• Tidak ada hasil yang ditemukan

TINJAUAN PUSTAKA 2.1 Pengertian Spektrofotometer

Dalam dokumen Laporan Praktikum Kimia Analisa (1) (Halaman 35-45)

Spektrofotometri adalah suatu metode analisis yang berdasarkan pada pengukuran serapan sinar monokromatis oleh suatu lajur larutan berwarna pada panjang gelombang yang spesifik dengan menggunakan monokromator prisma atau kisi difraksi dan detector vacuum phototube atau tabung foton hampa. Alat yang digunakan adalah spektrofotometer, yaitu sutu alat yang digunakan untuk menentukan suatu senyawa baik secara kuantitatif maupun kualitatif dengan mengukur transmitan ataupun absorban dari suatu cuplikan sebagai fungsi dari konsentrasi. Pada titrasi spektrofotometri, sinar yang digunakan merupakan satu berkas yang panjangnya tidak berbeda banyak antara satu dengan yang lainnya, sedangkan dalam kalorimetri perbedaan panjang gelombang dapat lebih besar. Dalam hubungan ini dapat disebut juga spektrofotometri adsorpsi atomic (Harjadi, 1990).

Spektrometer menghasilkan sinar dari spectrum dengan panjang gelombang tertentu dan fotometer adalah alat pengukur intensitas cahaya yang ditransmisikan atau diabsorbsi. Kelebihan spectrometer dibandingkan fotometer adalah panjang gelombang dari sinar putih dapat lebih terseleksi dan ini diperoleh dengan alat pengurai seperti prisma, grating, atau celah optis. Pada fotometer filter dari berbagai warna yang mempunyai spesifikasi melewatkan trayek panjang gelombang tertentu. Pada fotometer filter tidak mungkin diperoleh panjang gelombang yang benar-benar monokromatis, melainkan suatu trayek panjang gelombang 30-40 nm. Sedangkan pada spektrofotometer, panjang gelombang yang benar-benar terseleksi dapatdiperoleh dengan bantuan alat pengurai cahaya seperti prisma. Suatu spektrofotometer tersusun dari sumber spektrum tampak yang kontiniu, monokromator, sel pengabsorbsi untuk larutan sampel atau blanko dan suatu alat untuk mengukur perbedaan absorbsi antara sampel dan blanko ataupun pembanding (Khopkar, 2002).

Sinar yang melewati suatu larutan akan terserap oleh senyawa-senyawa dalam larutan tersebut. Intensitas sinar yang diserap tergantung pada jenis senyawa yang ada, konsentrasi dan tebal atau panjang larutan tersebut. Makin tinggi konsentrasi suatu senyawa dalam larutan, makin banyak sinar yang diserap.

Spektrometer menghasilkan sinar dari spectrum dengan panjang gelombang tertentu dan fotometer adalah alat pengukur intensitas cahaya yang ditransmisikan atau diabsorbsi. Kelebihan spectrometer dibandingkan fotometer adalah panjang gelombang dari sinar putih dapat lebih terseleksi dan ini ndiperoleh dengan alat pengurai seperti prisma, grating, atau celah optis. Pada fotometer filter berbagai filter dari berbagai warna yang mempunyai spesifikasi melewatkan trayek panjang gelombang tertentu.

Pada fotometer filter tidak mungkin diperoleh panjang gelombang yang benar-benar monokromatis, melainkan suatu trayek panjang gelombang 30-40 nm. Sedangkan pada spektrofotometer, pnjang gelombang yang benar-benar terseleksi dapatdiperoleh dengan bantuan alat pengurai cahaya seperti prisma. Suatu spektrofotometer tersusun dari sumber spektrum tampak yang kontinyu, monokromator, sel pengabsorbsi untuk larutan sampel atau blanko dan suatu alat untuk mengukur perbedaan absorbsi antara sampel dan blanko ataupun pembanding. Pengertian spektrofotometri lebih spesifik atau pengertiannya lebih sempit karena ditunjukan pada interaksi antara materi dengan cahaya (baik yang dilihat maupun tidak terlihat), sedangkan pengertian spektroskopi lebih luas misalnya cahaya maupun medan magnet termasuk gelombang elektromagnetik (Eka, 2007 ).

Pengertian spektroskopi dan spektrofotometri pada dasarnya sama yaitu di dasarkan pada interaksi antara materi dengan radiasi elektromagnetik. Namun pengertian spektrofotometri lebih spesifik atau pengertiannya lebih sempit karena ditunjukan pada interaksi antara materi dengan cahaya (baik yang dilihat maupun tidak terlihat). Sedangkan pengertian spektroskopi lebih luas misalnya cahaya maupun medan magnet termasuk gelombang elektromagnetik.

