• Tidak ada hasil yang ditemukan

Design of Intelligent Tutoring System for Mastery Learning

N/A
N/A
Protected

Academic year: 2017

Membagikan "Design of Intelligent Tutoring System for Mastery Learning"

Copied!
19
0
0

Teks penuh

(1)
(2)

Advanced Science Letters

ISSN: 1936-6612 (Print): EISSN: 1936-7317 (Online)

Copyright © 2000-2015 American Scientific Publishers. All Rights Reserved.

EDITORIAL BOARD

EDITOR-IN-CHIEF

Dr. Hari Singh Nalwa,

USA

Editorial Office:

ADVANCED SCIENCE LETTERS

American Scientific Publishers

26650 The Old Road, Suite 208

Valencia, California 91381-0751, USA

Tel. (661) 799-7200

Fax: (661) 799-7230

E-mail: science@aspbs.com

EUROPEAN EDITOR

Prof. Dr. Wolfram Schommers

Forschungszentrum Karlsruhe

Institut für Wissenschaftliches Rechnen

D-76021 Karlsruhe, Germany

Tel.: +49-7247-82-2432

Fax: +49-7247-82-4972

HONORARY EDITORS

Richard Ernst*

, ETH Zürich, Switzerland

Eric B. Karlsson+

, Uppsala University, Sweden

Douglas Osheroff*

, Stanford University, USA

*Nobel Prize Laureate

+Member of the Nobel Committee for Physics 1987-1998 (chairman in 1998)

ASSOCIATE EDITORS

Diederik Aerts

(Quantum theory, Cognition, Evolution theory)

Brussels Free University, Belgium.

Yakir Aharonov

(Physics, Quantum Physics)

School of Physics and Astronomy, Israel.

(3)

Jim Al-Khalili

(Foundations of Physics, Nuclear Reaction Theory)

University of Surrey, UK.

Jake Blanchard

(Engineering Physics, Nuclear Engineering)

University of Wisconsin–Madison, USA.

Simon Baron-Cohen

(Cognitive Neuroscience)

University of Cambridge, UK.

Franz X. Bogner

(Cognitive Achievement)

University of Bayreuth, Germany.

John Borneman

(Anthropology)

Princeton University, USA.

John Casti

(Complexity Science)

Internationales Institut für Angewandte Systemanalyse, Austria.

Masud Chaichian

(High Energy Physics, String Theory)

University of Helsink, Finland.

Sergey V. Chervon

(Gravitation, Cosmology, Astrophysics)

Ulyanovsk State Pedagogical University, Russia

Kevin Davey

(Philosophy of Science)

University of Chicago, Chicago, USA.

Tania Dey

(Colloids/Polymers/Nanohybrids)

Canada.

Roland Eils

(Bioinformatics)

Deutsches Krebsforschungszentrum Heidelberg, Germany.

Thomas Görnitz

(Quantum theory, Cosmology)

University of Frankfurt, Germany.

Bert Gordijn

(Nanoethics, Neuroethics, Bioethics)

Radboud University Nijmegen, The Netherlands.

Ji-Huan He

(Textile Engineering, Functional Materials)

Soochow University, Suzhou, China.

Nongyue He

(Biosensors/Biomaterials)

China.

Irving P. Herman

(Materials and Solid State Physics)

Columbia University, USA.

(4)

Jucundus Jacobeit

(Climate, Global Change Ecology)

University of Augsburg, Germany.

Yuriy A. Knirel

(Bioorganic Chemistry)

N. D. Zelinsky Institute of Organic Chemistry, Russia.

Arthur Konnerth

(Neurophysiology, Molecular Mechanisms)

University of Munich, Germany.

G. A. Kourouklis

(Physics Solid State Physics)

Aristotle University Thessaloniki, Greece.

Peter Krammer

(Genetics)

Deutsches Krebsforschungszentrum Heidelberg, Germany.

Andrew F. Laine

(Biomedical Engineering)

Columbia University, USA.

Minbo Lan

(Organic Functional Materials)

China.

Martha Lux-Steiner

(Physics, Materials Science)

Hahn-Meitner-Institut Berlin, Germany.

Klaus Mainzer

(Complex Systems, Computational Mind, Philosophy of Science)

University of Augsburg, Germany.

JoAnn E. Manson

(Medicine, Cardiovascular Disease)

Harvard University, USA.

Mark P. Mattson

(Neuroscience)

National Institute on Aging, Baltimore, USA.

Lucio Mayer

(Astrophysics, Cosmology)

ETH Zürich, Switzerland.

Efstathios Meletis

(Physics, Thin films, Nanomaterials, Corrosion, Tribology)

University of Texas at Arlington, USA.

Karl Menten

(Radioastromy)

Max-Planck-Institut für Radioastromie, Germany.

Yoshiko Miura

(Biomaterials/Biosensors)

Japan.

Fred M. Mueller

(Solid State Physics)

Los Alamos National Laboratory, USA.

(5)

The Institute for Molecular Medicine, Huntington Beach, USA.

Nina Papavasiliou

(DNA Mutators, Microbial Virulence, Antiviral Defence, Adaptive

Immunity, Surface Receptor Variation)

The Rockefeller University, New York, USA.

Panos Photinos

(Physics)

Southern Oregon University, USA.

Constantin Politis

(Physics, Engineering)

University of Patras, Greece.

Zhiyong Qian

(Biomedical Engineering, Biomaterials, Drug Delivery)

Sichuan University, CHINA.

Reinhard Schlickeiser

(Astrophysics, Plasma Theory and Space Science)

Ruhr-Universität Bochum, Germany.

Surinder Singh

(Sensors/Nanotechnology)

USA.

Suprakas Sinha Ray

(Composites/Polymer Science)

South Africa.

Koen Steemers

(Architechture, Environmental Building Performance)

University of Cambridge, UK.

Shinsuke Tanabe

(Environmental Chemistry and Ecotoxicology)

Ehime University, Japan.

James R. Thompson

(Solid State Physics)

The University of Tennessee, USA.

Uwe Ulbrich

(Climat, Meteorology)

Freie Universität Berlin, Germany.

