• Tidak ada hasil yang ditemukan

TINJAUAN PUSTAKA

2.1.2. Tongkol Jagung

Tongkol jagung merupakan limbah tanaman yang setelah diambil bijinya tongkol jagung tersebut umumnya dibuang begitu saja, sehingga hanya akan meningkatkan jumlah sampah. Tongkol jagung dan biji jagung merupakan sumber karbohidrat potensial untuk dijadikan bahan pangan, sayuran, dan bahan baku sebagai industri makanan. Kandungan kimia jagung terdiri atas air 13,5%, protein 10%, lemak 4%, karbohidrat 61%, gula 1,4%, pentosan 6%, serat kasar 2,3%, abu 1,45%, dan zat-zat lain 0,4% (Rukmana,1997).

Tongkol jagung adalah tempat pembentukan lembaga dan gudang penyimpanan makanan untuk pertumbuhan biji. Jagung mengandung kurang lebih 30% tongkol jagung sedangkan sisanya adalah kulit dan biji. Tongkol jagung mengandung xylan 31,1%, selulosa 34,3%, lignin 17,7%, dan abu 16,9% (Horiuchi, 2013). Komposisi kimia tersebut membuat tongkol jagung dapat digunakan sebagai sumber energy, bahan pakan ternak, dan sebagai sumber karbon bagi pertumbuhan mikroorganisme (Shofiyanto, 2008).

2.2. Karbohidrat

Karbohidrat merupakan bahan yang banyak terdapat dalam makanan, dan didalam tubuh mengalami perubahan atau metabolisme. Hasil metabolisme karbohidrat antara lain glukosa yang terdapat dalam darah, sedangkan glikogen adalah karbohidrat yang disintesis dalam hati dan digunakan oleh sel-sel pada jaringan otot sebagai sumber energy. Jadi ada bermacam-macam senyawa yang termasuk dalam golongan karbohidrat ini. Dari contoh-contoh tadi kita mengetahui bahwa amilum atau pati, selulosa, glikogen, gula, atau sukrosa dan glukosa merupakan beberapa senyawa karborhidrat yang terpenting dalam kehidupan.

Molekul karbohidrat terdiri atas atom-atom karbon, hydrogen dan oksigen. Jumlah atom hydrogen dan oksigen merupakan perbandingan 2:1 seperti molekul air. Sebagai contoh molekul glukosa mempunyai rumus kimia C12H22O11. Pada glukosa tampak bahwa jumlah atom hidrogen berbanding jumlah atom oksigen ialah 12:6 atau 2:1, sedangkan pada sukrosa 22:11 atau 2:1. Dengan demikian dahulu orang berkesimpulan adanya air dalam karbohidrat, yang berasal dari “karbon” yang berarti mengandung unsur karbon dan “hidrat” yang berarti air. (Poedjiadi, A. 1994)

Beberapa turunan molekul karbohidrat yang ada dan dapat dibentuk dari pengurangan. Sebagai contoh, jika ada molekul yang mempunyai oksigen yang jumlahnya lebih sedikit lalu kita katakana ini sebagai deoksi karbohidrat, dan yang paling banyak dikenal adalah deoksiribosa yang komponen utamanya yaitu deoksiribonukleat (DNA). Gula berbeda dari D-ribosa yang didalamnya terdapat golongan hidroksil yang diganti oleh atom hydrogen (penghilangan satu oksigen).

Gula alkohol dibentuk ketika golongan karbonil direduksi menjadi golongan hidroksil. Gula alkohol biasanya digunakan sebagai pengganti makanan. Untuk alasan ini banyak produk seperti permen karet yang manis mengandung gula alkohol. Yang paling penting kegunaan dari alkohol adalah dalam pembuatan makanan untuk orang diabetes. Gula alkohol diserap diusus halus yang

menghasilkan perubahan kecil pada tingkat gula darah. Selain itu, gula alkohol diserap lalu diekskresikan ke urin dari pada untuk metabolisme (Walker, S. 2008).

