• Tidak ada hasil yang ditemukan

Lecture 4 Image Restoration

N/A
N/A
Protected

Academic year: 2017

Membagikan "Lecture 4 Image Restoration"

Copied!
75
0
0

Teks penuh

(1)

Lecture 4

(2)

Image Restoration

• Image restoration: recover an image that has been

degraded by using a prior knowledge of the degradation phenomenon.

(3)

A Model of Image Degradation/Restoration Process

• Degradation

– Degradation function H

(4)

A Model of Image Degradation/Restoration Process

If is a process, then

the degraded image is given in the spatial domain by

( , ) ( , ) ( , ) ( , )

H

linear, position-invariant

(5)

A Model of Image Degradation/Restoration Process

The model of the degraded image is given in

the frequency domain by

(6)

Noise Sources

• The principal sources of noise in digital images arise during image acquisition and/or transmission

 Image acquisition

e.g., light levels, sensor temperature, etc.

 Transmission

(7)

Noise Models (1)

• White noise

– The Fourier spectrum of noise is constant

• With the exception of spatially periodic noise, we assume – Noise is independent of spatial coordinates

(8)

Noise Models (2)

Gaussian noise

Electronic circuit noise, sensor noise due to poor illumination and/or high temperature

(9)

Range Imaging (1)

 Short for High Dynamic Range Imaging. HDRI is an imaging

technique that allows for a greater dynamic range of exposure than would be obtained through any normal imaging process.

 It is now popularly used to refer to the process of tone

mapping* together with bracketed** exposures of normal

digital images, giving the end result a high, often exaggerated dynamic range

* Tone mapping is a technique used in image processing and computer graphics to map a set of colours to another; often to approximate the appearance of HDRI in media with a more limited dynamic range

(10)

Range Imaging (2)

 The intention of HDRI is to accurately represent the wide range of intensity levels found in real scenes ranging from direct sunlight to shadows

 HDRI, also called HDR (High Dynamic Range) is a feature

(11)

Range Imaging: Examples (1)

Tower Bridge in Sacramento,

(12)

Range Imaging: Examples (2)

http://en.wikipedia.org/wiki/High_dynamic_range_imaging

(13)
(14)

Noise Models (3)

Erlang (gamma) noise: Laser imaging

Exponential noise: Laser imaging

Uniform noise: Least descriptive; Basis for numerous random number generators

(15)

Gaussian Noise (1)

2 2

( ) / 2

The PDF of Gaussian random variable, z, is given by

1 ( )

2

z z

p z e



  

where, represents intensity

is the mean (average) value of z is the standard deviation

z z

(16)

Gaussian Noise (2)

2 2

( ) / 2

The PDF of Gaussian random variable, z, is given by

1 ( )

2

z z

p z e



  

– 70% of its values will be in the range

– 95% of its values will be in the range

(

),(

)

(17)

Rayleigh Noise

2

( ) /

The PDF of Rayleigh noise is given by

2

( ) for

( )

0 for

z a b

z a e z a

p z b

z a         2

The mean and variance of this density are given by / 4

(4 )

4

z a b

(18)

Erlang (Gamma) Noise

1

The PDF of Erlang noise is given by

for 0 ( ) ( 1)!

0 for

b b

az a z

e z

p z b

z a          2 2

The mean and variance of this density are given by /

/ z b a

b a

(19)

Exponential Noise

The PDF of exponential noise is given by

for 0 ( )

0 for

az ae z p z z a        2 2

(20)

Uniform Noise

The PDF of uniform noise is given by

1

for a ( )

0 otherwise

z b p z b a

 



2 2

The mean and variance of this density are given by ( ) / 2

( ) / 12

z a b

b a

(21)

Impulse (Salt-and-Pepper) Noise

The PDF of (bipolar) impulse noise is given by

for

( ) for

0 otherwise

a b

P z a

p z P z b

      

If either or is zero, the impulse noise is calledPa Pb unipolar

if , gray-level will appear as a light dot,

while level will appear like a dark dot.

b a b

a

(22)
(23)
(24)
(25)
(26)

Periodic Noise

• Periodic noise in an image arises typically from electrical or electromechanical interference during image acquisition.

• It is a type of spatially dependent noise

(27)
(28)

Estimation of Noise Parameters (1)

(29)

Estimation of Noise Parameters (2)

Consider a subimage denoted by , and let ( ), 0, 1, ..., -1,

denote the probability estimates of the intensities of the pixels in .

