• Tidak ada hasil yang ditemukan

Solubilization of insoluble phospates by Aspergillus niger

N/A
N/A
Protected

Academic year: 2017

Membagikan "Solubilization of insoluble phospates by Aspergillus niger"

Copied!
13
0
0

Teks penuh

(1)

/

ISSN 0215 - 9318

JURNAL PENELITIAN BIOTEKNOLOGI PERKEBUNAN

(2)

Menara Perkebunan. 2000. 68(2) 37 47

Solubilization of insoluble phosphates by

Aspergillus niger

Pelarutanfosfat sukar larUE oleh Aspergillus niger LAKSMITA P. SANTII), D. H. GOENADrI), SISWANTOi),

I. SAILAI-e) & ISR0I3 )

I) Biotechnelogy Research Unit for Estate Crops, Bogor 1MSI, Indonesia

2) Bogor Agricultural University, Bogor, Indonp.sia 3) Graduate School, Boger Agricultural University, Bogor, Indonesia

Ringkasan

Penggunaan /angsung fosfat a/am (FA) ke da/am tanah sebagai sumber pupuk P te/ah dila-kukan se/ama bertahun-tahun melalui beberapa macam cara penggunaan. Kualitas FA di Indo-nesia umumnya rendah dan ketersediaan bahan baku yang berkualitas untuk produksi pupllk fosfat ter/arut relatif terbatas. Beberapa mikroba asal tanah yang dapat melarutkan fosfat anorganik lelah banyak dilaporkan. Nanwl1, informasi yang tersedia ten tang mekanisme peiarlltan P dari FA lokal asal Indonesia don P anorganik o/ell Aspergillus niger BCC FI94 belum banyak dite/iti. Satu seri penelitia."l laboralorium lelah dilaksana-kan untuk mengetahlli kelllamplian A. niger BCC FI94 melarutkan P. Evaillasi agronomi FA lokal (FA Cilellngsi dan Madura) di rllmah kaea juga telah diiakukan. A. niger BCC F 194 dapal melarutkan sumber P Sltkar larut, yailu FA Cileungsi dan Madura. serta senyawa CaJ(PO.J2 dan AIP04. Kelarutan P anorganik lersebut ber-hubungan dengan peningkatan aktivitas proton (ff) yang menyebabkan penurunan pH medium dan produksi asam organik. Asam organik ulama yang dihasilkan oleh A. niger BCC FI94 dalam medium cair Pikovskaya yang dimodiflkasi adalah asam oksa/at (3.75 mM). asam silral (2.0 mM). dan asam glukonat (O.Q mM). Kelarulan FA CilelIngsi I"bih besar dibandingkan dengan FA Madura. dan kelarulan CalPO)2 lebih besar dibandingkan kelarlltan AIP04• Tidak ada korelasi anlara kdarutan P anorganik dengan aktivitas enzim fosfatase. walaupun aktivitas enzim fosfa-lase cukup linggi terdeteksi dalam medium. Salu formula biosuperfosfat lelah berhasil dirakit

dengan mereaksikan FA lokal dengan supernatan kultur eair (SKC) pengganti Qsam sulfat. Hasil percobaan pada bibit kakao. kpret dan kelapa sawil di rumah kaea menunjukkan bahwa proto-lipe pupuk biosuperfosfa! dengan bahan baku FA Cileungsi dan Madura bentllk granul ma/lplln serbllk. memiliki ni/ai keefektifan agronomi yang relatif menyamai SP-konvensional.

Summary

(3)

SantI ct al.

decrcase and production of organic acid. The

major acidic mctabolites produced by A. niger

BCC F 194 in modified liquid Pikovskaya medium were oxalic acid (3.75 mM), citric acid (2.0 mM), and gluconic acid (0.9 mM). The solubi!ization of

Cileungsi RP was higher than that of Madura RP,

and the solubilization of C"3(P04h \\'flS better than

that of AIP04 . There is no correlation between

solubilization of inorganic

P

and ・ョNセケュ・@

activities, although high level of activity of

phosphatase enzyme \Vas detectaJ!e in the

medium. A biosuperphosphate formula had heen

constructed by reac.ting local RP with liquid

culture supernatant (LCS) rcplacing sulfuric acid. In the green housc experiments using cocoa, rubber, and oil palm seedlings, both granular and powder biosuperphosphate prototypes showed a comparable relative agronomic effectiveness value to that of the conventional SP.

