• Tidak ada hasil yang ditemukan

SOME FIXED POINT ITERATIVE PROCEDURES WITH ERRORS

Dalam dokumen A Study on Fixed Point Iterative Procedures (Halaman 67-74)

SOME FIXED POINT ITERATIVE PROCEDURES

The following lemma and theorem established by S. Plubtieng and R.

Wangkeeree[42] to prove the convergence of multi-step Noor fixed point iterative procedure with errors for asymptotically non-expansive mapping in the indeterminate sense.

Lemma 5.1.2.[42]Let 𝑋𝑋 be a uniformly convex Banach space, 𝐢𝐢 a nonempty closed bounded convex subset of 𝑋𝑋 and 𝑇𝑇:𝐢𝐢 β†’ 𝐢𝐢 be continuous asymptotically non-expansive mapping in the intermediate sense. Put

𝐺𝐺

𝑛𝑛

= 𝑠𝑠𝑒𝑒𝑠𝑠

π‘₯π‘₯,π‘¦π‘¦βˆˆπΆπΆ

(‖𝑇𝑇

𝑛𝑛

π‘₯π‘₯ βˆ’ 𝑇𝑇

𝑛𝑛

𝑦𝑦‖ βˆ’ β€–π‘₯π‘₯ βˆ’ 𝑦𝑦‖) ∨ 0,

βˆ€ 𝑛𝑛 β‰₯ 1,

so that βˆ‘βˆžπ‘›π‘›=1𝐺𝐺𝑛𝑛 < ∞. Let the sequence �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be defined by (5.1) with the following restrictions:

(i) π‘Žπ‘Žπ‘›π‘›(𝑖𝑖) +𝑏𝑏𝑛𝑛(𝑖𝑖) +𝑐𝑐𝑛𝑛(𝑖𝑖) = 1 forall𝑖𝑖 ∈ {1, 2, 3, … ,π‘šπ‘š} and for all 𝑛𝑛 β‰₯1; (ii)𝑛𝑛 β‰₯ 1βˆ‘βˆžπ‘›π‘›=1𝑐𝑐𝑛𝑛(𝑖𝑖) <∞for all 𝑖𝑖 ∈ {1, 2, 3, … ,π‘šπ‘š}.

If 𝑠𝑠 ∈ 𝐹𝐹(𝑇𝑇), then π‘™π‘™π‘–π‘–π‘šπ‘šπ‘›π‘›β†’βˆžβ€–π‘₯π‘₯𝑛𝑛 βˆ’ 𝑠𝑠‖exists.

Theorem 5.1.3. [42]Let 𝑋𝑋 be a uniformly convex Banach space, 𝐢𝐢 a nonempty closed bounded convex subset of 𝑋𝑋 and 𝑇𝑇:𝐢𝐢 β†’ 𝐢𝐢 be continuous asymptotically non-expansive mapping in the intermediate sense. Put

𝐺𝐺

𝑛𝑛

= 𝑠𝑠𝑒𝑒𝑠𝑠

π‘₯π‘₯,π‘¦π‘¦βˆˆπΆπΆ

(‖𝑇𝑇

𝑛𝑛

π‘₯π‘₯ βˆ’ 𝑇𝑇

𝑛𝑛

𝑦𝑦‖ βˆ’ β€–π‘₯π‘₯ βˆ’ 𝑦𝑦‖) ∨ 0,

βˆ€ 𝑛𝑛 β‰₯ 1,

sothat βˆ‘βˆžπ‘›π‘›=1𝐺𝐺𝑛𝑛 < ∞. Let the sequence �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½be defined by (5.1) whenever

οΏ½π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)οΏ½,�𝑏𝑏𝑛𝑛(𝑖𝑖)οΏ½,�𝑐𝑐𝑛𝑛(𝑖𝑖)οΏ½ satisfy the same assumptions as in Lemma 5.1.2 for each 𝑖𝑖 ∈ {1, 2, 3, … ,π‘šπ‘š} and the additional assumption that 0 < π‘Žπ‘Ž ≀ π‘Žπ‘Žπ‘›π‘›(π‘šπ‘šβˆ’1),π‘Žπ‘Žπ‘›π‘›(π‘šπ‘š) ≀ 𝑏𝑏 < 1 for all 𝑛𝑛 β‰₯ 𝑛𝑛0 for some 𝑛𝑛0 ∈ β„•. Then �𝑒𝑒𝑛𝑛(π‘˜π‘˜)οΏ½ converges strongly to a fixed point of 𝑇𝑇 for each π‘˜π‘˜ = 1, 2,3, … ,π‘šπ‘š.

