• Tidak ada hasil yang ditemukan

Convergence theorem for multi-step Noor fixed point iterative procedure with errors

Dalam dokumen A Study on Fixed Point Iterative Procedures (Halaman 76-84)

CONVERGENCE THEOREM OF MULTI-STEP NOOR FIXED POINT ITERATIVE PROCEDURE

6.2 Convergence theorem for multi-step Noor fixed point iterative procedure with errors

In this section we sate and prove a convergence theorem for multi-step iterative procedure by using Zamfirescu operator, which have generate the analogous results of different fixed point iterative procedures.

Theorem 6.2.1.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by multi-step Noor fixed point iterative procedurewith errors (5.1), for each π‘˜π‘˜ = 1, 2, 3, … ,𝑙𝑙and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…, βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) = ∞, and

�𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½,

for each π‘˜π‘˜ = 1, 2, 3, … ,𝑙𝑙 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Proof.According to our assumption 𝑇𝑇 is a Zamfirescu operator, so by Theorem 1.6.5, we know that 𝑇𝑇 has a unique fixed point in 𝐡𝐡, say 𝑝𝑝

i.e., 𝑇𝑇𝑝𝑝 =𝑝𝑝. (6.1)

Now, we combine the Zamfirescu conditions according to the approach of V. Berinde [49-52]. Since 𝑇𝑇is a Zamfirescu operator, hence 𝑇𝑇 is satisfied at least one of the Zamfirescu conditions (𝑧𝑧1), (𝑧𝑧2) and (𝑧𝑧3) defined by the Theorem 1.6.5.

If 𝑇𝑇 satisfies (𝑧𝑧2), then for all π‘₯π‘₯,𝑦𝑦 ∈ 𝐡𝐡 we have

‖𝑇𝑇π‘₯π‘₯ βˆ’ 𝑇𝑇𝑦𝑦‖ ≀ 𝑏𝑏[β€–π‘₯π‘₯ βˆ’ 𝑇𝑇π‘₯π‘₯β€–+‖𝑦𝑦 βˆ’ 𝑇𝑇𝑦𝑦‖]

≀ 𝑏𝑏[β€–π‘₯π‘₯ βˆ’ 𝑇𝑇π‘₯π‘₯β€–+‖𝑦𝑦 βˆ’ π‘₯π‘₯β€–+β€–π‘₯π‘₯ βˆ’ 𝑇𝑇π‘₯π‘₯β€–+‖𝑇𝑇π‘₯π‘₯ βˆ’ 𝑇𝑇𝑦𝑦‖], which implies

‖𝑇𝑇π‘₯π‘₯ βˆ’ 𝑇𝑇𝑦𝑦‖ ≀ 1βˆ’π‘π‘π‘π‘ β€–π‘₯π‘₯ βˆ’ 𝑦𝑦‖+1βˆ’π‘π‘2𝑏𝑏 β€–π‘₯π‘₯ βˆ’ 𝑇𝑇π‘₯π‘₯β€– . (6.2) If 𝑇𝑇 satisfies (𝑧𝑧3), then for all π‘₯π‘₯,𝑦𝑦 ∈ 𝐡𝐡 similarly we obtain

‖𝑇𝑇π‘₯π‘₯ βˆ’ 𝑇𝑇𝑦𝑦‖ ≀ 𝑐𝑐 β€–π‘₯π‘₯ βˆ’ 𝑦𝑦‖+ 2𝑐𝑐 β€–π‘₯π‘₯ βˆ’ 𝑇𝑇π‘₯π‘₯β€– . (6.3)

Now, if we take

𝛿𝛿 = π‘™π‘™π‘Žπ‘Žπ‘₯π‘₯ οΏ½π‘Žπ‘Ž, 1βˆ’π‘π‘π‘π‘ ,1βˆ’π‘π‘π‘π‘ οΏ½. (6.4)

Then we have 0 ≀ 𝛿𝛿 < 1 and in view of (𝑧𝑧1) and (6.2) to (6.4), we obtained the following inequality.

