• Tidak ada hasil yang ditemukan

Teknik spektroskopi adalah salah satu teknik analisis kimia-fisika yang mengamati tentang interaksi atom atau molekul dengan radiasi elektromagnetik. Ada dua macam instrumen pada teknik spektroskopik yaitu spektrometer dan spektrofotometer. Instrumen yang memakai monokromator celah yang tetap pada bidang fokus disebut spektrometer. Apabila spektrometer tersebut dilengkapi dengan detektor yang bersifat fotoelektrik disebut sebagai spektrofotometer (Muldja, 1995).

Panjang gelombang pada suatu senyawa organik yang menyerap energi cahaya bergantung pada struktur senyawa itu. Oleh karena itu teknik spektroskopi dapat digunakan untuk menentukan struktur senyawaan yang tidak diketahui dan untuk mempelajari karakteristik ikatan dari senyawaan yang diketahui (Fessenden, 1983).

Rumus molekul dapat ditentukan dari spektrum massa dan bentuk fragmentasinya. Gugus fungsi alami ditentukan dari spektrum inframerah. Gugus fungsi terkonjugasi dapat ditentukan dari spektrum elektronik. Struktur dapat ditentukan berdasarkan inti proton dan karbon yang dihasilkan molekul dari spektrum 1H dan 13C NMR (Brown,1937).

2.4.1 Spektrofotometer Ultraviolet-Visibel (UV-Vis)

Spektrofotometer ultraviolet-visible adalah anggota tenik analisis spektroskopik yang memakai sumber radiasi elektromagnetik ultraviolet dekat dan sinar tampak dengan memakai instrumen spektrofotometer. Spektrofotometer ultraviolet-visibel dapat melakukan penentuan terhadap sampel yang berupa larutan, gas atau uap. Spektofotometer ultraviolet-visibel melibatkan energi elektronik yang yang cukup besar pada molekul yang dianalisis. Suatu molekul yang sederhana apabila dikenakan

radiasi elektromagnetik akan mengabsopsi radiasi elektromagnetik yang energinya sesuai. Interaksi tersebuat akan meningkatkan energi potensial elektron pada tingkat keadaan eksitasi. Apabila pada molekul sederhana tersebut hanya terjadi transisi elektronik pada satu macam gugus maka akan terjadi suatu absorpsi yang merupakan garis spektrum (Muldja,1995).

Flavonoida mengandung sistem aromatik yang terkonjugasi karena itu memiliki menunjukkan pita serapan kuat pada daerah spektrum ultraviolet dan spektrum tampak (Harbone, 1987). Spektrum flavonoida biasanya ditentukan dalam larutan dengan pelarut metanol atau etanol. Spektrum khas terdiri atas dua maksima pada rentang 240-285 nm (pita II) dan 300-550 nm (pita I). Kedudukan yang tepat dan kekuatan nisbi maksima terssebut memberika informasi yang berharga mengenai sifat dan pola oksigenasinya. Ciri khas spektrum adalah kekuatan nisbi yang rendah pada pita I dalam dhidroflavon,dihidroflavonol dan isoflavon serta kedudukan pita I pada spektrum khalkon, auron dan antosianin yang terdapat pada panjang gelombang yang tinggi. petunjuk mengenai rentang maksima utama yang diperkirakan untuk setiap jenis flavonoida adalah sebagai berikut:

Tabel 2.2 Rentang serapan spektrum UV-Tampak flavonoida

Pita II (nm) Pita I (nm) Jenis flavonoida 250-280 250-280 250-280 245-275 275-295 230-270 (kekuatan rendah) 230-270 (kekuatan rendah) 270-280 310-350 330-360 350-385 310-330 bahu Kira-kira 320 puncak 300-330 bahu 340-390 380-430 465-560 Flavon

Flavonol (3-OH tersubtitusi) Flavonol (3-OH bebas) Isoflavon

Isoflavon (5-deoksi-6,7-dioksigenasi)

Flavanon dan dihidroflavonol Khalkon

Auron

Antosianidin dan antosianin

2.4.2 Spektrofotometer Infra Merah (FT-IR)

Cahaya tampak terdiri dari beberapa range frekuensi elektomagnetik yang berbeda dimana setiap frekuensi bisa dilihat sebagai warna yang berebeda. Radiasi inframerah juga mengandung beberapa range frekuensi tetapi tidak dapat dilihat oleh mata. Pengukuran pada spektrum inframerah dilakukan pada daerah cahaya inframerah tengah yaitu pada panjang gelombang 2,5-50 μm atau bilangan gelombang 4000-200 cm-1. Energi yang dihasilkan oleh radiasi ini akan menyebabkan vibrasi atau getaran pada molekul. Pita absorbsi inframerah sangat khas dan spesifik untuk setiap tipe ikatan kimia atau gugus fungsi.