5.2 Noor iterative procedure with errors defined by Cho et al.

In 2004, Y.J. Cho, H. Zhou, G. Guo [63] introduced the following three-step Noor fixed point iterative procedure with errors:

Definition 5.2.1.[63] Let 𝐡𝐡 be a nonempty subset of an arbitrary normed space 𝑋𝑋 and let 𝑇𝑇 be a mapping from 𝐡𝐡 into itself. Then the Noor fixed point iterative procedure with errors is defined as follows.

For a given, 𝑒𝑒0 ∈ 𝐡𝐡,compute the iterative sequences �𝑒𝑒𝑛𝑛(1)οΏ½, �𝑒𝑒𝑛𝑛(2)οΏ½,�𝑒𝑒𝑛𝑛(3)οΏ½ defined by

𝑒𝑒𝑛𝑛(1) =π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 +οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(1)βˆ’ 𝑐𝑐𝑛𝑛(1)οΏ½ 𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(1)𝑣𝑣𝑛𝑛(1) 𝑒𝑒𝑛𝑛(2) = π‘Žπ‘Žπ‘›π‘›(2)𝑇𝑇𝑒𝑒𝑛𝑛(1) +οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(2) βˆ’ 𝑐𝑐𝑛𝑛(2)οΏ½ 𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(2)𝑣𝑣𝑛𝑛(2)

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(3) =π‘Žπ‘Žπ‘›π‘›(3)𝑇𝑇𝑒𝑒𝑛𝑛(2) +οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(3) βˆ’ 𝑐𝑐𝑛𝑛(3)οΏ½ 𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(3)𝑣𝑣𝑛𝑛(2),𝑛𝑛 ∈ β„•βŽ­βŽͺ⎬

βŽͺ⎫ (5.2)

whereοΏ½π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)οΏ½, �𝑐𝑐𝑛𝑛(𝑖𝑖)οΏ½are appropriate real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2, 3}..

If 𝑐𝑐𝑛𝑛(1) =𝑐𝑐𝑛𝑛(2) =𝑐𝑐𝑛𝑛(3) ≑0, then (5.2) reduces to following Noor iterative procedurewhich is given by Noor et al. [19-22]:

𝑒𝑒𝑛𝑛(1) = π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 +οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(1)οΏ½ 𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛(2) =π‘Žπ‘Žπ‘›π‘›(2)𝑇𝑇𝑒𝑒𝑛𝑛(1)+οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(2)οΏ½ 𝑒𝑒𝑛𝑛

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(3) =π‘Žπ‘Žπ‘›π‘›(3)𝑇𝑇𝑒𝑒𝑛𝑛(2) +οΏ½1βˆ’ π‘Žπ‘Žπ‘›π‘›(3)οΏ½ 𝑒𝑒𝑛𝑛, 𝑛𝑛 ∈ β„•βŽ­βŽͺ⎬

βŽͺ⎫

(5.3)

whereοΏ½π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)οΏ½ are appropriate real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2, 3}.

5.3 Ishikawa iterative procedure with errors defined by Y. Xu

In 1998, Y. Xu [62] introduced the following two-step Ishikawa fixed point iterative procedure with errors:

Definition 5.3.1. [62] Let 𝐡𝐡 be a nonempty subset of an arbitrary normed space 𝑋𝑋 and let 𝑇𝑇 be a mapping from 𝐡𝐡 into itself. Then the Ishikawa fixed point iterative procedure with errors defined by Y. Xu is defined as follows.