Radiasi elektromagnetik memiliki sifat ganda yang disebut sebagai sifat dualistik cahaya yaitu:

37

1) Sebagai gelombang

2) Sebagai partikel-partikel energi yang disebut foton.

Karena sifat tersebut maka beberapa parameter perlu diketahui misalnya panjang gelombang, frekuensi dan energi tiap foton. Hubungan dari ketiga parameter di atas dirumuskan oleh Planck yang dikenal dengan persamaan Planck. Hubungan antara panjang gelombang frekuensi dirumuskan sebagai.

c= λ . v atau λ = c/v atau v = c/λ

Persamaan Planck: hubungan antara energi tiap foton dengan frekuensi E= h . v

E = h . c/ λ Dimana:

E = energi tiap foton

h = tetapan Planck (6,626 x 10-34 J.s), v = frekuensi sinar

c = kecepatan cahaya (3 x 108 m.s-1).

Dari rumus di atas dapat diketahui bahwa energi dan frekuensi suatu foton akan berbanding terbalik dengan panjang gelombang tetapi energi yang dimiliki suatu foton akan berbanding lurus dengan frekuensinya. Misalnya, energi yang dihasilkan cahaya UV lebih besar dari pada energi yang dihasilkan sinar tampak. Hal ini disebabkan UV memiliki panjang gelombang (λ) yang lebih pendek (100– 400 nm) dibanding panjang gelombang yang dimiliki sinar tampak (400–800 nm).

Interaksi antara materi dengan cahaya disini adalah terjadi penyerapan cahaya, baik cahaya Uv, Vis maupun Ir oleh materi sehingga spektrofotometri disebut juga sebagai spektroskopi absorbsi. Dari 4 jenis spektrofotometri ini (UV, Vis, UV-Vis dan Ir) memiliki prinsip kerja yang sama yaitu “adanya interaksi antara materi dengan cahaya yang memiliki panjang gelombang tertentu”. Perbedaannya terletak pada panjang gelombang yang digunakan.

Secara sederhana Instrumen spektrofotometri yang disebut spektrofotometer terdiri dari :

2.2 Keuntungan dari Spektrofotometer a. Dapat digunakan secara luas

b. Memiliki kepekaan yang tinggi c. Keseletifannya cukup baik d. Tingkat ketelitian tinggi

Syarat larutan yang dapat digunakan untuk analisis campuran dua komponen adalah

1) Komponen-komponen dalam larutan tidak boleh saling bereaksi 2) Penyerapan komponen-komponen tersebut tiak sama

3) Komponen harus menyerap pada panjang gelombang tertentu (Underwood, 1988).

2.3 Bagian-Bagian dalam Spektrofotometri

1. Sumber sinar polikromatis berfungsi sebagai sumber sinar polikromatis dengan berbagai macam rentang panjang gelombang. misalnya untuk spektrofotometer:

1) UV menggunakan lampu deuterium atau disebut juga heavy hidrogen 2) VIS menggunakan lampu tungsten yang sering disebut lampu wolfram 3) UV-VIS menggunan photodiode yang telah dilengkapi monokromator. 4) Infra merah, lampu pada panjang gelombang IR.

2. Monokromator berfungsi sebagai penyeleksi panjang gelombang yaitu mengubah cahaya yang berasal dari sumber sinar polikromatis menjadi cahaya monaokromatis. Jenis monokromator yang saat ini banyak digunakan adalan gratting atau lensa prisma dan filter optik. Jika digunakan grating maka cahaya akan dirubah menjadi spektrum cahaya.

39

Sedangkan filter optik berupa lensa berwarna sehingga cahaya yang diteruskan sesuai dengan warnya lensa yang dikenai cahaya. Ada banyak lensa warna dalam satu alat yang digunakan sesuai dengan jenis pemeriksaan.

3. Sel sampel berfungsi sebagai tempat meletakan sampel

a. UV, VIS dan UV-VIS menggunakan kuvet sebagai tempat sampel. Kuvet biasanya terbuat dari kuarsa atau gelas, namun kuvet dari kuarsa yang terbuat dari silika memiliki kualitas yang lebih baik. Hal ini disebabkan yang terbuat dari kaca dan plastik dapat menyerap UV sehingga penggunaannya hanya pada spektrofotometer sinar tampak (VIS). Kuvet biasanya berbentuk persegi panjang dengan lebar 1 cm.

b. IR, untuk sampel cair dan padat (dalam bentuk pasta) biasanya dioleskan pada dua lempeng natrium klorida. Untuk sampel dalam bentuk larutan dimasukan ke dalam sel natrium klorida. Sel ini akan dipecahkan untuk mengambil kembali larutan yang dianalisis, jika sampel yang dimiliki sangat sedikit dan harganya mahal.