Ahmad Umar

(Advanced Materials)

Najran University, Saudi Arabia.

Frans de Waal

(Animal Behavior and Cognition)

Emory University, USA.

EDITORIAL BOARD

Filippo Aureli,

Liverpool John Moores University, UK

Marcel Ausloos,

Université de Liège, Belgium

Martin Bojowald,

Pennsylvania State University, USA

Sougato Bose,

University College, London, UK

Jacopo Buongiorno,

MIT, USA

Paul Cordopatis,

University of Patras, Greece

(6)

Dionysios Demetriou Dionysiou,

University of Cincinnati, USA

Simon Eidelman,

Budker Institute of Nuclear Physics, Russia

Norbert Frischauf,

QASAR Technologies, Vienna, Austria

Toshi Futamase,

Tohoku University, Japan

Leonid Gavrilov,

University of Chicago, USA

Vincent G. Harris,

Northeastern University, USA

Mae-Wan Ho,

Open University, UK

Keith Hutchison,

University of Melbourne, Australia

David Jishiashvili,

Georgian Technical University, Georgia

George Khushf,

University of South Carolina, USA

Sergei Kulik,

M.V.Lomonosov Moscow State University, Russia

Harald Kunstmann,

Institute for Meteorology and Climate Research, Forschungszentrum

Karlsruhe, Germany

Alexander Lebedev,

Laboratory of Semiconductor Devices Physics, Russia

James Lindesay,

Howard University, USA

Michael Lipkind,

Kimron Veterinary Institute, Israel

Nigel Mason,

Open University, UK

Johnjoe McFadden,

University of Surrey, UK

B. S. Murty,

Indian Institute of Technology Madras, Chennai, India

Heiko Paeth,

Geographisches Institut der Universität Würzburg, Germany

Matteo Paris,

Universita' di Milano, Italia

David Posoda,

University of Vigo, Spain

Paddy H. Regan,

University of Surrey, UK

Leonidas Resvanis,

University of Athens, Greece

Wolfgang Rhode,

University of Dortmund, Germany

Derek C. Richardson,

University of Maryland, USA

Carlos Romero,

Universidade Federal da Paraiba, Brazil

Andrea Sella,

University College London, London, UK

P. Shankar,

Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Leonidas Sotiropoulos,

University of Patras, Greece

Roger Strand,

University of Bergen, Norway

Karl Svozil,

Technische Universität Wien, Auastria

Kit Tan,

University of Copenhagen, Denmark

Roland Triay,

Centre de Physique Theorique, CNRS, Marseille, France

Rami Vainio,

University of Helsinki, Finland

Victor Voronov,

Bogoliubov Laboratory of Theoretical Physics, Dubna, Russia

Andrew Whitaker,

Queen's University Belfast, Northern Ireland

Lijian Xu,

Hunan University of Technology, China

Alexander Yefremov,

Peoples Friendship University of Russia, Russia

Avraam Zelilidis,

University of Patras, Greece

(7)

TABLE OF CONTENTS

 

A SPECIAL ISSUE

Selected Peer-Reviewed Articles from 2013 International Conference on Internet

Services Technology and Information Engineering (ISTIE 2013), Bogor, Indonesia,

11-12 May 2013

Guest Editors:

Ford Lumban Gaol and Benfano Suwito

Adv. Sci. Lett. 20, 1-2 (2014)

RESEARCH ARTICLES

A Study on Intelligent System for Fire Rescue Operation

Azwin Hazrina Ahmad, Ahmad Kamil Mahmood, Jafreezal Jaafar, and Ahmad Aminudin

Abdul Rahim

Adv. Sci. Lett. 20, 3-7 (2014)

Placement and Configuration of Antenna for Indoor Femtocell Application

Ita Triana, Rina Pudji Astuti, and Budi Prasetya

Adv. Sci. Lett. 20, 8-14 (2014)

Semantics Weaving in Aspects Modeling for Mobile Software

Yong-Yi Fan Jiang, Wan-Jung Huang, and Yang Syu

Adv. Sci. Lett. 20, 15-20 (2014)

Dynamic Failure Detection in Distributed Environment

Ahmad Shukri Mohd Noor and Mustafa Mat Deris

Adv. Sci. Lett. 20, 21-25 (2014)

An Adaptive JPEG Image Compression Using Psychovisual Model

Ferda Ernawan, Nur Azman Abu, and Nanna Suryana

Adv. Sci. Lett. 20, 26-31 (2014)

A Study of Cloud Computing Performance as a Game Platform: An Indonesia Case

Aldo Wijanarko and Raymond Kosala

Adv. Sci. Lett. 20, 32-36 (2014)

Rapid Identification Method of Aerobic Bacteria in Diabetic Foot Ulcers Using

Electronic Nose

Azian Azamimi Abdullah, Tan Woei Jing, Chua Ai Sie, Nurlisa Yusuf, Ammar Zakaria,

Mohammad Iqbal Omar, Ali Yeon Md Shakaff, Abdul Hamid Adom, Latifah Munirah

Kamarudin, Yeap Ewe Juan, Amizah Othman, and Mohd Sadek Yassin

Adv. Sci. Lett. 20, 37-41 (2014)

Gesture Recognition Based on Bayesian Inference of Distributed Arm Trajectory

Khairunizam Wan, Azri A. Aziz, S. K. Za'aba, A. B. Shahriman, Nasir Ayob, Azian Azamimi

Abdullah, and Zuradzman M. Razlan

(8)

Control and Analysis of the Automatic Industrial-Position Sensor

Anna Antonyová and Peter Antony

Adv. Sci. Lett. 20, 47-50 (2014)

Optimal Control Solution of a Tuberculosis Transmission Model with Recurrent

Infection and Vaccination Using C# Programming

J. Nainggolan, Sudradjat Supian, A. K. Supriatna, N. Anggriani, and Detiatrimargini

Adv. Sci. Lett. 20, 51-55 (2014)

A Design of 6LoWPAN Routing Protocol Border Router with Multi-Uplink Interface:

Ethernet and Wi-Fi

Ardiansyah Musa Efendi, Ali Fahmi Perwira Negara, Oh Seung Kyo, and Deokjai Choi

Adv. Sci. Lett. 20, 56-60 (2014)

Modeling and Simulation Library's Service for Net Generation: A System Dynamics

Framework

Lily Puspa Dewi and Erma Suryani

Adv. Sci. Lett. 20, 61-65 (2014)

Controlling the Signal Applied from Fluidic Proximity Sensor

Anna Antonyová and Peter Antony

Adv. Sci. Lett. 20, 66-69 (2014)

An Optimal Tchebichef Moment Quantization Using Psychovisual Threshold for

Image Compression

Ferda Ernawan, Nur Azman Abu, and Nanna Suryana

Adv. Sci. Lett. 20, 70-74 (2014)

Trip Guidance: A Linked Data Based Mobile Tourists Guide

Hendrik and Dheddy Husada Fadjar Perdana

Adv. Sci. Lett. 20, 75-79 (2014)

A Comparison of Extraction Techniques for the Rapid Electroencephalogram-P300

Signals

Arjon Turnip, Haryadi, Demi Soetraprawata, and Dwi Esti Kusumandari

Adv. Sci. Lett. 20, 80-85 (2014)

Adopting Online Course into Higher Education Curriculum

Yahya Peranginangin, Andry Alamsyah, and Gadang Ramantoko

Adv. Sci. Lett. 20, 86-90 (2014)

A Multi Agent Framework (MAFSNUD) for Belief-Desire-Intention (BDI) Model's

Decision-Making Problem in Dynamic Situations: An Overview

Ileladewa Adeoye Abiodun and Cheng Wai Khuen

Adv. Sci. Lett. 20, 91-96 (2014)

Enhancement of 5-Axis Micromilling Visibility Through Visualization, Simulation,

and Video Streaming in a Faceted-Based CAM-System

(9)

Trusted Information Supply Chain Framework in Clinical Studies

Thomas Kandl and Nawaz Khan

Adv. Sci. Lett. 20, 103-110 (2014)

Frame Error Estimation for Distributed Coordination Function Scheme with High

Throughput-Physical Performance Evaluation

Teuku Yuliar Arif and Riri Fitri Sari

Adv. Sci. Lett. 20, 111-115 (2014)

Comparison of Image Pre-Processing Approach for Classification of Intestinal

Parasite Ascaris Lumbricoides Ova and Trichuris Trichiura Ova

K. H. Ghazali, R. S. Hadi, and M. Zeehaida

Adv. Sci. Lett. 20, 116-119 (2014)

Dynamic

Q

-Learning for Intersection Traffic Flow Control Based on Agents

Felipe P. Vista IV, Xuan Zhou, Ji Hyoung Ryu, and Kil To Chong

Adv. Sci. Lett. 20, 120-123 (2014)

BPMN and SoaML Synergy en Route to Implement Digital Identity-Related Privacy

as a Set of Services

Ghazi Ben Ayed and Nourchene Elleuch-Ben Ayed

Adv. Sci. Lett. 20, 124-128 (2014)

SKK Migas Sistem Operasi Terpadu-Performance Evaluation for Secure Data

Exchange for Oil and Gas Contractors

Bobby Suryajaya, Charles Lim, and Budi Ibrahim

Adv. Sci. Lett. 20, 129-133 (2014)

Comparing the Interface Design of a Cycling Web and the App Version

Sin-Ho Chin

Adv. Sci. Lett. 20, 134-138 (2014)

An Algebraic Approach for Sentence Based Feature Extraction Applied for

Automatic Text Summarization

Nowshath Kadhar Batcha and Normaziah Abdul Aziz

Adv. Sci. Lett. 20, 139-143 (2014)

Genetic Algorithms-Based Quality of Service Service Selection in Cloud Computing

Using Multilayer Perceptron

Ahmad Mosallanejad, Amir Rajabi Behjat, Aida Mustapha, and Rodziah Atan

Adv. Sci. Lett. 20, 144-147 (2014)

Analysis Study on Human Emotion in Human-Robot Collaboration

(10)

Automated Visual Inspection for Surgical Instruments Based on Spatial Feature and

K-Nearest Neighbor Algorithm

Murtadha Basil Abbas, Anton Satria Prabuwono, Siti Norul Huda Sheikh Abdullah, and

Rizuana Iqbal Hussain

Adv. Sci. Lett. 20, 153-157 (2014)

Designing the Key Detection of Text Steganalysis Based

Roshidi Din

Adv. Sci. Lett. 20, 158-163 (2014)

Software Certification and Its Implementation in Malaysian Software Industry: A

Survey

Shafinah Farvin Packeer Mohamed, Fauziah Baharom, Aziz Deraman, and Haslina Mohd

Adv. Sci. Lett. 20, 164-168 (2014)

System Development and Gap Analysis Enterprise Resources Planning in Oracle

Procurement (Case Study: PT. XYZ)

Agung Terminanto

Adv. Sci. Lett. 20, 169-174 (2014)

A New Framework for Classification of Distributed Denial of Service (DDOS) Attack

in Cloud Computing by Machine Learning Techniques

Mostafa Behzadi, Ramlan Mahmod, Mehdi Barati, Azizol Bin Hj Abdullah, and Mahda

Noura

Adv. Sci. Lett. 20, 175-178 (2014)

Students' Help Seeking: Towards a Design of Supporting Tools

Shamsheer Jauhangeer and Maizatul Akmar Ismail

Adv. Sci. Lett. 20, 179-183 (2014)

The Impact of Enterprise Resource Planning Success in Indonesia Company

Sevenpri Candra

Adv. Sci. Lett. 20, 184-187 (2014)

Feature Subset Selection Using Binary Quantum Particle Swarm Optimization for

Spam Detection System

Amir Rajabi Behjat, Aida Mustapha, Hossein Nezamabadi-Pour, Md. Nasir Sulaiman, and

Norwati Mustapha

Adv. Sci. Lett. 20, 188-192 (2014)