For a given, 𝑒𝑒0 ∈ 𝐡𝐡 compute the iterative sequences �𝑒𝑒𝑛𝑛(1)οΏ½, �𝑒𝑒𝑛𝑛(2)οΏ½defined by

𝑒𝑒𝑛𝑛(1) = π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 +𝑏𝑏𝑛𝑛(1)𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(1)𝑣𝑣𝑛𝑛(1)

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(2) =π‘Žπ‘Žπ‘›π‘›(2)𝑇𝑇𝑒𝑒𝑛𝑛(1) +𝑏𝑏𝑛𝑛(2)𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(2)𝑣𝑣𝑛𝑛(2), 𝑛𝑛 ∈ β„•οΏ½ (5.4)

where�𝑣𝑣𝑛𝑛(1)οΏ½,�𝑣𝑣𝑛𝑛(2)οΏ½ are bounded sequences in 𝐡𝐡 and οΏ½π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)οΏ½,�𝑏𝑏𝑛𝑛(𝑖𝑖)οΏ½,�𝑐𝑐𝑛𝑛(𝑖𝑖)οΏ½are appropriate real sequences in [0, 1]for all 𝑖𝑖 ∈ {1,2}.

If 𝑏𝑏𝑛𝑛(𝑖𝑖) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑖𝑖) and 𝑐𝑐𝑛𝑛(𝑖𝑖) ≑0 for all 𝑖𝑖 = 1, 2, then (5.4) reduces to the following two-step Ishikawa iterative procedure defined by S. Ishikawa [11]:

𝑒𝑒𝑛𝑛(1) = π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 + (1βˆ’ π‘Žπ‘Žπ‘›π‘›(1))𝑒𝑒𝑛𝑛

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(2) =π‘Žπ‘Žπ‘›π‘›(2)𝑇𝑇𝑒𝑒𝑛𝑛(1) + (1βˆ’ π‘Žπ‘Žπ‘›π‘›(2))𝑒𝑒𝑛𝑛, 𝑛𝑛 ∈ β„•οΏ½ (5.5) whereοΏ½π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)οΏ½ are appropriate real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2}.

5.4 Ishikawa iterative procedure with errors defined by L.S. Lu

In 1995, L.S. Lu [22] introduced the following two-step Ishikawa fixed point iterative procedure with errors:

Definition 5.4.1. [22] Let 𝐡𝐡 be a nonempty subset of an arbitrary normed space 𝑋𝑋 and let 𝑇𝑇 be a mapping from 𝐡𝐡 into itself. Then the Ishikawa fixed point iterative procedure with errors defined by L.S. Lu is defined as follows.

For a given, 𝑒𝑒0 ∈ 𝐡𝐡 compute the iterative sequences �𝑒𝑒𝑛𝑛(1)οΏ½, �𝑒𝑒𝑛𝑛(2)οΏ½defined by

𝑒𝑒𝑛𝑛(1) = π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 +𝑏𝑏𝑛𝑛(1)𝑒𝑒𝑛𝑛 +𝑣𝑣𝑛𝑛(1)

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(2) =π‘Žπ‘Žπ‘›π‘›(2)𝑇𝑇𝑒𝑒𝑛𝑛(1) +𝑏𝑏𝑛𝑛(2)𝑒𝑒𝑛𝑛 +𝑣𝑣𝑛𝑛(2), 𝑛𝑛 ∈ β„•οΏ½ (5.6)

where�𝑣𝑣𝑛𝑛(1)οΏ½,�𝑣𝑣𝑛𝑛(2)οΏ½ are bounded sequences in 𝐡𝐡 andοΏ½π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)οΏ½,�𝑏𝑏𝑛𝑛(𝑖𝑖)οΏ½are appropriate real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2}.

5.5 Mann iterative procedure with errors defined by Y. Xu

In 1998, Y. Xu [62] introduced the following one-step Mann fixed point iterative procedure with errors:

Definition 5.5.1. [62] Let 𝐡𝐡 be a nonempty subset of an arbitrary normed space 𝑋𝑋 and let 𝑇𝑇 be a mapping from 𝐡𝐡 into itself. Then the Mann fixed point iterative procedure with errors given by Y. Xu[62] is defined as follows.