[Keywords: P solubilization, Aspergillus niger,

rock phosphate]

Introduction

Most rock phosphate deposits found in the world is classified as low reactive RPs and therefore, it cannot be used successfully as phosphorus (P) sources for crop produc-tion. The composition of these rock phos-phates varies from one deposit to another. Most of the world rock phosphates are-of sedimentary origin. Large rock phosphate

deposits estimated 1-2 million tonnes, are

distributed in different pans of Indonesia

(Moersidi, 1999). Since these deposits are

low in phosphorous content «25% P20 S) and

contain some impurities like oxides of Si, Fe, AI, and Ca, they are unsuitable for the

manufacture of superphosphate (Narsian el

al., 1993). The conventional method for en-hancing the rock phosphate availability is to increase its solubility by treating with inor-ganic acids, mainly sulphuric acid and phos-phoric acid but, this approach is not appli-cable because of high capital production

(Hammond et al., 1989, Goenadi el al.,

2000). A very attractive approach for rock phosphate solubilization is the appiication of microbes capable of excreting organic acids

(Gerke, 1992).

Many soil microbes are known to solu-biliL:e insoluble forms of inorganic phosphatic

compounds. [n vitrc studies with microbial

isolates from セッゥャ@ indicated that fungi were

more efficient in thc solubilization of

inor-ganic phosphate as compared 10 bacteria

(Thomas et ai., \985; Nahas 1996; Goenadi

el 01., 199LJ). Filamentous fungi are widdy

used as producers of organic acid:;, particular-ly A. niger and some Penicillium sp., which

have been tested i!1 fermentation systems or

inoculated directly into soil in order to

solu-bilize rock phosphate (Vassilev et al.. \997;

V asi leva et al., 1998).

Acidification of soil is a consequence of natural and anthropogenic processes (Ulrich

& Sumner, 1991). One of the outstanding changes in soil due to acidification is the

mobilization of Ae+ ions, which are toxic to

plants on one hand and cause chemical fixa-tion of plant-available P on the other hand. Hardly-soluble aluminum phosphates are for-med and become the largest P-fraction in

many acidic soils (McLean, 1976). AIP04• i:1

the contrary to calsiui7l phosphate, will never play an important role il1 ameliorating soils. Leaving that out of consideration, the

impor-tance of Alr04 solubilization fOf soil

forma-tion, mineral transformation and AI-toxicity

is obvious (lllmer et al., 1995). In this

inves-tigation, pure insoluble inorganic phosrhates

i. e. aluminum phosphate (A IP04 ) and ca

1-cium phosphate (CaJ(P04)2) have been used

for expressing phosphate :,olubi!izillg activity ofA. niger BeC f194.

Natural RPs has been recognized as a valuable alternative source for P fertilizer, especially for acid soils. The economic value of the rocks increases considerably along with the increasing costs of SP production

(Goenadi et al., 2000). Consequently, there is

(4)

Soiubilizatiol: if insoluble phosphates by Aspergillus niger

a growing interest in ways of manipulating such rock to obtaIn a more valuable product,

i.e. partially acidulating RPs (Goenadi, 1990; Rajan & Ghani, 1997), reacting with

syn-thetic organic acids (Sagoe et al., 1998) or

natural organic acids (Singh & Amberger,

1998), and decrea:;ing particle size (Babare et

aI,

1997). Goenadi et al. (2enO) repofled that

Liquid Culture Supernatant (LCS) instead of

H2S04 in superphosphate (SP) production

and using both with lower H)P04

concen-tration. to bioactivated Morrocan RP as raw materials increased the solubility of P in 2%

citric acid. It seemed that LCS could replace

H2S04 in the production of SP, and believed

to yield a more eco-friendly P fertilizer than conventional SP.

The objectives of this study were: (i) to determine phosphate solubilizing (PS)

acti-vity by A. niger BCC Fl94 on four types of

inorganic

P

compounds, (ii) to ・カセャオ。エ・@ effect

of organic acids and phosphatase enzyme on RPs dissolution, and (iii) to conduct

agro-nomic evaluation of bioactivated CRP und

MRP for direct application in greenhouse experiment with cocoa, rubber, and oil palm seedlings as test crops.