Systems Template Prototyping Using Rapid By-Customer Demand with Business

Principles Approach and Systems Features Analysis

Felipe P. Vista IV and Kil To Chong

Adv. Sci. Lett. 20, 193-198 (2014)

Encouraging Information and Communication Technology Sectors Using

Input-Output Approach: The Case of Indonesia

(11)

Forecast to Plan Cycle in Oracle E Business Suite (Case Study Automotive

Company)

Agung Terminanto

Adv. Sci. Lett. 20, 203-208 (2014)

Leaf Recognition Based on Leaf Tip and Leaf Base Using Centroid Contour Gradient

Bong Mei Fern, Ghazali Bin Sulong, and Mohd Shafry Mohd Rahim

Adv. Sci. Lett. 20, 209-212 (2014)

Design of Intelligent Tutoring System for Mastery Learning

Dwijoko Purbohadi, Lukito Nugroho, Insap Santosa, and Amitya Kumara

Adv. Sci. Lett. 20, 213-217 (2014)

Cloud Computing-Based Smart Home-Based Rehabilitation Nursing System for

Early Intervention

Huai-Te Chen, Mei-Hui Tseng, Lu Lu, Jheng-Yi Sie, Yu-Jyuan Chen, Yufang Chung, and

Feipei Lai

Adv. Sci. Lett. 20, 218-221 (2014)

A Prototype Model for Handling Fuzzy Query in Voice Search on Smartphones

Dae-Young Choi

Adv. Sci. Lett. 20, 222-225 (2014)

An Ontological Framework to Preserve Malay Indigenous Health Knowledge

Haryani Haron and M. Hamiz

Adv. Sci. Lett. 20, 226-230 (2014)

A Conceptual Analysis on Mobile Reminiscence Transactive Memory

Sabiroh Md Sabri, Haryani Haron, and Nursuriati Jamil

Adv. Sci. Lett. 20, 231-234 (2014)

Feature Subset Selection Using Genetic Algorithm for Intrusion Detection System

Amir Rajabi Behjat, Najmeh Vatankhah, and Aida Mustapha

Adv. Sci. Lett. 20, 235-238 (2014)

Genetic Feature Selection for Software Defect Prediction

Romi Satria Wahono and Nanna Suryana Herman

Adv. Sci. Lett. 20, 239-244 (2014)

Data Mining of International Tourists in Thailand by Two Step Clustering and

Classification

Wirot Yotsawat and Anongnart Srivihok

Adv. Sci. Lett. 20, 245-249 (2014)

Community Detection Methods in Social Network Analysis

Andry Alamsyah, Budi Rahardjo, and Kuspriyanto

(12)

Design of an Automated Breast Cancer Masses Detection in Mammogram Using

Cellular Neural Network (CNN) Algorithm

Sim Choon Ling, Azian Azamimi Abdullah, and Wan Khairunizam Wan Ahmad

Adv. Sci. Lett. 20, 254-258 (2014)

Mapping of Quality of Service Parameter with Monitoring End-to-End Method of

ITU-T Y.1541 Standard in the Hotspot Area

Muhammad Agung Nugroho and Ferry Wahyu Wibowo

Adv. Sci. Lett. 20, 259-263 (2014)

User's Acceptance of HIS System: Role of Involvement, Organizational Support and

Training

Samsudin Wahab, Mohd Sazili Shahibi, Ahmad Nawir Abu Amrin, and Nik Norhaslida Ali

Adv. Sci. Lett. 20, 264-267 (2014)

Acceptance of Internet Banking Systems Among Young Users; the Effect of

Technology Acceptance Model

Mohd Shoki Md Ariff, S. M. Yeow, and Norhayati Zakuan

Adv. Sci. Lett. 20, 268-272 (2014)

Measuring Performance in the Public Administration Sector: An Analysis of

Websites Efficiency

Corrado lo Storto

Adv. Sci. Lett. 20, 273-276 (2014)

Detecting Seller Shilling Behavior Based on Bid Arrival Model

Chu-Fen Li

Adv. Sci. Lett. 20, 277-279 (2014)

Arithmetic Coding Differential Evolution with Local Search

Orawan Watchanupaporn and Worasait Suwannik

Adv. Sci. Lett. 20, 280-284 (2014)

The Impacts of e-Service Quality and e-Customer Satisfaction on e-Customer

Loyalty in Internet Banking

Mohd Shoki Md Ariff, Leong Ooi Yun, Norhayati Zakuan, and Khalid Ismail

Adv. Sci. Lett. 20, 285-289 (2014)

Incorporating Transportation Costs Into Integrated Inventory Model for Single

Supplier and Single Purchaser

Raden Achmad Chairdino Leuveano, Fairul Azni Bin Jafar, and Mohd Razali Bin

Muhamad

Adv. Sci. Lett. 20, 290-293 (2014)

Context-Aware Mobile Patient Monitoring Framework Development: An Architectural

Design

(13)

A Conceptual Framework: Dynamic Path Planning System for Simultaneous

Localization and Mapping Multirotor UAV

H. H. Trihaminto, A. S. Prabuwono, A. F. M. Saiffuddin Saif, and T. B. Adji

Adv. Sci. Lett. 20, 299-303 (2014)

Effectiveness of Integrated Algorithm-Program Visualization: A Case Study with the

3De-AlProV

Affandy, Nanna Suryana, and Burairah Husin

Adv. Sci. Lett. 20, 304-308 (2014)

Analysis of Satisfaction and Improvement Design of Electronic Insurance Claim

Service

M. Dachyar, M. Omar, and P. Andri Sena

Adv. Sci. Lett. 20, 309-311 (2014)

Improvement of Text Compression Using Subset of Words

Jan Platos

Adv. Sci. Lett. 20, 312-316 (2014)

A Tensor-Based Approach for Semantic Recommenders in eGovernment

Luis Álvarez Sabucedo, Juan M. Santos Gago, and Manuel J. Fernández Iglesias

Adv. Sci. Lett. 20, 317-320 (2014)

