• Tidak ada hasil yang ditemukan

Online Learning Summit

N/A
N/A
Protected

Academic year: 2023

Membagikan "Online Learning Summit"

Copied!
14
0
0

Teks penuh

(1)

COMPLEX

NUMBER

(2)

COMPLEX NUMBER

Definition

Different forms

Modulus

Argument

(3)

IMAGINARY UNIT

• You can’t take the square root of a negative number. If you use imaginary units, you can!

• The imaginary unit is ‘

• It is used to write the square root of a negative number Property of the square root of negative numbers

• If r is a positive real number, then

Examples:

 

2 = 2

 

(4)

THE POWERS OF  

, then:

etc.

• If n is evenly divisible by 4 then

• If the remainder is 1, then

• If the remainder is 2, then

• If the remainder is 3, then

 

(5)

DEFINITION

For real numbers and the number is a complex number.

 

C-numbers

Real – numbers

Rational numbers

Integers

= + ��

 

Imaginary Real part part

All numbers can be expressed as complex numbers.

The complex conjugate of a complex number, , denoted by , is given by

Two complex numbers and are equal, if and

 

3 =3 + � ⋅ 0

 

 

6 =0 + � ⋅( 6 )

(6)

ALGEBRAIC FORM OF  

where: and real number

Examples :

 

=+��

 

=4 15

   

¿ 4 +( 15 )

=4 + 5

 

= 44 35

   

¿ 4 4 +( 3 5 )

¿ 4 +( 0 )

= 4

   

=6

   

¿ 0 + 6

(7)

2 IMPORTANT CONCEPTS

Modulus of : Notation : Rule :

Argument of z : Notation : or

 

 

(0, 0)

( ��������� )

 

 (����)

 

( , )

 

(8)

FINDING MODULUS OF Z

Modulus of :

Notation :

Rule :

Examples :

 

 

(0, 0)

( ��������� )

 

 (����)

(  ,−) ( ,−)

(  ,)

 

 

(  

, )

(9)

ARGUMENT OF Z

  (����)

( ���������

 

)

(0, 0) 

( ,−)

(  ,)

(5,0  ) (  ,)  =��� =    =

=  

(5,0  ) 0  0  

0

( 5,0) 180  0  

(0,5  ) (0  ,−5)

900

 

270  0

/ 2

 

3

 

/ 2

(10)

= +��

 

(0, 0)

( ���������

 

)

 (����)

   

 

( ,)

 

=tan1

|

|

 

(0, 0)

( ���������

 

)

 (����)

 

(  ,− )

   

180   °

 

 

= � �

(0, 0)

( ���������

 

)

 (����) ( ,− )

360  °

 

 

 

 

 

 

= � �

(0, 0)

( ���������

 

)

 (����)

   

 

(  ,)

 

  180  °

 

 

= + ��

(11)

= ?

 

Plot in the coordinate axes. The following cases will arise:

To find in radians, use:

radian mode ;

for & for

 

 

= tan 1 | | + 180 0

 

= tan 1 | |

+180

 

 

=360 0 tan 1 | |

 

=180 0 tan 1 | |

 

=180 0 + tan 1 | |

(12)

= ?

 

(0, 0)

( ��������� )

 

 (����)

45

0 

135  0

225

  0

315  0

1=5+5  

  1=tan1

|

55

|

=tan11=450

 

3=55

   

4=5 5  

 

2=5+5

 

 

 

(   ,

)

(  ,− 

) (  ,− 

)

(  

,)

(13)

POLAR FORM OF COMPLEX NUMBER

Based on the figure:

Again,

The polar form is defined by:

Where and

 

 

(0, 0)

( ��������� )

 

 (����)

 

 

(  

, )

= + ��

 

 

(14)

EXPONENTIAL FORM OF  

=� � � �

 

where,  

  =arg ⁡( )

must be in radian.

 

Referensi

Dokumen terkait

A) Node, stable: both eigenvalues are negative real; the fixed point is stable... B) Focus, stable: complex conjugate eigenvalues with negative real part; the fixed point is stable,

If you are interested at all in art and photography, you will no doubt have noticed the huge number of impressive looking online galleries all over the internet.. Judging by the

In mathematics, the definition of number has been extended over the years to include such numbers as zero, positive numbers, negative numbers, rational numbers, irrational numbers and

Representing negative numbers - A neat trick Twos complement notation • for a positive number n, represent the number by its binary rep.. • for a negative number−n, represent the

Steps on how to read a textbook Step #5: Record  Now it is time to take some notes  Use a notebook and label the top of the page with the chapter number and title you just read

Definition: X is a continuous random variable if there exist a non-negative funtionf, defined for all real x ²−∞,∞, having the property that for any set B of real numbers.. P{X ²B}= Z

First Speaker Negative: The first negative does not need to provide a definition, UNLESS the affirmative fails to do so or if you disagree with a fundamental aspect of their definition