‖𝑇𝑇π‘₯π‘₯ βˆ’ 𝑇𝑇𝑦𝑦‖ ≀ 𝛿𝛿‖π‘₯π‘₯ βˆ’ 𝑦𝑦‖+ 2𝛿𝛿‖π‘₯π‘₯ βˆ’ 𝑇𝑇π‘₯π‘₯β€– . (6.5)

If we suppose�𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a multi-step Noor fixed point iterative procedurewith errors defined by (5.1) and 𝑒𝑒0 ∈ 𝐡𝐡 arbitrary, then we have

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ =οΏ½π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1) +𝑏𝑏𝑛𝑛(𝑙𝑙)𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(𝑙𝑙)𝑣𝑣𝑛𝑛(𝑙𝑙) βˆ’ 𝑝𝑝�. (6.6) Since π‘Žπ‘Žπ‘›π‘›(𝑙𝑙) +𝑏𝑏𝑛𝑛(𝑙𝑙)+𝑐𝑐𝑛𝑛(𝑙𝑙) = 1, hence from (2.6) we have

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ = οΏ½(1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙))(𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝) +π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1) βˆ’ 𝑝𝑝�+𝑐𝑐𝑛𝑛(𝑙𝑙)(𝑣𝑣𝑛𝑛(𝑙𝑙)βˆ’ 𝑒𝑒𝑛𝑛)οΏ½

≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1) βˆ’ 𝑝𝑝�+𝑐𝑐𝑛𝑛(𝑙𝑙)�𝑣𝑣𝑛𝑛(𝑙𝑙) βˆ’ 𝑒𝑒𝑛𝑛�. (6.7) But according to our assumption, we have

�𝑣𝑣𝑛𝑛(𝑙𝑙) βˆ’ 𝑒𝑒𝑛𝑛� = 0(π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)) Hence from (6.7), we have

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑝𝑝�+𝑐𝑐𝑛𝑛(𝑙𝑙)0(π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)). (6.8) Now, if we put π‘₯π‘₯ =𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1)and 𝑦𝑦 =𝑝𝑝 in (6.5), we obtain

�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1) βˆ’ 𝑇𝑇𝑝𝑝� ≀ 𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑝𝑝�, (6.9) where𝛿𝛿 is given by (6.4).

Combining (6.8) and (6.9), we obtain

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1) βˆ’ 𝑝𝑝�+𝑐𝑐𝑛𝑛(𝑙𝑙)0(π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)) (6.10) Further by the definition of multi-step Noor fixed point iterative procedurewith errors (5.1), we have

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑝𝑝� =οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)+𝑏𝑏𝑛𝑛(π‘™π‘™βˆ’1)𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)𝑣𝑣𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑝𝑝�(6.11) Since π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)+𝑏𝑏𝑛𝑛(π‘™π‘™βˆ’1) +𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1) = 1, hence from (6.11) we have

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑝𝑝� ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2) βˆ’ 𝑝𝑝�

+𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)�𝑣𝑣𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑒𝑒𝑛𝑛�. (6.12) But according to our assumption�𝑣𝑣𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑒𝑒𝑛𝑛� = 0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)), hence from (6.12) we have

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑝𝑝� ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑝𝑝�+𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)) (6.13) Now, if we put π‘₯π‘₯ =𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)and 𝑦𝑦 =𝑝𝑝 in (6.5), then we have

�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2) βˆ’ 𝑇𝑇𝑝𝑝� ≀ 𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑝𝑝�, (6.14) where𝛿𝛿 is given by (6.4).

Combining (6.13) and (6.14), we obtain

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’1)βˆ’ 𝑝𝑝� ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2) βˆ’ 𝑝𝑝�

+𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)). (6.15) From (6.10) and (6.15), we have

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝛿𝛿 οΏ½ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2) βˆ’ 𝑝𝑝�� + 𝑐𝑐𝑛𝑛(𝑙𝑙)0(π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)) +π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1))

= (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙) +π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝛿𝛿(1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2) βˆ’ 𝑝𝑝�

+ 𝑐𝑐𝑛𝑛(𝑙𝑙)0(π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)) +π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)) (6.16)

Further by the definition of multi-step Noor fixed point iterative procedurewith errors (5.1), we have

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑝𝑝� =οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3)+𝑏𝑏𝑛𝑛(π‘™π‘™βˆ’2)𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)𝑣𝑣𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑝𝑝�(6.17) Since π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)+𝑏𝑏𝑛𝑛(π‘™π‘™βˆ’2) +𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2) = 1, hence from (6.17) we have

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑝𝑝� ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3) βˆ’ 𝑝𝑝�

+𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)�𝑣𝑣𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑒𝑒𝑛𝑛�. (6.18)

But according to our assumption�𝑣𝑣𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑒𝑒𝑛𝑛� = 0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)), hence from (6.18) we have

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑝𝑝� ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3) βˆ’ 𝑝𝑝�

+𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)) (6.19)

Now, if we put π‘₯π‘₯ =𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3)and 𝑦𝑦 =𝑝𝑝 in (6.5), then we have

�𝑇𝑇𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3) βˆ’ 𝑇𝑇𝑝𝑝� ≀ 𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3)βˆ’ 𝑝𝑝�, (6.20) where𝛿𝛿 is given by (2.4).