Modelling the Determinants Influencing the Need of Computer Simulation

Framework in Improving the Closing of Final Account in Construction Projects

Zarabizan Zakaria, Syuhaida Ismail, and Aminah Md Yusof

Adv. Sci. Lett. 20, 321-325 (2014)

A New Model for Multicriteria Risk-Based Tender Evaluation

Wan Farez Saini Muner, Fauziah Baharom, Azman Yasin, Haslina Mohd, Norida Muhd

Darus, Zaharin Marzuki, and Mohd Afdhal Muhammad Robie

Adv. Sci. Lett. 20, 326-330 (2014)

E

-Tendering Security Issues and Countermeasures

Mohd Afdhal Muhammad Robie, Haslina Mohd, Fauziah Baharom, Norida Muhd Darus,

Azman Yassin, and Wan Farez Saini Muner

Adv. Sci. Lett. 20, 331-335 (2014)

A Methodology for the Development of New Mobile Application Service Concepts

Moon-Soo Kim and Chulhyun Kim

Adv. Sci. Lett. 20, 336-339 (2014)

Pollard Rho Algorithm for Elliptic Curves Over with Negation and Frobenius Map

Intan Muchtadi-Alamsyah, Tomy Ardiansyah, and Sa'aadah Sajjana Carita

Adv. Sci. Lett. 20, 340-343 (2014)

Prediction of Domestic Water Leakage Based on Consumer Water Consumption

Data

Nur Rasyida Mohd Rashid, Khairul A. Rasmani, N. Shahari, Norul Fadhilah Ismail, Herma

Mohd Hanif, and Nor Aishah Md Noh

(14)

Using ZMET to Explore Exchange Experience for Applying in Location-Based

Service

Kaun-Yao Tseng and Wen-Huei Chou

Adv. Sci. Lett. 20, 348-351 (2014)

Structural Path Analysis of the Influences from Smallholder Oil Palm Plantation

Toward Household Income: One Aspect of e-Government Initative

Arif Imam Suroso and Arief Ramadhan

Adv. Sci. Lett. 20, 352-356 (2014)

(15)

RESEARCH ARTICLE

Adv. Sci. Lett. 20 (1), 213

217, 2014

1 Adv. Sci. Lett. Vol. 20, No. 1, 2014 doi: 10.1166/asl.2014.5313

Copyright © 2014 American Scientific Publishers Advanced Science Letters All rights reserved Vol. 20 (1), 213-217, 2014 Printed in the United States of America

Design of Intelligent Tutoring System

For Mastery Learning

Dwijoko Purbohadi1,*, Lukito Nugroho2, Insap Santosa3, Amitya Kumara4

1

Department of Information Technology, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55183, Indonesia

2,3

Department of Electrical Engineering and Information Technology, Univeritas Gadjah Mada, Yogyakarta Indonesia

4

Department of Education Psychology, Universitas Gadjah Mada, Indonesia

Intelligent Tutoring System (ITS) is an interactive e-learning tool to help students learn independently. Currently, the implementation ITS is still in laboratory scale, means ITS has not been used in large scale using internet technology. One of the difficulties is ITS has not fulfill yet the learning needs. The main requirement of current learning based-competency is the high number of students in mastery learning, on the other hand current learning activities could not overcome the problems of student characteristics and different learning speed in each student as well. The concept of mastery learning is an approach used in competency-based learning, which consists of repetition of learning for slow students, mastering for good progress students, and enrichment for fast students. In this paper, the model of ITS is designed to accommodate the competency-based mastery learning needs and be able to follow learning speed of each student. The design of ITS has learning sequences and gradually test student`s cognitive level. It could measure the position of student`s cognitive knowledge, be able to guide to reach mastery level, and give challenges for smart students.

Keywords: ITS, mastery learning, cognitive level, learning sequence

1. INTRODUCTION

Intelligent Tutoring System (ITS) is interactive application program that is used as an information, a learning and an evaluation medium. One of the ways to make students could be learnt independently is by using ITS1. ITS is developed based on Computer Aided Instructional (CAI). CAI is appropriate for both fast and slow students, because the speed and material learning sequences is chosen by the student itself. Then, Learning Management System (LMS) is an e-learning web-based tool that successfully to manage the activities and learning administration2. ITS and LMS is supporting each other so possible combine both of them become iLMS (Intelligent Learning Management System)3.

In conventional systems, the lecturer has a role as instructor and manager of learning activities. If an LMS is applied, the role as the instructor could be changed as a facilitator to the student to do learning activities independently.

*

Email Address: purbohadi@yahoo.com

LMS was designed as tools to manage the activities in order to the interactive tutorial facility need to be added. If an LMS is combined with ITS, the learning activities could be conducted by student anywhere and anytime. Then, the student has a higher opportunity to learn independently. If a student learns independently using ITS, means the teacher has a chance to monitor, to supervise student, and implement a variety of teaching strategies4 so that the number of students to mastery learning is higher.

2. PROBLEM STATEMENT

(16)

Adv. Sci. Lett. 20 (1), 213

217, 2014

RESEARCH ARTICLE

2

ITS can be used to help students achieve a certain learning objectives using the principles of mastery learning. In this paper the core of ITS is to provide a set of learning and assessment in order. ITS will adjust the learning sequences according to the level of understanding a student's pace. ITS shall be provided with a program to determine the next step of learning the most appropriate use of a specific algorithm, the paper uses Markov algorithm. The new problem that arises is how to use Markov algorithms for ITS sequence of learning so as to provide the most appropriate for a student to achieve learning objectives as quickly as possible according to the principles of mastery learning.

3. OBJECTIVE AND MASTERY LEARNING

The learning objective is competency for students that involved in an instructional set in form of learning activities. The result of this instructional activity is known by measuring the indicator by using diagnostic test. One of the learning objectives is achieved cognitive competency. The basic assumption of measuring indicator through diagnostic test is the amount of right answer shows the level of instructional objective achievement5. The students are considered the mastery learning if right answer at least 70% of total questions6. The learning based competency uses the mastery learning approach, in order to there are 95% student achieve mastery learning through an instructional set. The mastery learning is attained if the student has enough learning time and appropriate learning7.