The mean and variance of the pixels in :

s i

S p z i L

S S  1 0 1 2 2 0 ( )

and ( ) ( )

L

i s i i

L

i s i

i

z z p z

z z p z

(30)

Restoration in the Presence of Noise Only

̶ Spatial Filtering

Noise model without degradation

( , ) ( , ) ( , )

and

( , ) ( , ) ( , )

g x y f x y x y

G u v F u v N u v

 

(31)

Spatial Filtering: Mean Filters (1)

Let represent the set of coordinates in a rectangle subimage window of size , centered at ( , ).

xy

S

m nx y

Arithmetic mean filter

(32)

Spatial Filtering: Mean Filters (2)

Generally, a geometric mean filter achieves smoothing comparable to the arithmetic mean filter, but it tends to lose less image detail in the process

mn S t s xy t s g y x f 1 ) , ( ) , ( ) , ( ˆ         

(33)
(34)

Spatial Filtering: Order-Statistic Filters (1)

( , )

max ) , ( ˆ ) ,

( g s t

(35)

Spatial Filtering: Order-Statistic Filters (2)

       

 ( , ) min ( , )

max 2 1 ) , ( ˆ ) , ( ) , ( t s g t s g y x f xy

xy s t S

S t s

(36)

Spatial Filtering: Order-Statistic Filters (3)

We delete the / 2 lowest and the / 2 highest intensity values of ( , ) in the neighborhood . Let ( , ) represent the remaining

- pixels.

xy r

d d

g s t S g s t

mn d

xy S t s

r

s

t

g

d

mn

y

x

f

) , (

)

,

(

1

)

,

(

ˆ

(37)
(38)
(39)

Spatial Filtering: Adaptive Filters

Adaptive filters

The behavior changes based on statistical characteristics of the image inside the filter region defined by the mхn rectangular window.

(40)

Adaptive Filters:

Adaptive, Local Noise Reduction Filters (1)

2

: local region

The response of the filter at the center point (x,y) of is based on four quantities:

(a) ( , ), the value of the noisy image at ( , ); (b) , the variance of the noise corrupti

xy

xy

S

S

g x y x y

2

ng ( , ) to form ( , );

(c) L, the local mean of the pixels in xy;

f x y g x y

m S

S

(41)

Adaptive Filters:

Adaptive, Local Noise Reduction Filters (2)

2

2

The behavior of the filter:

(a) if is zero, the filter should return simply the value

of ( , ).

(b) if the local variance is high relative to , the filter

should return a value cl

g x y

ose to ( , );

(c) if the two variances are equal, the filter returns the

arithmetic mean value of the pixels in xy.

g x y

(42)

Adaptive Filters:

Adaptive, Local Noise Reduction Filters (3)

L

L

m

y

x

g

y

x

g

y

x

f

ˆ

(

,

)

(

,

)

(

,

)

2 2

(43)
(44)

Adaptive Filters:

Adaptive Median Filters (1)

min

max

med

The notation:

minimum intensity value in

maximum intensity value in

median intensity value in

intensity value at coordinates ( , )

maximum all xy xy xy xy z S z S z S

z x y

S

   

(45)

Adaptive Filters:

Adaptive Median Filters (2)

med min med max

max

The adaptive median-filtering works in two stages: Stage A:

A1 = ; A2 =

if A1>0 and A2<0, go to stage B Else increase the window size

if window size , re

z z z z

S

 

med

min max

med

peat stage A; Else output Stage B:

B1 = ; B2 =

if B1>0 and B2<0, output ; Else output

xy xy

xy

z

z z z z

z z

(46)

Adaptive Filters:

Adaptive Median Filters (2)

med min med max

max

The adaptive median-filtering works in two stages: Stage A:

A1 = ; A2 =

if A1>0 and A2<0, go to stage B Else increase the window size

if window size , re

z z z z

S

 

med

min max

peat stage A; Else output Stage B:

B1 = xy ; B2 = xy

z

zz zz

The median filter output is an impulse

or not

(47)

Example:

(48)

Periodic Noise Reduction by Frequency Domain Filtering

The basic idea

Periodic noise appears as concentrated bursts of energy in the Fourier transform, at locations corresponding to the frequencies of the periodic interference

Approach

(49)
(50)
(51)
(52)
(53)

Several interference components are present, the methods discussed in the preceding sections are not always acceptable because they remove much image information

(54)

Linear, Position-Invariant Degradations

( , )

( , )

( , )

(55)

Linear, Position-Invariant Degradations

An operator having the input-output relationship

( , ) ( , ) is said to be position invariant

if

( , ) ( , )

for any ( , ) and any and .

g x y H f x y

H f x y g x y

f x y

   

 

    

1 2

1

2

1 2

is linear

( , ) ( , ) ( , ) ( , )

and are any two input images.

H

H af x y bf x y aH f x y bH f x y

f f

(56)

Linear, Position-Invariant Degradations

In the presence of additive noise,

if is a linear operator and position invariant,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

H

g x y f h x y d d x y

h x y f x y x y

G u v H u v F u v N u v

      

   

   

 

 

(57)

Estimating the Degradation Function

• Three principal ways to estimate the degradation function

1. Observation

2. Experimentation

(58)

Mathematical Modeling (1)

• Environmental conditions cause degradation

A model about atmospheric turbulence

2 2 5/6

( )

( , )

: a constant that depends on

the nature of the turbulence

k u v

H u v

e

k

 

(59)
(60)

Mathematical Modeling (2)

• Derive a mathematical model from basic principles

(61)

Mathematical Modeling (3)

0 0

Suppose that an image ( , ) undergoes planar motion,

( ) and ( ) are the time-varying components of motion

in the - and -directions, respectively.