Materials and Methods

Isolate

Aspergillus niger was isolated from Alfisols soils of Jeneponto, South Sulawesi,

Indonda (Goenadi et al., 1995). This soil

was highly weathered developing over vol-canic materials. Detailed characteristics of

the soil are, 31% sand, 27% silts, and 42%

clays; pH: 6.6 (H20), 5.3 (KC!); organic matter: 1.1% (C ), 0.1% (total N); 105 ppm P, 35 me/l OOg K; and clay mineral of smectite and kaoiinite. The' isolate was lod-ged in BaIitvet Culture Collection no. BCC F

194. Isolate was grown on Pikovskaya

medium in Petri dishes as a sou!'ce of ino-culum.

Phusphate solubilizing (PS) activity

Phosphate soluhilizing activity was assayed in 50 mL aliquots of standard Pikov-skaya's broth and modified PlkovPikov-skaya's

broth prepared by イ・セャ。」ゥョァ@ CalP04):

(19.9% P) with inorganic phosphate i.e.

AIP04 (50.8% P) and different rock

phos-phates, i.e. Cileung:;i (8.9% P) and Madura

(6.9% P). Cileungsi rock phosphate (CRP) and Madura ·rock phosphate (MRP) were ground (200 mesh) and oven dried. For this

purpose,

P

sourCes were sterilized separately

and then mixed with the sterile Pikovskaya medium.

Two pieces of inocula (0 3 mm) wcre

inoculateri into Pikovskaya liquid medium containing 0.125 % (w/v) resp:::ctive phos-phorus sources, incubated on a mechan i::al shaker at 100 rpm, 28°C for nine days. The dissolved P was then determined by applying

the molybdenum-b!ue method of Olsen &

Sommers (1982). Absorbance was measured

using

a

Spectronic 21 spectrophotometer at

693

urn.

Solubilization ofRPs in Pikovskaya medium

Modified Pikovskaya liquid medium supplemented with CRP or MRP of various concentrations (0,0.125,0.25,0.50, or 1.0 % (w!v)) was used. Inoculation was performed

by trans[.::rring two pieces of irocuia

(0 R mm) on to 100 mL eイャセュョ・ケ・イ@ flask

containing 50 mL culture medium. The cul-tures were ir:cubated on a mechanical shaker

at 100 rpm (28cC) for nine days.

The growth of the fungus was measured in standard procedure by drying the decanted

(5)

Santi et al.

veight at the end of incubation. Phosphorus

;olubilizing ability was detennined by using

he molybdenum-blue method of Olsen

&

セッュュ・イウ@ (1982).

pH of the filtrates was

mea-;ured with Methrom pH meter and organic

.cid concentrations in the culture w<:re

、・エ・イセ@

nined by using HPLC

(0 0 I

N

H2

S0

4

mobile

,hase, 210 nm UV detector, 0.5 mLimin

lowrate,

at

50°C)

(Cunningham

&

Kuiark,

(992).

SfJect oforganic acids on RPs dissolution

This experiment was carried out to

;Iariry the relative strength of different types

0f organic acids in solubilizing P from the

eRP and MRP by using a method of IIImer

et .11. (1995).

Citrate, oxalate and gluconate

were added separately in different

concen-trations

(0, 0.05, 0.50, 1.0, 3.0

and

6.0

mM)

to 50

mL Pikovskaya mt!dium containing

0.125%

(w/v)

CRP or MRP, then incubated

for seven days on a mechanical shaker, at

100

rpm

(28°C).

P-concentration in

super-natant solutions was detennined Ilsing the

method of Olsen

&

Sommers

(I982).

Effect of phosphatase enzyme on RPs and inorganic P dissolution

The isolate of

A. niger

BCC F

194

was

grown in

50

mL modified Pikovskaya liquid

medium with vcrious levels of CRP or MRP

(0, 0.125, 0.25, 0.50

and

1.0%

(w/v)). The P

sources were sterilized separately and then

mixed with the sterile Pikovskaya medium.

The cultures were incubated for nine days on

a mechanical shaker at

100

rpm,

(280

C) for

the production of extracellular phosphatase.