The approach of mastery learning was conducted when giving the learning properly and all students able to learn well8. Principally, the mastery learning happens students give appropriate learning, timing of study, and additional learning for students who has not understood yet. These ways are hard to be implemented using conventional one, moreover in group learning. The lecturer is hard to control and handle one-by-one of the student that have difficulties example of the faculty associated with emotional expression9,10, body language and communication11,12, and the provision of educational messages9,10, as well as of the students there is a need for alternative learning experiences, such as the use of interactive software mentioned in several previous studies9,10,13,14. Not only time limitation, but also many reasons are faced. Therefore, this is why the design of ITS is required to help the concept of mastery learning. The advanced cognitive taxonomy that is already made and becomes to be an operational taxonomy15. Table 1 shows the example of the learning objective to understand a concept which has four activities (activity 1,2,3,4). Based on that taxonomy, the instructional design is easier to be made. The sentences arrange an instructional objective consists of processing statement (cognitive) using verb followed by an object that is processed (knowledge). The cognitive process consist of: (1)

remember, (2) understand, (3) apply, (4) analyze, (5) evaluate, and (6) create. On the other hand, the knowledge process consists of knowledge about: (1) factual, (2) conceptual, (3) procedural, and (4) metacognitive.

Table 1. Revised taxonomy table9

Knowledge Cognitive

Remember Understand Apply Analyze Evaluate Create

Factual Activity 1 Activity 2 - - - -

Conceptual - Objective - Activity

4 - -

Procedural Activity

3 - - - - -

Metacognitive - - - - - -

4. MODEL FORMULATION

Every subject of learnings has objective to reach certain competency, or called as objective of general instructional. This competency is reached through sub competency or objective of particular instructional. Each sub competency is a sub topic and each sub topic is arranged to be finished in a certain time. In each sub topic is arranged an intelligent learning system module (ITS) to help students to reach sub competency. Next, the approach of mastery learning is used to divide the sub topic into three levels, such as repetition, completion, and enrichment (Table 2).

Completion is the main part of learning to achieve sub competency, the repetition is the learning activities to help reach the sub competencies, and the enrichment is to develop knowledge of good students. Factual and conceptual material at a low cognitive level placed on the repetition of the students have studied their own assumptions or follow classroom learning activities, failing at the completion need to learn in the repetition. Mostly, the purpose of studying is on conceptual and procedural so that medium level is the subject of sub completions or a minimum standard of competency to be mastered by the students. Part enrichment material selected from procedural and metacognitive.

Table 2. The design of ITS

No Level Sub Part Cognitive Level

1 Repetition Factual 1, 2

Conceptual 2, 3

2 Completion Conceptual 2, 3, 4

Procedural 2, 3, 4, 5

3 Enrichment Procedural 4, 5, 6

Metacognitive 2, 3

Intelligent of learning formulation is to determine the next best learning material for students, after completing a set of learning competencies to achieve a sub as soon as possible and as deep as possible.

(17)

RESEARCH ARTICLE

Adv. Sci. Lett. 20 (1), 213

217, 2014

3 Adv. Sci. Lett. Vol. 20, No. 1, 2014 doi: 10.1166/asl.2014.5313

and 100%, there are three conditions that are prescribed, namely:

1. Learning outcome “excellent”, if it achieves scores of  85%

2. Learning outcome “good”, if it achieves 65%  score < 85%

3. Learning outcome “less”, if it is achieved scores of < 65%

Intelligent learning module state diagram shown in Figure 1 below. Good Less Excellent Pre Test Post test Start End P/E S/E S/G R/E S/L F/G F/L F/L R/L P/G R/G

Time is over or Pass Time is over

Time is over

Fig.1. Intelligent learning module state diagram

If students are categorized as "Excellent" means it can be said to achieve basic competence (achieve mastery learning). Students in this condition will be given a series of learning that leads to the enrichment of learning, although it is likely to fail. There are four possible outcomes of learning:

1. Finish (because of time limitation), ready to follow the post - test.

2. Pass with learning outcome “excellent” (P/E) ready to follow the post - test.

3. Repeat with learning outcome “excellent” (R/E) to give re-learning through enrichment materials 4. Failed with learning outcomes “good” (F/G) to give learning for achievement level learning

“medium” (mastering)

Students who have a category of "good" means nearly reach the principal competence (mastering) but still needs reinforcement learning in order to achieve excellent category. There are three possible outcomes of “good”:

1. Finish (because of time limitation), ready to follow the post - test.

2. Pass with learning outcome “excellent” (P/E) so

that able to get student achievement “excellent”

or enrichment.

3. Repeat with category “good” (R/G) ready to have re-learning

4. Failed with category “less” (F/L) must follow remedial

Students who have a category of "less" does not mean to say achieve basic competence though, they require to take a series of lessons to reach the category of "good". There are three possible outcomes of learning in the category of "less":

1. Finish (because of time limitation), out or try to follow the post – test

2. Pass with learning outcomes “good” (P/G), ready

to get learning with learning achievement “medium” or mastering

3. Repeat with category “less” (R/L), ready to get next learning with remedial learning

4. Failed with category “less” (F/L), that will be got link to out.

Decision making in ITS is used to determine next learning if a learning and test already be completed. There are two ways of decision-making that can be used: Markov algorithm (computational intelligence) or condition-action rules (unconventional intelligence). The intelligent learning module is built using three basic assumptions:

1.

A study subject (topic) consists of some basic concepts (sub-topic)

2.

Mastery learning of a topic could be achieved through learning accustomed to the learning progress

3.

One way to determine a student's learning progress is to measure the ability to answer random questions from a subject of study

Intelligent learning module (ITS) is implemented on a course that consists of theory learning in some subjects (topics) with many supporting concepts (sub-topics). The working principle is to choose the order of ITS Training (tutorials) and quizzes which are most appropriate for a student to achieve mastery learning a topic with reasonable time and steps.

The algorithm to determine the next state computationally using Markov decision theory has been used by Witheley4, the algorithm is as follows:

a. Choosing initial policy R = {Ri, iI}

b. Solving the equation:

N I j j i ij i i

i

g

q

R

P

R

v

v

(

)

(

)

c. Determining decision k to each condition i I so that giving maximum value:

( )

,

( ).