The optical imaging process is perfect. T is th

f x y

x t y t

x y

0 0

0

e duration

of the exposure. The blurred image ( , )

( , ) T ( ), ( )

g x y

(62)

Mathematical Modeling (4)

 0 0 

0 0

2 ( ) ( )

0

Suppose that the image undergoes uniform linear motion

in the -direction and -direction, at a rate given by

( ) / and ( ) /

( , )

T j ux t vy t

x y

x t at T y t bt T

H u v e dt

e       

2 [ ] /

0

( )

sin ( )

T

j ua vb t T

j ua vb

dt

T

ua vb e

          

(63)
(64)

Inverse Filtering

)

,

(

/

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

*

)

,

(

)

,

(

ˆ

)

,

(

)

,

(

)

,

(

ˆ

v

u

H

v

u

N

v

u

F

v

u

H

v

u

N

v

u

H

v

u

F

v

u

F

v

u

H

v

u

G

v

u

F

(65)

Inverse Filtering

1. We can't exactly recover the undegraded image because ( , ) is not known.

2. If the degradation function has zero or very

small values, then the ratio ( , ) / ( , ) could easily dominate th

N u v

(66)

Inverse Filtering

 2

/ 2 (

EXAMPLE

The image in Fig. 5.25(b) was inverse filtered using the

exact inverse of the degradation function that generated

that image. That is, the degradation function is

( , )H u vek u M  v

5/6 2

/ 2)

, 0.0025

N

k

 

(67)

A Butterworth lowpass

function of order 10

(68)

Minimum Mean Square Error (Wiener) Filtering

N. Wiener (1942)

Objective

Find an estimate of the uncorrupted image such that the mean square error between them is minimized

2

2

)

ˆ

(

f

f

E

(69)

Minimum Mean Square Error (Wiener) Filtering ) , ( ) , ( / ) , ( ) , ( ) , ( ) , ( 1 ) , ( ˆ 2 2 v u G v u S v u S v u H v u H v u H v u F f            H(u,v): degradation function

H*(u,v): complex conjugate of H(u,v)

|H(u,v)|2 = H(u,v)H*(u,v)

Sn(u,v)= |N(u,v)|2: power spectrum of the noise

Sf(u,v)= |F(u,v)|2 : power spectrum of the undegraded

(70)

Minimum Mean Square Error (Wiener) Filtering ) , ( ) , ( ) , ( ) , ( 1 ) , ( ˆ 2 2 v u G K v u H v u H v u H v u F          

(71)
(72)

Left:

degradated image

Middle: inverse filtering

(73)

Constrained Least Squares Filtering

• In Wiener filter, the power spectra of the undegraded image and noise must be known. Although a constant estimate is sometimes useful, it is not always suitable.

(74)

Constrained Least Squares Filtering

2 2

* ( , )

( , ) ( , )

| ( , ) | | ( , ) |

( , ) is the Fourier transform of the function

0 1 0

( , ) 1 4 1

0 1 0

is a parameter

H u v

F u v G u v

H u v P u v

P u v

p x y

(75)

Referensi

Dokumen terkait

-Lebih kecil dari jenis padi lainnya -Tinggi kira-kira 1 meter - Besar -Kulit bulir berwarna hitam - Pendek -Bulir banyak pada satu biyur Merah Sikasumbo Nabottar

bahwa dalam rangka tercapainya tertib administrasi dan terwujudnya pengelolaan arsip yang efektif dan efisien di lingkungan Kementerian Perhubungan, perlu disusun Jadwal Retensi

Benda mengalami gerak melingkar beraturan dengan kelajuan sudut ω sedemikian rupa sehingga benda tetap bersentuhan dengan kecucut sepanjang waktu.. Gesekan antara benda dan

Kabupaten Puncak Jaya adalah kabupaten sebagaimana dimaksud dalam Undang-Undang Nomor 45 Tahun 1999 tentang Pembentukan Propinsi Irian Jaya Tengah, Propinsi Irian Jaya

water supply system at regional, city, district, and neighborhood level, both in urban and rural areas9. Increase access to adequate sanitation (domestic waste water, solid waste,

Adapun Skripsi ini merupakan tugas akhir dari masa studi S1 di jurusan Teknik Industri yang sifatnya sebagai salah satu syarat kelulusan bagi mahasiswa S1 Teknik Industri

Unsur-unsur tersebut tidak hadir secara terpisah dalam sebuah karya, tetapi diciptakan sebagai satu kesatuan yang utuh untuk mewujudkan citra tertentu yang ingin

Judul : Pelatihan Time Management untuk Sekretaris Grand Candi Hotel Semarang. Program : IPTEK Tahun : 2007 Status :