APPLICATION AND CONCLUSION
7.1 Application of our new fixed point iterative procedure to constrained optimization problemsand split feasibility problems
This section is allocated to some applications of our new fixed point iterative procedure (2.18). Let π»π»be a real Hilbert spacewith inner product β©β,ββͺand normβββ, respectively. Let πΆπΆbe a nonempty closedconvex subset of π»π»and ππ:πΆπΆ β π»π»a nonlinear operator. ππis said to be:
(1) πΏπΏ-Lipschitzian if there exists a constantπΏπΏ > 0 such that
βππππ β ππππβ β€ πΏπΏβππ β ππβ,β ππ,ππ β πΆπΆ.
An πΏπΏ-Lipschitzian will be contraction if πΏπΏ β(0, 1), and non-expansive if πΏπΏ = 1. (2) Monotone if β©ππππ β ππππ,ππ β ππβͺ β₯ 0,β ππ,ππ β πΆπΆ.
(3) ππ-strongly monotone if there exists a constant ππ > 0 such that
β©ππππ β ππππ,ππ β ππβͺ β₯ ππβππ β ππβ2,β ππ,ππ β πΆπΆ.
(4) ππ-inverse strongly monotone (ππ-ism) if there exists a constant ππ > 0 such that
β©ππππ β ππππ,ππ β ππβͺ β₯ ππβππππ β ππππβ2,β ππ,ππ β πΆπΆ.
The variational inequality problem defined by πΆπΆand ππwill be denoted byππππ(πΆπΆ,ππ). These were initially studied by Kinderlehrer and Stampachhia [10].
Thevariational inequality problem ππππ(πΆπΆ,ππ) is the problem of finding a vector ππin πΆπΆsuch that β©ππππ,ππ β ππβͺ β₯ 0 for all ππ β πΆπΆ. The set of all such vectors which solvevariational inequality ππππ(πΆπΆ,ππ)problem is denoted byΞ©(πΆπΆ,ππ). The variationalinequality problem is connected with various kinds of problems such as the convexminimization problem, the complementarity problem, the problem of
finding a pointπ’π’ β π»π»satisfying 0 = πππ’π’ and so on. The existence and approximation of solutionsare important aspects in the study of variational inequalities. The variationalinequality problem ππππ(πΆπΆ,ππ) is equivalent to the fixed point problem, that isto find ππβ β πΆπΆsuch that
ππβ = πΉπΉππππβ =πππΆπΆ(ππ β ππππ)ππβ,
where ππ > 0 is a constant and πππΆπΆis the metric projection from π»π» onto πΆπΆandπΉπΉππ β πππΆπΆ(ππ β ππππ). If ππis πΏπΏ-Lipschitzian and ππ-strongly monotone, then theoperator πΉπΉππis a contraction on πΆπΆprovided that 0 < ππ < 2ππ πΏπΏβ 2. In this case, anapplication of Banach contraction principle (Theorem 1.6.2) implies thatΞ©(πΆπΆ,ππ) = {ππβ}and thesequence of the Picard iteration process, given by
ππππ+1 =πΉπΉππππππ, ππ β β converges strongly toππβ.
Construction of fixed points of non-expansive operators is an important subject in the theory of non-expansive operators and has applications in a number of applied areas such as image recovery and signal processing(see[7, 8,13]). For instance,split feasibility problem of πΆπΆand ππ(denoted byπππΉπΉππ(πΆπΆ,ππ)) is
to find a point ππin πΆπΆsuch that ππππ β ππ (7.1)
whereπΆπΆis a closed convex subset of a Hilbert space π»π»1,ππis a closed convexsubset of another Hilbert space π»π»2 and ππ:π»π»1 β π»π»2is a bounded linear operator.The πππΉπΉππ(πΆπΆ,ππ)is said to be consistent if (7.1) has a solution. It is easy to seethat πππΉπΉππ(πΆπΆ,ππ) is consistent if and only if the following fixed point problem has asolution:
findππ β πΆπΆsuch thatππ =πππΆπΆοΏ½ππ β πΎπΎππβοΏ½ππ β πππποΏ½πποΏ½ππ, (7.2) whereπππΆπΆand ππππare the orthogonal projections onto πΆπΆand ππ, respectively; πΎπΎ > 0, andππβis the adjoint of ππ. Note that for sufficient small πΎπΎ > 0, the operatorπππΆπΆοΏ½ππ β πΎπΎππβοΏ½ππ β πππποΏ½πποΏ½ in (7.2) is non-expansive.
In the view of Lemma 4.1.3, we have the following sharper results which containour iterative procedure (2.18) faster than the one of the iterative procedures
defined by (2.17), (2.16), (2.15), (2.14), (2.13), (2.11) and (2.1). These results deal withvariational inequality problems.