( )

N k

i ij j k A i j I

Maximum

q

P a v

R

g

d. Value k maximum to each condition i resulting new decision R={Ri, iI}

e. If the new decision resulting

q

ik is not equal to previous decision then repeated the step b and c, otherwise stop

f. The next learning is conducted as alternative k in convergent condition.

Above algorithm will be adapted as the basis for the design of ITS for mastery learning which will be described further in the next chapter.

5. DISCUSSION

(18)

Adv. Sci. Lett. 20 (1), 213

217, 2014

RESEARCH ARTICLE

4

providing lecturing (tutorials) and quizzes that are most appropriate for students to achieve mastery learning a topic with reasonable time and steps. The state of learning is known by looking at the answers and score positions that have been obtained. Students, with the same score and answering questions with the same answer, have a different tutorial subject for next learning. It is depending on the calculation of the next position. More, the Witheley’s adaptation of the algorithm is described as follows:

a. Learning state

State So is a condition arising from an action taken by

the previous decision. State written by i = 0, 1, 2 .... , N and displacement state written by j = 0, 1, 2, ..., N. The set of all states is denoted by I. If (S0) is the student's current state then there are 3 possible subsequent actions and 2 states which is made (Figure 2), namely:

a. Learning state L b. Correct answer state C c. Incorrect answer state IC

State L C Correct IC Incorrect State So A:{Teach} Q:{Questions} PSQ 1-PSQ

Fig.2. States based on Witheley5

b. Next learning activities

Next activities or alternative decisions in ITS are all possible actions taken to a state, denoted by the notation k (I) = {1, 2, ...}. Next activity may be selected are:

a. Continuing to the lower level b. Repeating in the same topic

c. Repeating a new topic on the same level d. Continuing to the higher level

c. Learning transition opportunities

Opportunity of a process to move from one state to another on an alternative decision to k. Opportunity or probability of transition was written by notation PIJ

(k) , i, j = 1, 2, ... N.

d. Learning reward transition

The reward is earned income as interstate implications of the transition to the alternative decision-k. Reward denoted by RIJ(k), i, j = 1, 2, ... N. The reward has a value between -1 and 1 (excellent category), between -1 and 2 (good category), or between -1 to 3 (less category), the value of negative reward called the piece.

e. Next learning decision

The decision is a step in taking an action as a procedural policy to achieve a strategic steps to get the optimal next state for the next learning activity. Mathematically expressed as a set of all the decisions taken in each state after a learning activity done.

f. Optimal Decision

Decision or optimal policy is one of the best decisions among alternative decisions taken. Optimal decision established through a Markov decision process.

Mathematically expressed as a set of all decisions in any state that gives maximum reward or minimal pieces.

g. Expectation Immediate Reward q

Expectation Immediate Reward (EIR) is an award

granted before moving from one state to the next. EIR denoted using q, written by:

N i j k ij k ij K

I

P

R

q

h. Reward Expectation Value v

Reward expectation value g(R) is if the system has been running up to infinite time, and use R to policy decisions, if vi= the value of the variable reward, can be

structured equation:

N i j k ij k ij i

i

q

R

P

R

v

g

Where i= 1, 2, …. N.

Referring to the state diagram (Figure 1) and the formulation developed a state table can be set up as shown in table 2 below. The table consists of a state variable (i), alternative state (k), the next state probability PIJ

(k)

, reward obtained RIJ

(k)

, and the rewards are obtained according to the answer the EIR (Immediate Reward Expectation).

Table 3 shows the shape of the data matrix to be processed using Whiteley’s algorithm. Here is the procedure that will be done by the ITS’s program to determine the position of the best of next activity.

a. Giving the pretest.

b. Choosing initial value R = {Ri, i (I} by using the

pretest score, where R = pretest scores.

c. Giving a learning and a problem for a theme according to the value R.

d. Solving the equation after a question answered:

N I j j i ij i i

i

g

q

R

P

R

v

v

(

)

(

)

e. Determining decision k to each condition i I so that giving maximum value:

( )

,

( ).

( )

N k

i ij j k A i j I

Maximum

q

P a v

R

g

f. Value k maximum to each condition I resulting new decision R= {RI, I (I}

g. If the new decision resulting

q

ik is equal to previous decision not then repeated the step 2 and 3, otherwise (convergent) stop.

h. The next learning is conducted as alternative k in convergent condition.

i. Setting: new score = score + new R.

j. Check the results of learning for a new position and move within their corresponding scores.

k. Setting: R = new score.

l. Repeat steps 3 to step 10 until completion or timeout

(19)

RESEARCH ARTICLE

Adv. Sci. Lett. 20 (1), 213

217, 2014

5 Adv. Sci. Lett. Vol. 20, No. 1, 2014 doi: 10.1166/asl.2014.5313

Table 3. Matrix of ITS states

6. CONCLUSION

From the above, the working principle is to choose the sequence of ITS module providing training (tutorials) and quizzes that are most appropriate for a learner to achieve mastery learning a topic with time and moves as possible. The next step is determined by looking at the current position and the results of calculations using the Whiteley’s algorithm. An adaptation of the algorithm is done by entering the algorithm into the learning cycle. Learning material adapted to a new position determined based on the score and the calculation of the best R value. Tutorial model of an intelligent learning module is built using three basic assumptions:

a. A study subject (topic) consists of some basic concepts (sub-topic)

b. Mastery learning a topic could be achieved through learning tailored to the learning progress. c. One way to determine a student`s learning

progress is to measure the ability to answer random questions from a subject of study.

7.

SUGGESTION

The design of ITS with a complete learning

approach using adapted Whiteley’s algorithm needs to be

tested on the side of computing. Furthermore, require further study if applied to the higher number of users, this is necessary because the today mastery learning approach is designed to help a lecture to teach students in large numbers. ITS should be made using the SCORM standard so it can be included in an LMS. Adapted Whiteley’s algorithm involves matrix and repetition to solve an equation for each step and for each student. The greater the weight of students means a server so that the distributed model is more suitable.