Correlation between activity of phosphatase

(S0uciet

et al., 1980)

and P-solubilization

was detennined. One enzyme unit is the

amount which catalyses the hydrolysis of

1

!lmol of pNPP per min. under the

experi-mental condition.

Inactivation of phophatase in

I

iquid

cul-ture supernatant (LCS) of

A. niger

BCC

F

194

was studied at temperature of

40, 50, 60, 70.

80,

and

90

°

C.

Further,

50

mL LCS

or

A. niger

BeC

F J 49

contained inactivated

phosphatase was added with sterile

0.125%

(w/v) AIP04

and incubated on mechanical

shaker at

100

rpm, 28

°

C

for 24 h. Activity of

phosphatase enzyme (Souciet

el al., 1980),

P-solubilization, and concentration of organic

acid (mainly citric acid) were detennined.

Agronomic evaluation

of

bioaetivated CRP andMRP

Bioactivation was conducted by

reac-ting

8.5

mL LCS with the highest contents of

organic acids (mainly citric acid from

A. niger

BCe F194 isolate) and

28

mL

H3P04 52%

(v/v) on

55 g

RPs

(200

mesh)

(Goenadi

et al., 2000).

The most efficient

bioactivation of CRP and

MRP were

evaluated on the oasis of soluble P contents

in water and citric acid, as we II

as

perchlorate-extractable P content (SII

0029-73, 1984). Effectiveness of b0th granular and

powder biosuperphosphate prototypes in

substituting conventional P fertilizer,

i.e.

SP-36,

was determined on the basis of relative

agronomic effectiveness (RAE) (Mackay

el

aI.,

1984) in a completely random design

experiment with four levels of P dosages,

i.

e.

(6)

Solubilization of insoluble phosphaJes by Aspergillus niger ...

Results and Discussion

Phosphate solubilizing (PS) activity

A. niger BCC F 194 solubilized Ca3

(P0

4)2,

CRP, and MRP, but showed poor

solubilization of AIP04 in nine-day

incu-bation period. The amount ofP solubilized by

A. niger BCC F194 was directly related to the

decrease in pH of the medium, except AIP04

treatment. These phenomena suggested that PS activity depends on the types and

cons-tanta solubility product (Ksp) of insoluble

phosphate (Ksp for AIP04 セ@ 10.

30

and Ca3 (P04)2 - 2.0 x 10.2°) - as supposed by many

investigators (Mc Lean, 1976; Narsian et al.

1993; IIImer et al., 1995; Nahas, 1996).

Solubilization ofRPs in Pikovskaya medium

Employing a modified Pikovskaya

me-dium, A. niger BCC Fl94 produced oxalic

acid (3.75 mM), citric acid (2.0 mM), and gluconic acid (0.9 mM) as the main. organic acids from MRP and CRP as P source of

Pikovskaya medium lit 0 1.0% (w/v) level.

Regression analysis indicates that P-solubilization was highly positively corre-lated with organic acid concentration ( rMRP=

0.92** and fCRP=0.S5**) and ョ・ァ。エゥカセャケ@

correlated with the pH of the medium (rMRP=-0.87* and rCRP=-0.99**) (Figure 1). Organic acid concentrations were also strongly nega-tively correlated with the pH of the medium (rMRP =-0.99** and rCRP=-0.87*).

Effect oforganic acids on RPs dissolution

Production of organic acids is an impor-tant mechanis'11 for solubilizing inorganic ::>hosphate. Gluconic acid concentrations in Pikovskaya medium contained CRP and MRP as P source were comparatively con-;tant, whereqs the increased citrate and oxa-ate concentrations apparently reloxa-ated to the

increase in P-CRP and P-MRP concentrations

in solution (Figure 2). It indicates that citrate

and oxalate have strong influences to the solubilization of P-RPs, rCRP=O.96**, and rMRP=0.99** (citric acid) and rCRP=0.93** and

rMRP= 0.86* (oxalic acid). Oil the other hand,

no correlation between gluconk ;jcid wncen-tration and dissolution of CRP and MRP

(rcR.,,=0.6ns and rMRP= 0.1 ns) were found.

These phenomena lead to the assumption that

citric acid and oxalic acid produced by

A. niger BCC FI94 isolate are responsible [or lowering the pH of medium providing

pro-tons (W) to increase the P-RP solubilization.