4. Detektor berfungsi menangkap cahaya yang diteruskan dari sampel dan mengubahnya menjadi arus listrik. Syarat-syarat sebuah detektor :

a. Kepekaan yang tinggi

b. Perbandingan isyarat atau signal dengan bising tinggi c. Respon konstan pada berbagai panjang gelombang. d. Waktu respon cepat dan signal minimum tanpa radiasi.

e. Signal listrik yang dihasilkan harus sebanding dengan tenaga radiasi. Macam-macam detektor :

2) Photocell, misalnya CdS. 3) Phototube

4) Hantaran foto 5) Dioda foto 6) Detektor panas

5. Read out merupakan suatu sistem baca yang menangkap besarnya isyarat listrik yang berasal dari detektor (Underwood, 1988).

2.4 Proses Absorbsi Cahaya pada Spektrofotometri

Ketika cahaya dengan panjang berbagai panjang gelombang (cahaya polikromatis) mengenai suatu zat, maka cahaya dengan panjang gelombang tertentu saja yang akan diserap. Di dalam suatu molekul yang memegang peranan penting adalah elektron valensi dari setiap atom yang ada hingga terbentuk suatu materi. Elektron-elektron yang dimiliki oleh suatu molekul dapat berpindah (eksitasi), berputar (rotasi) dan bergetar (vibrasi) jika dikenai suatu energi.

Jika zat menyerap cahaya tampak dan UV maka akan terjadi perpindahan elektron dari keadaan dasar menuju ke keadaan tereksitasi. Perpindahan elektron ini disebut transisi elektronik. Apabila cahaya yang diserap adalah cahaya inframerah maka elektron yang ada dalam atom atau elektron ikatan pada suatu molekul dapat hanya akan bergetar (vibrasi). Sedangkan gerakan berputar elektron terjadi pada energi yang lebih rendah lagi misalnya pada gelombang radio.

Atas dasar inilah spektrofotometri dirancang untuk mengukur konsentrasi suatu suatu yang ada dalam suatu sampel. Dimana zat yang ada dalam sel sampel disinari dengan cahaya yang memiliki panjang gelombang tertentu. Ketika cahaya mengenai sampel sebagian akan diserap, sebagian akan dihamburkan dan sebagian lagi akan diteruskan.

Pada spektrofotometri, cahaya datang atau cahaya masuk atau cahaya yang mengenai permukaan zat dan cahaya setelah melewati zat tidak dapat diukur, yang dapat diukur adalah It/I atau I/It (perbandingan cahaya datang dengan cahaya setelah melewati materi (sampel) (Harjadi, 1990).

41

2.5 Hukum Lambert - Beer

Berdasarkan hukum Lambert-Beer, rumus yang digunakan untuk menghitung banyaknya cahaya yang hamburkan:

T = It

Io atau %T = It

Io × 100% Dan absorbansi dinyatakan dengan rumus:

A = - Log T = -log ItIo Di mana:

I = merupakan intensitas cahaya datang

It atau I1 = intensitas cahaya setelah melewati sampel.

Rumus yang diturunkan dari Hukum Beer dapat ditulis sebagai: A= a . b . c atau A = ε . b . c

Dimana: A = absorbansi

c = konsentrasi larutan yang diukur

ε = tetapan absorptivitas molar (jika konsentrasi larutan yang diukur dalam molar) a = tetapan absorptivitas (jika konsentrasi larutan yang diukur dalam ppm).

Secara eksperimen hukum Lambert-beer akan terpenuhi apabila peralatan yang digunakan memenuhi kriteria-kriteria berikut:

1. Sinar yang masuk atau sinar yang mengenai sel sampel berupa sinar dengan dengan panjang gelombang tunggal (monokromatis).

2. Penyerapan sinar oleh suatu molekul yang ada di dalam larutan tidak dipengaruhi oleh molekul yang lain yang ada bersama dalam satu larutan. 3. Penyerapan terjadi di dalam volume larutan yang luas penampang (tebal

4. Penyerapan tidak menghasilkan pemancaran sinar pendafluor. Artinya larutan yang diukur harus benar-benar jernih agar tidak terjadi hamburan cahaya oleh partikel-partikel koloid atau suspensi yang ada di dalam larutan. 5. Konsentrasi analit rendah. Karena apabila konsentrasi tinggi akan menggangu

kelinearan grafik absorbansi versus konsentrasi (Harjadi, 1990). 2.6 Faktor-faktor Penyebab Kesalahan Spektrofotometer

1. Adanya serapan oleh pelarut. Hal ini dapat diatasi dengan penggunaan blangko, yaitu larutan yang berisi selain komponen yang akan dianalisis termasuk zat pembentuk warna.