Theorem 7.1.1.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Suppose{πΌπΌππ}, {π½π½ππ},{πΎπΎππ} β [ππ, 1β ππ] for all ππ β β and for some ππ β (0,1). Thenfor ππ β (0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = (1β πΌπΌππ)πππΆπΆ(ππ β ππππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππππ)ππππ, ππππ = (1β π½π½ππ)πππΆπΆ(ππ β ππππ)ππππ +π½π½πππππΆπΆ(ππ β ππππ)π§π§ππ,
π§π§ππ = (1β πΎπΎππ)ππππ +πΎπΎπππππΆπΆ(ππ β ππππ)ππππ; β ππ β β, οΏ½ converges weakly toππβ β Ξ©(πΆπΆ, ππ).
Proof.Since ππ β πππΆπΆ(ππ β ππππ) is non-expansive, hence the result follows fromTheorem 4.2.1.β
The Theorem 7.1.1 leads the following corollaries for iterative procedures defined by (2.16), (2.17), (2.14), (2.15), (2.13), (2.11) and (2.1) respectively.
Corollary 7.1.2.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Suppose{πΌπΌππ}, {π½π½ππ},{πΎπΎππ} β [ππ, 1β ππ] for all ππ β β and for some ππ β (0,1). Thenfor ππ β (0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = (1β πΌπΌππ)πππΆπΆ(ππ β ππππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππππ)π§π§ππ, ππππ = (1β π½π½ππ)πππΆπΆ(ππ β ππππ)ππππ +π½π½πππππΆπΆ(ππ β ππππ)π§π§ππ,
π§π§ππ = (1β πΎπΎππ)ππππ +πΎπΎπππππΆπΆ(ππ β ππππ)ππππ; β ππ β β, οΏ½ converges weakly toππβ β Ξ©(πΆπΆ, ππ).
Corollary 7.1.3.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Suppose{πΌπΌππ}, {π½π½ππ},{πΎπΎππ} β [ππ, 1β ππ] for all ππ β β and for some ππ β (0,1). Thenfor ππ β (0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = (1β πΌπΌππ)πππΆπΆ(ππ β ππππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππππ)ππππ, ππππ = (1β π½π½ππ)π§π§ππ +π½π½πππππΆπΆ(ππ β ππππ)π§π§ππ,
π§π§ππ = (1β πΎπΎππ)ππππ +πΎπΎπππππΆπΆ(ππ β ππππ)ππππ; β ππ β β, οΏ½ converges weakly toππβ β Ξ©(πΆπΆ, ππ).
Corollary 7.1.4.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Suppose{πΌπΌππ}, {π½π½ππ},{πΎπΎππ} β [ππ, 1β ππ] for all ππ β β and for some ππ β (0,1). Thenfor ππ β (0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = (1β πΌπΌππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππππ)ππππ, ππππ = (1β π½π½ππ)ππππ +π½π½πππππΆπΆ(ππ β ππππ)π§π§ππ,
π§π§ππ = (1β πΎπΎππ)ππππ +πΎπΎπππππΆπΆ(ππ β ππππ)ππππ; β ππ β β,οΏ½ converges weakly toππβ β Ξ©(πΆπΆ, ππ).
Corollary 7.1.5.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Suppose{πΌπΌππ}, {π½π½ππ} β [ππ, 1β ππ] for all ππ β β and for some ππ β(0,1). Thenfor ππ β (0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = (1β πΌπΌππ)πππΆπΆ(ππ β ππππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππππ)ππππ, ππππ = (1β π½π½ππ)ππππ +π½π½πππππΆπΆ(ππ β ππππ)ππππ; ππ β β, οΏ½ converges weakly toππβ β Ξ©(πΆπΆ, ππ).
Corollary 7.1.6.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Suppose{πΌπΌππ}, {π½π½ππ} β [ππ, 1β ππ] for all ππ β β and for some ππ β(0,1). Thenfor ππ β (0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = (1β πΌπΌππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππππ)ππππ, ππππ = (1β π½π½ππ)ππππ +π½π½πππππΆπΆ(ππ β ππππ)ππππ; β ππ β β,οΏ½ converges weakly toππβ β Ξ©(πΆπΆ, ππ).
Corollary 7.1.7.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Suppose{πΌπΌππ} β [ππ, 1β ππ] for all ππ β β and for some ππ β (0,1). Thenfor ππ β(0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = (1β πΌπΌππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππππ)ππππ; β ππ β β, converges weakly toππβ β Ξ©(πΆπΆ, ππ).
Corollary 7.1.8.Let πΆπΆ be a nonempty closed convex subset of a Hilbert spaceπ»π» and ππ:πΆπΆ β π»π» a πΏπΏ-Lipschitzian andππ-strongly monotone operator. Thenfor ππ β (0, 2ππ πΏπΏβ 2), the iterative sequence{ππππ} generated fromππ1 β πΆπΆ and definedby
ππππ+1 = πππΆπΆ(ππ β ππππ)ππππ; β ππ β β, converges weakly toππβ β Ξ©(πΆπΆ, ππ).