In this case, there was relationship between the pKa values of the acids and the amounts of P released. Citric acid has a higher dis-sociation constant (pKa=3.14) than oxalic

acid (pKa = 1.25). Pohlman & McColl (198ii)

reported several factors that are important in determining the degree or rate of dissolution

of RPs,' i.e. : (i) rate of diffusion of organic

acid from bulk solution and diffusion of pro-ducts from the site of reactivity, (ii) contact time between the organic acids and mineral surface, (iii) degree of dissociation of organic acids, (iv) type and position of functional groups, and (v) chemical affinities of chelat-jng agents for the metals.

Table I. Solubilization of Ca3(PO.h, AIPO., Cileungsi rock phosphate (CRP), and Madura rock phosphate (MRP) by Aspergillus niger BCC FI94 in nine-day incubation

PS ability

P-Sources (%) Initial pH Final pH

Cal(PO')l 65.0 7.3 4.3

AIPO. 7.8 6.0 2.8

Cileungsi rock 95.0 6.8 4.2 phosphate

[image:6.599.369.565.551.655.2]
(7)

Santi etal.

Cileungsi mck phosphate Madllra rock phosphate

7 6

7 イMMMMMMMMMMMMMMMMMMMMMセ@

6

5 5

4 :r: -1

:r: c.

3

0.

3

2 2

I

oLI____________________

セ@ 0

0 0.5 1.5 2 2.5 3 3.5 4 (j 0.25 0.5 0.75 1.25 J.S 1.75 2

oイセ。ャャゥ」@ Acid (mM) Organic Acid (mM)

50 40

.2

30

10

O

:.c

m

..g 30

ell Nセ@ セ@ . - CI) 20

:E .;:;

セNLN[@

0 ,

-セ@ 0  10 

セ@

____

MFセセ ____________セ@

0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8 

Oxalic Acid (111M) 

40r­­­­­­­­­­­­­­­­­­­­­­­­, 

.f? 

30  ­'" 

'"

:IJ

c::

o

Zセ@

:g

'0 V">

­0.872* 

セ@

oセ ______________セセセセ@

o  

2  3  4  5  6  7

pH 

40 

.... 

Nセ

'"

"

セ@

'0 

()  0.5  1.5  2  2.5  3  3.5  4 

Oxalic Acid (mMl 

50 

I

40  

30

"

'"

Gセ@

20 

"-'­""" 

C

イ]MoNYYYBセ

10

O

0 2 4 5  7 

[image:7.599.168.563.119.549.2]

pH 

Figure  I.   The correlation between pH and organic acid production  [top).  P ­ solubilizing ability of Aspergilus niger BCC 

FI94 lind oxalic acid production (middle), and P­ SOlubilizing ab;lity and  pH (bOUOln) with rock phosphate from 

Madura and  from Cilcul1gs:  as 

r

sources in  Pikovskaya medillm 
(8)

Solubilization of insoluble phosphates by Aspergillus niger .. _

Madura rock phosph;;te

70

1

Ys 9,9409x -;- 1.5739

rs = 0.9992"

60

1

,

/ /

/

Yo 0.1904x +4,7402

ro ojセVQWG@

Y ('

=

0.0672x + 4_25:' rG = 0_1049"

:/) 20 • Citric Acid

.6. Oxalic Acid

10

II •

Gluconic Acid

lP=::::::::i:====!

O'F­­­­­,r­­­­­.­­­­,.­-o

2  4 6 

Organic Acid  Concentration (mM) 

140 

120 

セ@

c

.e 

E

iuG 

セ@

セ@ 8(; ::::

.,

u

u

A. 60

;, 

:3

::l

­0 

Vi

20 

0

Cileungsi rock  phosphate 

Ys = 17,964x + 9.5586 

rs = 0,'.1600" 

Yo =8.2758x­1.3416  / 

ro = 0,9318*' 

YG = 0

iセ@

73x + 1;,8696/ 

rc­ 0.6681  /

,;  

1

40 I

• 

•  Citric Acid 

lJ. Oxalic Acid 

6.  •  Gluconic Acid 

セ@

so 

c. 