2. Serapan oleh kuvet. Kuvet yang ada biasanya dari bahan gelas atau kuarsa, namun kuvet dari kuarsa memiliki kualitas yang lebih baik.

3. Kesalahan fotometrik normal pada pengukuran dengan absorbansi sangat rendah atau sangat tinggi, hal ini dapat diatur dengan pengaturan konsentrasi, sesuai dengan kisaran sensitivitas dari alat yang digunakan (melalui pengenceran atau pemekatan) (Harjadi, 1990).

2.7 Menentukan konsentrasi sampel dengan cara kurva kalibrasi

Konsentrasi sampel dalam suatu larutan dapat ditentukan dengan rumus yang diturunkan dari hukum lambert beer (A= a . b . c atau A = ε . b . c). Namun ada cara lain yang dapat digunakan untuk menentukan konsentrasi suatu spesi yang ada dalam suatu larutan yakni dengan cara kurva kalibarasi. Cara ini sebenarnya masih tetap bertumpu pada hukum Lambert-Beer yakni absorbansi berbanding lurus dengan konsentrasi.

Langkah-langkah yang perlu dilakukan dalam penentuan konsentrasi zat dengan kurva kalibarasi:

1. Maching kuvet : mencari dua buah kuvet yang memiliki absorbansi atau transmitansi sama atau hampir sama. Dua buah kuvet inilah yang akan digunakan untuk analisis, satu untuk blanko, satu untuk sampel. Dalam

43

melakukan analisis Maching kuvet harus dilakukan agar kesalahannya makin kecil.

2. Membuat larutan standar pada berbagai konsentrasi. Larutan standar yaitu larutan yang konsentrasinya telah diketahui secara pasti. Konsentrasi larutan standar dibuat dari yang lebih kecil sampai lebih besar dari konsentrasi analit yang diperkirakan.

3. Ambilah salah satu larutan standar, kemudian ukur pada berbagai panjang gelombang. Hal ini dilakukan untuk mengetahui pada panjang gelombang berapa, absorbansi yang dihasilkan paling besar. Panjang gelombang yang menghasilkan absorbansi paling besar atau paling tinggi disebut panjang gelombang maksimum (lmaks).

4. Ukurlah absorbansi semua larutan standar yang telah dibuat pada panjang gelombang maksimum.

5. Catat absorbansi yang dihasilkan dari semua larutan standar, kemudian alurkan pada grafik absorbansi vs konsentrasi sehingga diperoleh suatu kurva yang disebut kurva kalibarasi. Dari hukum Lambart-Beer jika absorbansi yang dihasilkan berkisar antara 0,2-0,8 maka grafik akan berbentuk garis lurus, namun hal ini tidak dapat dipastikan.

6. Ukurlah absorbansi larutan yang belum diketahui konsentrasinya. Setelah diperoleh absorbansinya, masukan nilai tersebut pada grafik yang diperoleh pada langkah 5. Misalkan absorbansi yang diperoleh 0,6. Maka jika ditarik garis lurus konsentrasi sampel akan sama dengan konsentrasi larutan standar 10 ppm.

Selain dengan cara tersebut, konsentrasi sampel dapat dihitung dengan persamaan regresi linear:

y = bx + a

persamaan di atas dapat dihitung dengan bantuan kalkulator. Setelah diperoleh persamaan di atas, absorbansi sampel yang diperoleh dimasukan sebagai nila y

sehingga diperoleh nila x. Nilai x yang diperoleh merupakan konsentrasi sampel yang dianalisis (Eka, 2007 ).

2.8 Cara Kerja Spektrofotometer

Cara kerja spektrofotometer secara singkat adalah sebagai berikut. Tempatkan larutan pembanding, misalnya blanko dalam sel pertama sedangkan larutan yang akan dianalisis pada sel kedua. Kemudian pilih fotosel yang cocok 200-650 nm ( 650-1100 nm ) agar daerah λ yang diperlukan dapat terliputi.

Dengan ruang fotosel dalam keadaan tertutup ”nol” galvanometer dengan menggunakan tombol dark-current. Pilih h yang diinginkan, buk fotosel dan lewatkan berkas cahaya pada blanko dan ”nol” galvanometer didapat dengan memutar tombol sensitivitas. Dengan menggunakn tombol transmitansi, kemudian atur besarnya pada 100 %. Lewatkan berkas cahaya pada larutan sampel yang akan dianalisis. Skala absorbansi menunjukkan absorbansi larutan sampel (Khopkar, 2002).

BAB III

METODELOGI PRAKTIKUM

Dalam dokumen Laporan Praktikum Kimia Analisa (1) (Halaman 35-45)

Dokumen terkait