Jika suatu frekuensi tertentu dari radiasi inframerah dilewatkan pada suatu sampel senyawa organik maka akan terjadi penyerapan frekunsi oleh senyawa tersebut. Detektor akan mendeteksi frekuensi yang dilewatkan pada sampel yang tidak diserap oleh senyawa. Banyaknya frekuensi yang melewati senyawa atau yang tidak diserap akan diukur sebagai persen transmitan. Spektrum yang dihasilkan berupa grafik yang akan menunjukkan persentase transmitan yang bervariasi pada setiap frekuensi radiasi inframerah. Satuan frekunsi yang digunakan dinyatakan dalam bilangan gelombang (Dachriyanus, 2004).

Terdapat dua macam getaran molekul, yaitu getaran ulur dan getaran tekuk. Getaran ulur adalah suatu gerakan berirama di sepanjang sumbu ikatan sehingga jarak antar atom bertambah atau berkurang. Getaran tekuk dapat terjadi karena perubahan sudut-sudut ikatan antara ikatan-ikatan pada sebuah atom atau karena gerakan sebuah gugusan atom terhadap sisa molekul tanpa gerakan nisbi atom-atom dalam gugusan (Silverstein, 1986). Instrumen yang digunakan untuk mengukur resapan radiasi inframerah pada berbagai macam panjang gelombang disebut spektrofotometer inframerah (Fessenden, 1982). Spektrofotometer inframerah pada umumnya digunakan untuk:

1. Menentukan gugus fungsi suatu senyawa organik

2. Mengetahui informasi struktur suatu senyawa organik dengan membandingkan daerah sidik jarinya (Dachriyanus, 2004).

2.4.3 Spektrometer Resonansi Magnetik Inti proton (1H-NMR)

Spektrometer Resonansi Magnetik Inti (Nuclear Magnetic Resonance, NMR) merupakan alat yang berguna pada penentuan struktur molekul organik. Teknik ini memberikan informasi mengenai berbagai jenis atom hidrogen dalam molekul. Spektrum Resonansi Magnetik Inti memberikan informasi mengenai lingkungan kimia atom hidrogen, jumlah atom hidrogen dalam setiap lingkungan dan struktur gugusan yang berdekatan dengan setiap atom hidrogen (Creswell, 1982).

Spektrum Resonansi Mangeti Inti pada umunya digunakan untuk:

1. Menentukan jumlah proton yang memiliki lingkungan kimia yang sama pada suatu senyawa organik

2. Mengetahui informasi mengenai struktur suatu senyawa organik (Dachriyanus, 2004).

Terperisai dan tak terperisai merupakan istilah relatif. Untuk memperoleh pengukuran yang kuantitatif diperlukan suatu titik rujukan. Senyawa yang dipilih untuk rujukan adalah Tetrametilsilana (CH3)4

1. TMS mempunyai 12 atom hidrogen yang keseluruhannya mempunyai lingkungan kimia yang sama, sehingga menghasilkan sinyal singlet yang kuat karena mengandung banyak atom hidrogen

Si, yang proton-protonnya menyerap pada ujung kanan spektrum NMR (Fessenden, 1982). Pada beberapa spektrum NMR akan terlihat sinyal TMS pada angka nol sehingga sinyal ini tidak perlu dianalisa. TMS dipilih sebagai standart karena:

2. Elektron-elektron pada ikatan C-H dalam senyawa ini berada dekat dengan hidrogen jia dibanding dengan senyawa lain. Ini berarti inti hidrogen sangat terlindungi dari medan magneteksternal sehingga dibutuhkan medan magnet yang besar untuk membawa atom hidrogen ke kondisi resonansi (Dachriyanus, 2004).

Pada spektrometri NMR integrasi sangat penting. Harga integrasi menunjukkan daerah atau luas puncak dari tiap – tiap proton . Sedangkan luas daerah atau luas puncak tersebut sesuai dengan jumlah proton. Dengan demikian perbandingan tiap integrasi proton sama dengan perbandingan jumlah proton dalam molekul (Muldja,1995).

Absorbsi kebanyakan proton lain dijumpai dibawah medan absorbsi TMS. Selisih antara posisi absorbsi TMS dan posisi absorbsi suatu proton tertentu disebut pergeseran kimia. Pergeseran kimia dinyatakan sebagai bagian tiap juta (ppm) dari radio frekuensi yang kita gunakan (Fessenden, 1982).

BAB 3

Dokumen terkait