For a given, 𝑒𝑒0 ∈ 𝐡𝐡 compute the iterative sequence �𝑒𝑒𝑛𝑛(1)οΏ½defined by

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(1) =π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 +𝑏𝑏𝑛𝑛(1)𝑒𝑒𝑛𝑛 +𝑐𝑐𝑛𝑛(1)𝑣𝑣𝑛𝑛(1), 𝑛𝑛 ∈ β„•οΏ½ (5.7) where�𝑣𝑣𝑛𝑛(1)οΏ½ is bounded sequence in 𝐡𝐡 andοΏ½π‘Žπ‘Žπ‘›π‘›(1)οΏ½,�𝑏𝑏𝑛𝑛(1)οΏ½,�𝑐𝑐𝑛𝑛(1)οΏ½are appropriate real sequences in(0, 1).

If 𝑏𝑏𝑛𝑛(1) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(1)and 𝑐𝑐𝑛𝑛(1) = 0, then (5.7) reduces to the following Mann iterative procedure defined by W. R. Mann [53]:

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(1) =π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 + (1βˆ’ π‘Žπ‘Žπ‘›π‘›(1))𝑒𝑒𝑛𝑛, 𝑛𝑛 ∈ β„•οΏ½ (5.8) where

{ }

an(1) are appropriate real sequences in(0, 1).

If𝑏𝑏𝑛𝑛(1) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(1),𝑐𝑐𝑛𝑛(1) = 0and π‘Žπ‘Žπ‘›π‘›(1) =πœ†πœ† ∈ (0, 1)then (5.8) reduces to the following Krasnoselskij’s iterative procedure defined by M. A. Krasnoselskij [23]:

𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(1) =πœ†πœ†π‘‡π‘‡π‘’π‘’π‘›π‘› + (1βˆ’ πœ†πœ†)𝑒𝑒𝑛𝑛, 𝑛𝑛 ∈ β„•οΏ½. (5.9)

5.6Mann iterative procedure with errors defined by L.S. Lu

In 1995, L.S. Lu [22] introduced the following one-step Mann fixed point iterative procedure with errors:

Definition 5.4.1. [22] Let 𝐡𝐡 be a nonempty subset of an arbitrary normed space 𝑋𝑋 and let 𝑇𝑇 be a mapping from 𝐡𝐡 into itself. Then the Mann fixed point iterative procedure with errors defined by L.S. Lu [18]is defined as follows.

For a given, 𝑒𝑒0 ∈ 𝐡𝐡 compute the iterative sequence�𝑒𝑒𝑛𝑛(1)οΏ½defined by 𝑒𝑒𝑛𝑛+1 =𝑒𝑒𝑛𝑛(1) =π‘Žπ‘Žπ‘›π‘›(1)𝑇𝑇𝑒𝑒𝑛𝑛 +𝑏𝑏𝑛𝑛(1)𝑒𝑒𝑛𝑛 +𝑣𝑣𝑛𝑛(1), 𝑛𝑛 ∈ β„•οΏ½ (5.10)

where�𝑣𝑣𝑛𝑛(1)οΏ½ is bounded sequence in 𝐡𝐡 and οΏ½π‘Žπ‘Žπ‘›π‘›(1)οΏ½,�𝑏𝑏𝑛𝑛(1)οΏ½are appropriate real sequences in (0, 1).

5.7 Generalization of multi-step Noor fixed point iterative procedure with errors

The Mann iterative procedure (5.8), Ishikawa iterative procedure (5.5), Noor iterative procedure (5.3), Krasnoselskij’s iterative procedure (5.9), Mann iterative procedure with errors defined by Y. Xu (5.7), Mann iterative procedure with errors defined by L.S. Lu (5.10), Ishikawaiterative procedure with errors defined by Y.