7.1.9Application to constrained optimization problems
Let πΆπΆbe a closedconvex subset of a Hilbert spaceπ»π», πππΆπΆthe metric projection ofπ»π»onto πΆπΆandππ:πΆπΆ β π»π»a ππ-ism where ππ > 0 is a constant. It is well known that πππΆπΆ(ππ β ππππ)is non-expansive operator provided that ππ β(0, 2ππ).
The algorithms for signal and image processing are often iterative constrainedoptimization processes designed to minimize a convex differentiable function ππovera closed convex set πΆπΆ inπ»π». It is well known that everyπΏπΏ- Lipschitzian operator is2βπΏπΏ-ism. Therefore, we have the following result which generates the sequence ofvectors in the constrained or feasible set πΆπΆwhich converges weakly to the optimalsolution which minimizesππ.
Theorem 7.1.10.Let πΆπΆ be a closed convex subset of a Hilbert space π»π» and ππ aconvex and differentiable function on an open set π·π· containing the set πΆπΆ. Assumethat βππ is an πΏπΏ-Lipschitz operator onπ·π·, ππ β (0, 2βπΏπΏ)and minimizers of ππ relativeto the set πΆπΆ exist. For a givenππ1 β πΆπΆ,let {ππππ} be a sequence in πΆπΆ generated by
ππππ+1 = (1β πΌπΌππ)πππΆπΆ(ππ β ππ β ππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππ β ππ)ππππ, ππππ = (1β π½π½ππ)πππΆπΆ(ππ β ππ β ππ)ππππ +π½π½πππππΆπΆ(ππ β ππ β ππ)π§π§ππ,
π§π§ππ = (1β πΎπΎππ)ππππ +πΎπΎπππππΆπΆ(ππ β ππ β ππ)ππππ; β ππ β β, οΏ½
where {πΌπΌππ}, {π½π½ππ} ππππππ {πΎπΎππ}are sequences in [ππ, 1β ππ] for all ππ β β and for some ππ β (0,1). Then the sequence {ππππ} converges weakly to a minimizer ofππ.
Proof.Since ππ β πππΆπΆ(ππ β ππ β ππ) is non-expansive, hence the result follows fromTheorem 4.2.1.β
7.1.11Application to split feasibility problems
Recall that a mapping ππin aHilbert space π»π»is said to be averaged if ππcan be written as (1 β πΌπΌ)ππ+πΌπΌππ, whereπΌπΌ β (0, 1) and ππis a non-expansive map on π»π». Setππ(ππ): = 12οΏ½οΏ½ππ β πππππποΏ½πποΏ½, ππ β πΆπΆ.
Consider the minimization problem findππβπΆπΆminππ(ππ).
By [17], the gradient of ππis βππ =ππβοΏ½ππ β πππποΏ½ππ, where ππβis the adjoint of ππ.Since ππ β ππππis non-expansive, it follows that βππis πΏπΏ-Lipschitzian withπΏπΏ =
βππβ2.Therefore, βππis 1βπΏπΏ-ism and for any 0 < ππ < 2βπΏπΏ, ππ β ππ β ππis averaged.
Therefore,the composition πππΆπΆ(ππ β ππ β ππ) is also averaged. Setππ β πππΆπΆ(ππ β ππ βππ). Note thatthe solution set of πππΉπΉππ(πΆπΆ,ππ)is πΉπΉ(ππ).
We now present an iterative procedure that can be used to find solutions of πππΉπΉππ(πΆπΆ,ππ).
Theorem 7.1.12.Assume that πππΉπΉππ(πΆπΆ,ππ)is consistent.
Suppose{πΌπΌππ}, {π½π½ππ} ππππππ {πΎπΎππ}are sequences in [ππ, 1β ππ] for all ππ β β and for some ππ β (0,1). Let{ππππ} be a sequence in πΆπΆ generated by
ππππ+1 = (1β πΌπΌππ)πππΆπΆ(ππ β ππ β ππ)ππππ +πΌπΌπππππΆπΆ(ππ β ππ β ππ)ππππ, ππππ = (1β π½π½ππ)πππΆπΆ(ππ β ππ β ππ)ππππ +π½π½πππππΆπΆ(ππ β ππ β ππ)π§π§ππ,
π§π§ππ = (1β πΎπΎππ)ππππ +πΎπΎπππππΆπΆ(ππ β ππ β ππ)ππππ; β ππ β β, οΏ½
where 0 < ππ < 2ββππβ2. Then the sequence{ππππ}converges weakly to a solution of πππΉπΉππ(πΆπΆ,ππ).
Proof.Since ππ β πππΆπΆ(ππ β ππ β ππ) is non-expansive, hence the result follows fromTheorem 4.2.1.β