セ@

40 

;:;

セ@

:,)  30 

:c

'"

:::J 

"0

0  4  6 

Organic Acid Concentration (mM) 

'igure 2.  Relationship  between  concentration  of selected  org2nic  acids  (citric,  oxalic,  or  gluconic)  and 

solubilization of rock phosphate from  Madura and Cileungsi  in modified Pikovskaya medium 

セャヲ・」エ@ ofphosphatase enzyme on RPs and

'1organic P dissolution

Phosphate  solubilization  mediated  by  lhosphatase  enzyme  is  believed  to  be  taken  Jlace  for  organic  P  sources  (Bishop et al.,

994).  There  was  no  correlation  between  lctivity  of  phosphatase  enzyme  and  P 

;olubilization (rcRP=0.39"S  and  rMRP=O.22"'), 

,s  well  as  with  P  concentration  (rMRP=O.39n$  md  rCRP=0.23"S).  The  phosphatase  activity  'ikovsakaya  medium  decreased  at  80°C 

15 U/mL) and 90°C (5.8  U1mL) (Figure 3A). 

'::omplete  denaturation  of protein by heating  Jrocess  possibly  occurred  at  80°C,  therefore  lhosphatase  enzyme  was  inactivated.  The 

corr"lation  between  phosphatase  activity  and  AI  P04 solubilization  indicates  that  there  was 

no  significant  P­solubilizing  value In liquid  culture  supernatant  of A. niger BCC  F  194  unheated  (UH)  and  heated  (H)  at  80°  C,  although  the  phosphatase  activity  was  dif-ferent, i.e. 127.3  U/mL  (UH)  and  7.9  U/mL  (H),  respectively.  (Figure  3B). On the  other 

hand,  the  citric  acid  con<.entration  was 

relatively  stahle  at  0­20  minute  of hearing  periods  (Figure 3C). These  results  were  in  agreement  with  the  assumpHon  that  phos-phate  solubilization  mediated  by phosphatase  enzyme  is  taken  place  for  organic  P  sources  (Traina el oj., 1986;  Bishop et 01., 1994; Sigh 

(9)

Santi et a!.

200 A

a

150

Zセ@

u

.,

'"

",....l

100

セ@ E

.::;;:-

"'-セセ@

<.l  50

c::

0

100

Temperature (He) 

• 300

250 ..", 

:::r 0

"t:J

'" 

200 :::r

セGB@

1= g 150 sZZセ@

セ^M

g

100 セZ@

Q

50

0

0 5 10 15 20 25

Heating Period (l11inute) at BOile

0

y  -3.53x + 317.4 Rl_ 0.881.7

20 40 60 80

30

'"

0  25

·E

20

;:: 

'­' 

t )

RE

15

P- o. 0. 

0 "   10 

:E 

::J 

<5  5

C/l 

­+­ Soluble  P 

­ 0 ­ Ph0sphatase Activity 

t: 

c

.g

O.B

f

t: 

g  

..

t )  

0.6

t: .::J 

"t:J 

-.­ on

gg

0.4  'ct )  

'"

on  0.2 

0  10  15  20  25 

[image:9.601.210.529.78.612.2]

hセ。エゥョァ@ Period (,ninute) at 8U"e 

Figure 3.   Effect  of temperature  (A).  and  heating  period  (minute) セエ@

so·e 

011 acti·.'ity  or phosphatase  enzyme  (8).  and  effect of heating period M 80· C on organic acid  (citric acid) concentration (e)
(10)

• 

Solubilization 0/ insoluble phosphates by Aspergillus niger, ,

Table 2. Relative agronomic effectiveness of constructed effect ofbiosupcrphosphate (SPab) of cocoa, rubber, and oil

palm seedlings dry weight '