REFERENCES

[1] Nugroho, W., Pengembangan ITS (Intelligent Tutoring System) Sebagai Media Pembelajaran pada Mata Kuliah Pengantar Teori Graf. (2008).

http://www.teknologipendidikan.net/?p=17, Accessed on:

02/02/2012

[2] Šimić, G., Gašević, D., Devedžić, V., Semantic Web and Intelligent Learning Management Systems, FON – School of Business Administration, University of Belgrade, POB 52, Jove

Ilića 154, 11000 Belgrade, Serbia and Montenegro, (2004). [3] Lin, F., Holt, P., Leung, S., Hogeboom, H., Cao, Y., A

Multi-Agent and Service-Oriented Architecture for Developing Integrated and Intelligent Web-based Educational Systems, Center for Computing and Information Systems, 1 University Drive, Athabasca, Alberta, Canada, T9S 3A3, (2004).

[4] Rodrigo, Ma. Mercedes T., Ryan S.J.d. Baker, Jenilyn Agapito, Julieta Nabos, Ma. Concepcion Repalam, Salvador S. Reyes Jr., Student Member, IEEE, and Maria Ofelia C.Z. San Pedro. The Effects of an Interactive Software Agent on Student Affective Dynamics while Using an Intelligent Tutoring System. IEEE Transactions on Affective Computing, Vol. 3, No. 2, April-June, (2012).

[5] Whiteley, W., Artificially Intelligent Adaptive Tutoring System, Stanford School of Engineering, Stanford, CA 94305, (2008). [6] Leonard, William J., C.V. Hollot, and William J. Gerace.

Mastering Circuit Analysis: An innovative approach to a foundational sequence. 38th ASEE/IEEE Frontiers in Education Conference. Saratoga Springs, NY (October, 2008) 22-25. [7] Bloom, B.S., Learning for Mastery, Instruction and Curriculum:

RELCV Topical Papers and Reprints No. 1, University of California, Los Angeles, (1968) 3.

[8] Yamin, M. Desain Pembelajaran Berbasis Tingkat Satuan

Pendidikan, Gaung Persada Press, Jakarta, (2007) Bab V: 130-144.

[9] R.S.J.d. Baker, A.T. Corbett, K.R. Koedinger, S.E. Evenson, I. Roll, A.Z. Wagner, M. Naim, J. Raspat, D.J. Baker, and J. Beck. Adapting to When Students Game an Intelligent Tutoring

System. Proceedings, Eighth International Conference.

Intelligent Tutoring Systems, (2006) 92-401.

[10] B. Woolf, W. Burleson, I. Arroyo, T. Dragon, D. Cooper, and R.Picard. Affect-Aware Tutors: Recognizing and Responding to Student Affect. International Journal Learning Technology, 4 (4), (2009) 129-163.

[11] V.J. Shute. Focus on Formative Feedback. Rev. Educational Research, 78 (1), (2008) 153-189.

[12] J. Rickel and W.L. Johnson. Integrating Pedagogical Capabilities in a Virtual Environment Agent. Proceedings First International Conference: Autonomous Agents, (1997) 30-38.

[13] C. Conati and X. Zhao. Building and Evaluating an Intelligent Pedagogical Agent to Improve the Effectiveness of an Educational Game. Proceeding. Ninth International Conference, Intelligent User Interface, (2004) 6-13,2004.

[14] W. Burleson. Affective Learning Companions: Strategies for Empathetic Agents with Real-Time Multimodal Affective Sensing to Foster Metacognitive and Meta-Affective Approaches to Learning, Motivation, and Perseverance. PhD dissertation, Massachusetts Institute of Technology, (2006).

[15] Anderson, LW., and Krathwohl DR., A Taxonomy for Learning,

Teaching, and Assessing, Revision of Bloom’s Taxonomy of

Educational Objectives, Addison Wesley Longman, Inc., ISBN, 0-8013-1903-X, USA. (2001) 95-109.

State (1:Excellent, 2:Good, 3:Less) Alternative K Probability k ij

P

Reward k ij

R

EIR (qi)

State j=1, 2, 3

State

j=1, 2,3

N j k j i k j i k

i

P

R

q

1 , ,

State i=1, 2, 3

Pass (k=1)

1 ,j i

P

R

i1,j

3 1 1 , 1 , 1 1 j j i j i

R

P

q

Repeat (k=2) 2 ,j i

P

R

i2,j

3 1 2 , 2 , 2 1 j j i j i

R

P

q

Fail (k=3) 3 ,j i

P

R

i3,j

Gambar

Table 2. The design of ITS
Fig.1. Intelligent learning module state diagram
Fig.2. States based on Witheley5
Table 3. Matrix of ITS states

Referensi

Dokumen terkait

Hasil penelitian adalah adanya pengaruh positif signifikan yang kuat antara dimensi experiential marketing, yaitu sense, feel, think, act dan relate terhadap

[r]

Tim terdiri dari empat atau lima siswa yang mewakili seluruh bagian dari kelas dalam hal kinerja akademik, jenis kelamin, ras dan etnisitas. Fungsi utama dari

Dari skema kerangka berfikir di atas dapat didiskripsikan sebagai berikut: Pada kondisi awal hasil belajar rendah masih dibawah KKM (&lt;65), dikarenakan ketika

Hasil penangkapan nyamuk dengan metode umpan orang di Desa Karang Anyar (endemis filariasis) diperoleh tiga genus yaitu Mansonia (empat spesies), Culex

Kepala sekolah laki-laki biasanya memang lebih tidak menyukai (bila dirinya mengalami kegagalan) ketimbang kepala sekolah perempuan. Terlebih ketika di hadapan

It is the background so that the author conducted research Studi temperatur optimal terhadap kekuatan tarik campuran polypropilne (PP) dan high-density polyethylene

Pada gambar tersebut dapat diketahui bahwa koefisien gesek lumpur pada pipa spiral P/Di = 3,9 lebih tinggi dibanding persamaan Blasius untuk semua bilangan Reynolds.. Terlihat