Combining (6.19) and (6.20), we obtain

�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’2)βˆ’ 𝑝𝑝� ≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3) βˆ’ 𝑝𝑝�

+𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)). (6.21)

From (6.16) and (6.21), we have

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖

≀ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝛿𝛿 οΏ½(1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝛿𝛿 οΏ½ (1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)𝛿𝛿 �𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3)βˆ’ 𝑝𝑝���

+𝑐𝑐𝑛𝑛(𝑙𝑙)0(π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)) +π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)) +𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2))

= (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙) +π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(𝑙𝑙)(1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)) +𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)(1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+𝛿𝛿3π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)�𝑒𝑒𝑛𝑛(π‘™π‘™βˆ’3) βˆ’ 𝑝𝑝�+𝑐𝑐𝑛𝑛(𝑙𝑙)0οΏ½π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)οΏ½

+π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)) + 𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0(π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)) (6.22)

Now if we continue the above process until the initial equation of multi-step Noor fixed point iterative procedurewith errors (5.1) have been used, then the inequality (6.22) can written as follows.

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ ≀ [1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙) +π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(𝑙𝑙)(1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)) +𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ +β‹―+π›Ώπ›Ώπ‘™π‘™βˆ’1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(1)οΏ½]‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+π›Ώπ›Ώπ‘™π‘™π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)π‘Žπ‘Žπ‘›π‘›(1)‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖

+𝑐𝑐𝑛𝑛(𝑙𝑙)0οΏ½π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)οΏ½ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½ +𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½

+β‹―+π›Ώπ›Ώπ‘™π‘™βˆ’1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)𝑐𝑐𝑛𝑛(1)0(π‘Žπ‘Žπ‘›π‘›(1))

= (1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑙𝑙) +π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(𝑙𝑙)(1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)) +𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ +β‹―+π›Ώπ›Ώπ‘™π‘™βˆ’1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(1)οΏ½

+π›Ώπ›Ώπ‘™π‘™π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)π‘Žπ‘Žπ‘›π‘›(1))‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖+𝑐𝑐𝑛𝑛(𝑙𝑙)0οΏ½π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)οΏ½ +π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½+𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ +β‹―+π›Ώπ›Ώπ‘™π‘™βˆ’1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)𝑐𝑐𝑛𝑛(1)0(π‘Žπ‘Žπ‘›π‘›(1)),

which implies,

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ ≀ [1βˆ’(1βˆ’ 𝛿𝛿)π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)οΏ½1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½ οΏ½1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ οΏ½1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’3)�… … (1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(1))]‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖ +𝑐𝑐𝑛𝑛(𝑙𝑙)0οΏ½π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)οΏ½

+π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½+𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ +β‹―+ π›Ώπ›Ώπ‘™π‘™βˆ’1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)𝑐𝑐𝑛𝑛(1)0(π‘Žπ‘Žπ‘›π‘›(1)). (6.23)

But it is clear that,

[1βˆ’(1βˆ’ 𝛿𝛿)π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)οΏ½1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½ οΏ½1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ οΏ½1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’3)�… (1βˆ’ π›Ώπ›Ώπ‘Žπ‘Žπ‘›π‘›(1))]

≀ [1βˆ’(1βˆ’ 𝛿𝛿)π‘™π‘™π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)]. Hence form (6.23), we obtain

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ ≀ [1βˆ’(1βˆ’ 𝛿𝛿)π‘™π‘™π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)]‖𝑒𝑒𝑛𝑛 βˆ’ 𝑝𝑝‖ +𝑐𝑐𝑛𝑛(𝑙𝑙)0οΏ½π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)οΏ½ +π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’1)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)οΏ½+𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ +β‹―+ π›Ώπ›Ώπ‘™π‘™βˆ’1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)𝑐𝑐𝑛𝑛(1)0(π‘Žπ‘Žπ‘›π‘›(1)),𝑛𝑛 ∈ β„•. (6.24)

By (6.24) inductively, we obtain

‖𝑒𝑒𝑛𝑛+1 βˆ’ 𝑝𝑝‖ ≀ βˆπ‘›π‘›π‘Ÿπ‘Ÿ=0οΏ½1βˆ’(1βˆ’ 𝛿𝛿)π‘™π‘™π‘Žπ‘Žπ‘Ÿπ‘Ÿ(𝑙𝑙)�‖𝑒𝑒0 βˆ’ 𝑝𝑝‖

+𝛿𝛿2π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)𝑐𝑐𝑛𝑛(π‘™π‘™βˆ’2)0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’2)οΏ½ +β‹―+π›Ώπ›Ώπ‘™π‘™βˆ’1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙)π‘Žπ‘Žπ‘›π‘›(π‘™π‘™βˆ’1)β€¦π‘Žπ‘Žπ‘›π‘›(3)π‘Žπ‘Žπ‘›π‘›(2)𝑐𝑐𝑛𝑛(1)0(π‘Žπ‘Žπ‘›π‘›(1)), 𝑛𝑛 ∈ β„•. (6.25)