Relative Agronomic Effectiveness (%) Types of

biosllper- Form Rate

cocoa rubber oil palm

phosphate

seediings seedlings seedlings

CHeung:>i granule 50 62.5 b')  65.8 c 120.2 abc

Cileungsi granule :00 96.1 ab 96,9 bc IOLJ abc

cゥャ・オョセウゥ@ granule 150 89.2 ab 166.9 a 77.9 c

CiJeungsi powder 50 SO.5 ab 146,9 ab 1142 abc

Cileungsi pOWder 100 80.1 a b 137,5 db 93J abc

Cileungs! powder i50 59,7 b 121).9 abc 92.5 abc

Madura granule 50 69.5 b 104.2 abc 166.9 a

Mad<Jra granule 100 85.5 ab 103.9 abc 127.9 abc

Madura granule 150 115.2 a 150.9 ab 153.9ab

Madura powder 50 93.1 ab 61.1 c 83.7 be

Madura powder 100 113.8 a 97,6 be 97,9 abc

Madura powder 150 78,6 ab 99.7 be 1103 abc

Standard (SP-36) 100 100.Oab 100,0 be 100,0 abc

Note: *) Figures in each column/ollowed by the same leller (s) are not Significantly different (P<O.05) according to Duncan's multiple range lest

Agronomic evaluation of bioactivated CRP and MRP for direct application in green-house experimem

Application of biuactivated CRP and MRP resulted in significant increase of leaf

number dod height of the three-month old

co-coa and  oil  pCllm  seedlings.  For  rubber seed-lings,  significant  responses  have  been  obser-ved  staning  at  four  months  after  treatment  (P<0.05). 

There were no significant different-ces  between  conventional  SP  and 「ゥッウセー・イᆳ

phosphate  (SPab)  applied  on  height,  leaf  number,  girth,  and  dry  weight  of  cocoa,  rubber,  and  oil  palm  seedlings  (unpublished 

data).  At  the  end  C'f the  experiment  (four 

months  after treatment  for  cocoa and  rub!Jer,  and  six  months  for  oil  palm  seedling),  CRP 

and  MRP­originating  SPab In granular  and 

powder form  applied  at  100% rate  equivalent  to  standard  SP application  indicated  a  higher  value  of  relative  agronomic  effectiveness 

(RAE) (Table 2). 

Conclusions 

A. niger DCC  F 194  performed  high  abilities  in  solubilizing  inorganic  phosphate 

(>50%), i.e. Ca3  (P04)2  , CRP,  and  MRP,  but 

not  for  AIP04•  Citric  and  oxalic  acids  were 

important  components  responsible  for 

phos-phate  solubilization  by A. niger BCC  FJ 94. 

Oxalic  acid  was  the  main  organic  acid 

pro-duced  by A. niger BCC  F194  in  modified 

Pikovskaya medium',  for nine days incubation  at  100  rpm,  2S°C.  Citrate  and  oxalate  had 

strong  influences to the solubilization of CRP 

and  MRP.  There  was  no  correlation  between  phosphatase  activity  and  solubilization  of  inorganic  phosphate.  Results  of cocoa,  rub-ber,  and  oil  palm  seedlings  experiments  in  greenhouse  showed  that  the  prototype  pro-ducts  from  bioactivation  (biosuperphosphate)  showed  a  comparable  relative  agronomic  effecttiveness  value  to  that  of  the  conven-tional SP (SP­36). 

[image:10.601.163.564.168.352.2]
(11)

Santi ct al.

Acknowledgment rocks with a P soluLilizing fungus. Soil. Sci.

The authors wish to thank the Riset Unggulan Terpadu VII Project Management

of the Ministry..ofResearcll セョ、@ Technolo.gy

for financial support (Contract No.: 17/SPK!

RUT/BPPT/IV/2000).

References

Babare, /\.M., P.W.G. Sale, N. Fleming, D.L. Garden &  D. Johnson (1997). The agro-nomic effectiveness of reactive phosphate rocks. 5, The effect of particle size of a moderately reactive phosphate rock, Aus. 1.

Exp. Agric., 37,969·984,

Bishop, M.L, AC. Chang & R.W.K. Lee (1994), Enzymatic mineralization of organic phos-phorus in a volcanic soil in Chile. Soil BioI. Biochem., 157,238-243.

Cunningham, J.E. & C. Kuiack (1992). Produc-tions of citric and oxalic acids and solubili-zations of calcium phosphate by Penicillium bilaji. App. Env, Microbial., 58(5),

1452-1458,

Gerke, L. (1992), Phosphate, aluminium, and iron in solution of three different セッゥZウ@ in relation to varying ('uncentration of citric acid,

1. Plant Nutr, Soil Sc .. 155, 339-343, Goenadi, D.I-I. (1990). Effect of acidulation on the

mineralogical characteristics of a comercial phosphate rock. lndon. 1. Trop. Agric., 2, 

1-5. '

Goenadi, D.H., R. Saraswati, N.N. Nganro &

.lAS, Adiningsih {I 995), Mikroba pelamt

hara dan pemantap 'agregat dari beberapa lanah tropika basah. Menaru Perkebunan, 63(2),60-66.