2.2.1. Selulosa

Selulosa adalah polimer glukosa yang berbentuk rantai linier dan dihubungkan oleh ikatan β-1,4 glikosidik. Struktur yang linier menyebabkan selulosa bersifat kristalin dan tidak mudah larut. Selulosa tidak mudah didegradasi secara kimia maupun mekanis. Di alam, biasanya selulosa berasosiasi dengan polisakarida lain seperti hemiselulosa atau lignin membentuk kerangka utama dinding sel tumbuhan (Holtzapple, M.T.2003).

Unit penyusun (building block) selulosa adalah selobiosa karena unit keterulangan dalam molekul selulosa adalah 2 unit gula (D-glukosa). Selulosa adalah senyawa yang tidak larut di dalam air dan ditemukan pada dinding sel tumbuhan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan. Selulosa merupakan polisakarida struktural yang berfungsi untuk memberikan perlindungan, bentuk, dan penyangga terhadap sel, dan jaringan (Lehninger, A.L.1993).

Selulosa memiliki struktur yang unik karena kecenderungannya membentuk ikatan hidrogen yang kuat. Ikatan hidrogen intramolekular terbentuk antara: (1) gugus hidroksil C3 pada unit glukosa dan atom O cincin piranosa yang terdapat pada unit glukosa terdekat, (2) gugus hidroksil pada C2 dan atom O pada C6 unit glukosa tetangganya. Ikatan hidrogen antarmolekul terbentuk antara gugus hidroksil C6 dan atom O pada C3 di sepanjang sumbu b (Gambar 4). Dengan adanya ikatan hidrogen serta gaya van der Waals yang terbentuk, maka struktur selulosa dapat tersusun secara teratur dan membentuk daerah kristalin. Di samping itu, juga terbentuk rangkaian struktur yang tidak tersusun secara teratur yang akan membentuk daerah nonkristalin atau amorf. Semakin tinggi packing density-nya maka selulosa akan berbentuk kristal, sedangkan semakin rendah packing density maka selulosa akan berbentuk amorf. Derajat kristalinitas selulosa

dipengaruhi oleh sumber dan perlakuan yang diberikan. Rantai-rantai selulosa akan bergabung menjadi satu kesatuan membentuk mikrofibril, bagian kristalin akan bergabung dengan bagian nonkristalin. Mikrofibril-mikrofibril akan bergabung membentuk fibril, selanjutnya gabungan fibril akan membentuk serat (Klemm, D. 1998).

Gambar 2.1. Struktur Selulosa

Berdasarkan derajat polimerisasi dan kelarutan dalam senyawa natrium hidroksida (NaOH) 17,5%, selulosa dapat dibedakan atas tiga jenis yaitu :

1. Selulosa α (Alpha Cellulose) adalah selulosa berantai panjang, tidak larut dalam larutan NaOH 17,5% atau larutan basa kuat dengan derajat polimerisasi 600 - 1500. Selulosa α dipakai sebagai penduga dan atau penentu tingkat kemurnian selulosa. Selulosa α merupakan kualitas selulosa yang paling tinggi (murni). Selulosa α > 92% memenuhi syarat untuk digunakan sebagai bahan baku utama pembuatan propelan dan atau bahan peledak, sedangkan selulosa kualitas dibawahnya digunakan sebagai bahan baku pada industri kertas dan industri sandang/kain. Semakin tinggi kadar alfa selulosa, maka semakin baik mutu bahannya (Nuringtyas, T.R.2010) 2. Selulosa β (Betha Cellulose) adalah selulosa berantai pendek, larut dalam

larutan NaOH 17,5% atau basa kuat dengan derajat polimerisasi 15 - 90, dapat mengendap bila dinetralkan

3. Selulosa γ (Gamma cellulose) adalah sama dengan selulosa β, tetapi derajat polimerisasinya kurang dari 15. Bervariasinya struktur kimia selulosa (α, β, γ) mempunyai pengaruh yang besar pada reaktivitasnya. Gugus-gugus hidroksil yang terdapat dalam daerahdaerah amorf sangat mudah dicapai dan mudah bereaksi, sedangkan gugus-gugus 9 hidroksil yang terdapat dalam

daerah-daerah kristalin dengan berkas yang rapat dan ikatan antar rantai yang kuat mungkin tidak dapat dicapai sama sekali. Pembengkakan awal selulosa diperlukan baik dalam eterifikasi (alkali) maupun dalam esterfikasi (asam) (Sjostrom. E, 1995).

Dokumen terkait