Now since 0≀ 𝛿𝛿 < 1, π‘Žπ‘Žπ‘›π‘›(𝑙𝑙) ∈ (0, 1)and βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(𝑙𝑙) = ∞, hence by Lemma 6.1.2 we can write

limπ‘›π‘›β†’βˆž βˆπ‘›π‘›π‘Ÿπ‘Ÿ=0[1βˆ’(1βˆ’ 𝛿𝛿)π‘™π‘™π‘Žπ‘Žπ‘Ÿπ‘Ÿ(𝑙𝑙)] = 0. (6.26) Taking limit as 𝑛𝑛 β†’ ∞ on both sides of (6.25) and using (6.26), we get

limπ‘›π‘›β†’βˆžβ€–π‘’π‘’π‘›π‘›+1 βˆ’ 𝑝𝑝‖ = 0.

This implies that �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½, π‘˜π‘˜ = 1, 2, 3, … ,𝑙𝑙converges strongly to 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). This completes our proof.∎

Corollary 6.2.2.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 satisfies the Kannan’s contractive conditions defined by (1.6). Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by multi-step Noor fixed point iterative procedurewith errors (5.1), for each π‘˜π‘˜ = 1, 2, 3, … ,𝑙𝑙and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…,

βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) =∞, and �𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½, for each π‘˜π‘˜ = 1, 2, 3, … ,𝑙𝑙 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.3.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 satisfies the Chatterjea’s contractive conditions defined by (1.7) respectively. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by multi-step Noor fixed point iterative procedurewith errors (5.1), for each π‘˜π‘˜ = 1, 2, 3, … ,𝑙𝑙and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…, βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) = ∞, and �𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½, for each π‘˜π‘˜ = 1, 2, 3, … ,𝑙𝑙 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.4.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined

by Noor iterative procedurewith errors (5.2), for each π‘˜π‘˜ = 1, 2, 3and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…, βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) = ∞, and �𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½, for each π‘˜π‘˜ = 1, 2, 3 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.5.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by Noor iterative procedure(5.3), for each π‘˜π‘˜ = 1, 2, 3and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…,

βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) =∞, and �𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½, for each π‘˜π‘˜ = 1, 2, 3 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.6.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by Ishikawa iterative procedurewith errorsdefined by Y. Xu (5.4), for each π‘˜π‘˜ = 1, 2and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇)β‰  βˆ…, βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) =∞, and �𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½, for each π‘˜π‘˜ = 1, 2 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.7.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by Ishikawa iterative procedure with errorsdefined by L.S.Lu(5.6), for each π‘˜π‘˜ = 1, 2and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇)β‰  βˆ…, βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) =∞, and �𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½, for each π‘˜π‘˜ = 1, 2 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.8.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined

by Ishikawa iterative procedure (5.5), for each π‘˜π‘˜ = 1, 2and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…,

βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) =∞, and

�𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½,

for each π‘˜π‘˜ = 1, 2 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.9.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by Mann iterative procedure with errorsdefined by Y. Xu (5.7), for each π‘˜π‘˜ = 1and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…, βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) = ∞, and

�𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½,

for each π‘˜π‘˜ = 1 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.10.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by Mann iterative procedure with errorsdefined by L.S. Lu (5.10), for each π‘˜π‘˜ = 1and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇)β‰  βˆ…, βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) =∞, and

�𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½,

for each π‘˜π‘˜ = 1 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Corollary 6.2.11.Let 𝐡𝐡 be a nonempty closed convex subset of an arbitrary normed space𝑋𝑋. Let 𝑇𝑇:𝐡𝐡 β†’ 𝐡𝐡 be a Zamfirescu operator. Let �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be a sequence defined by Mann iterative procedure(5.8), for each π‘˜π‘˜ = 1and 𝑛𝑛 ∈ β„•. If 𝐹𝐹(𝑇𝑇) β‰  βˆ…,

βˆ‘βˆžπ‘›π‘›=1π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜) =∞, and

�𝑣𝑣𝑛𝑛(π‘˜π‘˜) βˆ’ 𝑒𝑒𝑛𝑛� = 0οΏ½π‘Žπ‘Žπ‘›π‘›(π‘˜π‘˜)οΏ½,

for each π‘˜π‘˜ = 1 and 𝑛𝑛 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½converges strongly to a fixed point of 𝑇𝑇.

Dalam dokumen A Study on Fixed Point Iterative Procedures (Halaman 76-84)