COMPLEX
NUMBER
COMPLEX NUMBER
Definition
Different forms
Modulus
Argument
IMAGINARY UNIT
• You can’t take the square root of a negative number. If you use imaginary units, you can!
• The imaginary unit is ‘’
• It is used to write the square root of a negative number Property of the square root of negative numbers
• If r is a positive real number, then
Examples:
√ − 2 = � √ 2
THE POWERS OF
, then:
etc.
• If n is evenly divisible by 4 then
• If the remainder is 1, then
• If the remainder is 2, then
• If the remainder is 3, then
DEFINITION
For real numbers and the number is a complex number.
C-numbers
Real – numbers
Rational numbers
Integers
� = � + ��
Imaginary Real part part
All numbers can be expressed as complex numbers.
The complex conjugate of a complex number, , denoted by , is given by
Two complex numbers and are equal, if and
3 =3 + � ⋅ 0
−
6 � =0 + � ⋅( − 6 )
ALGEBRAIC FORM OF
where: and real number
Examples :
�=�+��
� =4 − 15 �
¿ 4 +( − 15 ) �
� =4 + 5 �
� =− 44 − 35 �
¿ − 4 4 +(− 3 5 )�
¿ 4 +( 0 ) �
� = 4
� =6 �
¿ 0 + 6 �
2 IMPORTANT CONCEPTS
Modulus of : Notation : Rule :
Argument of z : Notation : or
�
(0, 0)
� ( ��������� )
� (����)
�
( �, � )
∙
FINDING MODULUS OF Z
Modulus of :
Notation :
Rule :
Examples :
�
(0, 0)
� ( ��������� )
� (����)
(− �,−�) ( �,−�)
(− � ,�)
�
�
( �
∙
, �)ARGUMENT OF Z
� (����)
� ( ���������
)
(0, 0)
( �,−�)
(� ,�)
(5,0 ) (− �,�)� =���� � �=�� � =��
�=����
(5,0 ) 0 0
0
( −5,0) 180 0
�
(0,5 ) (0 ,−5)
900
270 0
� / 2
3
� / 2
� = � +��
(0, 0)
� ( ���������
)
� (����)
�
��
( �,∙�)
�=tan−1
|
��|
(0, 0)
� ( ���������
)
� (����)
�
(− �,−∙ �)
�
�
� 180 °
�
=− � − � �
(0, 0)
� ( ���������
)
� (����) ( �,−∙ �)
360 °
�
�
�
�
�
= � − � �
(0, 0)
� ( ���������
)
� (����)
�
�
�
(− � ,�)
∙
�
180 °
�
=− � + ��
� = ?
Plot in the coordinate axes. The following cases will arise:
To find in radians, use:
radian mode ;
for & for
�
= tan − 1 | � � | + 180 0 �
= tan − 1 | � � |
+180
�
=360 0 − tan −1 | � � |
�
=180 0 − tan −1 | � � |
�
=180 0 + tan −1 | � � |
� = ?
(0, 0)
� ( ��������� )
� (����)
45
0135 0
225
0315 0
�1=5+5�
� 1=tan−1
|
55|
=tan−11=450
�3=−5−5�
�4=5− 5 �
�2=−5+5�
�
�
(� ,
∙
�)(� ,−�
∙
) (− �,−∙
�)( −�
∙
,�)POLAR FORM OF COMPLEX NUMBER
Based on the figure:
Again,
The polar form is defined by:
Where and
�
(0, 0)
� ( ��������� )
� (����)
�
�
( �
∙
, � )� = � + ��
�
EXPONENTIAL FORM OF
� =� � � �
where,
� =arg (� )
must be in radian.