Xu (5.4), Ishikawaiterative procedure with errors defined by L.S. Lu (5.6) and Noor iterative procedure with errors defined Cho et al. (5.2) all are special case of multi-step Noor fixed point iterative procedure with errors (5.1), which will be trustworthy by the following discussion:

If π‘šπ‘š = 3 and 𝑏𝑏𝑛𝑛(𝑖𝑖) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)βˆ’ 𝑐𝑐𝑛𝑛(𝑖𝑖) for all 𝑖𝑖 = 1, 2, 3 then multi-step Noor fixed point iterative procedure with errors(5.1) reduces to Noor iterative procedure with errors defined by Cho et al.(5.2).

If π‘šπ‘š = 3, 𝑏𝑏𝑛𝑛(𝑖𝑖) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑖𝑖) βˆ’ 𝑐𝑐𝑛𝑛(𝑖𝑖)for all 𝑖𝑖 = 1, 2, 3 and 𝑐𝑐𝑛𝑛(1) = 𝑐𝑐𝑛𝑛(2) = 𝑐𝑐𝑛𝑛(3) ≑ 0, then multi-step Noor fixed point iterative procedure with errors(5.1) reduces to Noor iterative procedure defined by Noor et al.(5.3).

If π‘šπ‘š = 2 thenthe multi-step Noor fixed point iterative procedure with errors (5.1) reduces to Ishikawa iterative procedure with errors defined by Y. Xu (5.4).

If π‘šπ‘š = 2, and 𝑐𝑐𝑛𝑛(1) = 𝑐𝑐𝑛𝑛(2) ≑1 then the multi-step Noor fixed point iterative procedure with errors (5.1) reduces to Ishikawa iterative procedure with errors defined by L.S. Lu (5.6).

If π‘šπ‘š = 2, 𝑏𝑏𝑛𝑛(𝑖𝑖) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(𝑖𝑖)βˆ’ 𝑐𝑐𝑛𝑛(𝑖𝑖)for all 𝑖𝑖 = 1, 2and 𝑐𝑐𝑛𝑛(1) = 𝑐𝑐𝑛𝑛(2) ≑0, then the multi-step Noor fixed point iterative procedure with errors (5.1) reduces to Ishikawa iterative procedure (5.5).

Ifπ‘šπ‘š= 1 then the multi-step Noor fixed point iterative procedure with errors (5.1) reduces to Mann iterative procedure with errors defined by Y. Xu(5.7).

If π‘šπ‘š = 1, 𝑐𝑐𝑛𝑛(1) = 1then the multi-step Noor fixed point iterative procedure with errors (5.1)reduces to Mann iterative procedure with errors defined by L.S.

Lu (5.10).

If π‘šπ‘š = 1, 𝑏𝑏𝑛𝑛(1) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(1) βˆ’ 𝑐𝑐𝑛𝑛(1)and 𝑐𝑐𝑛𝑛(1) = 0, then the multi-step Noor fixed point iterative procedure with errors (5.1) reduces to Mann iterative procedure(5.8).

If π‘šπ‘š = 1, 𝑏𝑏𝑛𝑛(1) = 1βˆ’ π‘Žπ‘Žπ‘›π‘›(1) βˆ’ 𝑐𝑐𝑛𝑛(1),𝑐𝑐𝑛𝑛(1) = 0 and π‘Žπ‘Žπ‘›π‘›(1) =πœ†πœ† ∈ (0, 1)then the multi-step Noor fixed point iterative procedure with errors (5.1)reduces to Krasnoselskij’s iterative procedure (5.9).

Therefore, it is clear from above discussion that multi-step Noor fixed point iterative procedurewith errors (5.1) is a general iterative procedure among the analogous iterative procedures. From this point of view, in the next chapter we have established convergence theorem of multi-step Noor fixed point iterative procedurewith errors for more general Zamfirescu operator, which generates the convergence theorem of other relevant iterative procedures for Zamfirescu operator.

CONVERGENCE THEOREM OF MULTI-STEP

Dalam dokumen A Study on Fixed Point Iterative Procedures (Halaman 67-74)