal protective equip-ment on individual mobility. Appl. Ergon. 45, 1019–1027.

Son, S.Y., Lee, J.Y., Tochihara, Y., 2013. Occupational stress and strain in relation to personal protective equipment of Japanese firefighters assessed by a questionnaire. Ind. Health 51, 214–222.

Son, S.Y., Xia, Y., 2010. Evaluation of the effects of various clothing conditions on firefighter mobility and the validity of those measurements made. J. Hum. Environ. Syst 13, 15–24.

Todd, W.L., Norton, M.J.T., 1996. Garment-Doffing kinematic analysis. Cloth. Text. Res. J.

14, 63–72.

Vialux. n.d., Vialux 4D Scanner [Online]. Available from:https://www.vialux.de/de/4d-video.

html(Accessed 14.06.2019).

Vitronic. n.d., 3D Body Scanner [Online]. Available from: https://www.vitronic.com/industrial-and-logistics-automation/sectors/3d-body-scanner.html(Accessed 31.07.2018).

Watkins, S.M., Dunne, L.E., 2015. Functional Clothing Design. Bloomsbury, New York (USA).

Wu, C., Varanasi, K., Liu, Y., Seidel, H.-P., Theobalt, C., 2011. Shading-based dynamic shape refinement from multi-view video under general illumination. In: IEEE International Con-ference on Computer Vision (ICCV), Barcelona.

Further reading

Ashdown, S., Loker, S., Schoenfelder, K., Lyman-Clarke, L., 2004. Using 3D scans for fit anal-ysis. J. Text. Apparel Technol. Manag. 4, 1–12.

Ernst, M., Detering-Koll, U., G€untzel, D., 2012. Investigation on body shaping garments using 3D-body scanning technology and 3D-simultion tools. In: 3rd International Conference on 3D Body Scanning Technologies. Hometrica Consulting, Lugano (CH).

Klepser, A., 2018. Entwicklung einer Methode zur Quantifizierung von Shaping Effekten, IGF19442N. Hohenstein Institut f€ur Textilinnovation gGmbH.

Nam, J., Barnson, D.H., Asdown, S.P., Cao, H., Jin, B.P., 2005. Fit analysis of liquid cooled vest prototypes using 3D body scanning technology. J. Text. apparel Technol. Manag. 4, 1–15.

Nawaz, N., Troynikov, O., Kennedy, K., 2012. Investigation into fit, distribution and size of air gaps in fire-fighter jackets to female body form. In: 3rd International Conference on 3D Body Scanning Technologies, Lugano (CH).

Psikuta, A., Frackiewicz-Kaczmarek, J., Frydrych, I., Rossi, R., 2012. Quantitative evaluation of air gap thickness and contact area between body and garment. Text. Res. J.

82, 1405–1413.

8

Fabric, seam and design applications in developing body-contouring jeans for better size and fit

Aisyah Mohd Yasim, Rosita Mohd Tajuddin

Faculty of Art & Design, Jalan Kreatif, University Technology Mara (UiTM), Shah Alam, Selangor, Malaysia

Dalam dokumen Anthropometry, Apparel Sizing and Design (Halaman 195-200)