Goenadi, D.H., R.A. Pasaribu, Isroi, H, Hartono, & R. Misman (1999). Phosphate-solubil-izing fungi isolated from tropical forest soils. Menara Perkebunan, 67( 1).40-51.

Goenadi, D.I-I., Siswimto & Y. Sugiarto (2000). Bioactivation of poorly soluble phosphate

Soc. Am. J., 64, 927-932

Hammond, L. L., S.H Chien & A.U. Mokwunye (1989). Agronomic value of unacidulated and partially acidulated phosphate rocks indigenous to the tropics. Adv. Agr., 40, 89-140,

JIlmer, P., A. Barbato & F. Schinncr (1995), Solubilization of hardly-soluble AIPOd w!th P-solubilizing micloorganisms. Soil Bhl. Biochem, 27 (3), 265-270.

Mackay, A.D.,.I.K. Syers & P.E.H. Gregg (1984). Ability of chemical. extraction procedures to assess the agronomic effectiveness of phos-phate rock materials. New Zealand .f. Agric. Res., 27, 219-230.

McLean, E,O. (I 976}. Chemistry of soil alumi-nium. Communications in Soil Sci. & Plant Anal., 7, 619-636.

Moersidi (1999). Fo;fat Alam sebagai Bahan Baku dan Fupllk Fosfat. Bogor, Pusat Penelitian Tanah dan Agroklimat, pp 82.

Narsian, V" 1. Thakkar & H.B. Patel (1993). Solubilization of natural rock phosphates and pure i'1soluble inorganic phosphates by Aspergillus awamori. Ind. J Exp. BioI., 31, 747-749.

Olsen, S.R. & LE. Sommers (1982). Phosphorus. In Page, A.L.. R.H, Miller & D.R. Keeney (Eds.) Methods of Soil Analysis. Agronomv series. No.9. Madison, American Society of Agronomy, p. 403-430.

Pohlman, A.A. & .I.G. McColl (1986). Kinetics of metal dissolution from forest soils by soluble organic acids. J. Environ. Qua!', 15,86-92.

(12)

Solubilization of insoluble phosphates by Aspergi!lus ョゥゥ[セイ@ .

Sagoc, Ct, T. Ando, K. Kouno & T Nagaoka. (1996). Response of italian ryegrass to phosphorus in organic - acid treated phos-phate rocks. 1. Fac. Appl. Bioi. Sci., 35, 199-209.

Singh, CPo & A. Affiberger (i 998). Organic acids and phosphorus solubilization in straw

COIll-posted with rock ph0sphate. Bioresollrce Technol., 63( I), 13-16.

Souciet, G., 1. Attias & 1. d' Auzac (1980). A neutral cytoplasmic phosphatase from the latex of Hevea brasiliensis. Phytochem., 19, 20Q9-2102.

Thomas, G.V., M.V. Shantaram & N. Saraswathy (1985). Occurrence and activity of phos-phate-solubilizing fungi from coconut plan-tation soils. Plant & Soil, 87, 357·364.

Traina, SJ, G. SJ:osito, D. Hesterberg & 

u. 

Ka!kafi (1986). Effects of pH and organic acids on orthophosphate solubility in acidic, montmorillor.ltic soil. Soil Sci. Soc. Am. J.,

50,45-51.

Ulrich, B. & M.E. Sumner (1991). Suil Acidity. Berlin, Springa- Verlag.

Vussiiev, N., M. Vasslleva & R. Azcon (1997), Solubilization of rock phosphate hy immo-bilized Aspergillus niger. Bioresource i'echnol., 59, 1-4.

Vassileva, M., R. Azcon, J. Barea & N, Vassilev (1998). App!ication of an encapsulated filamentuus fungi in solubilization of inorganic phosphate. 1. Biotechnoi.. 63 (I), 67·72.

(13)

..

Menara Perkebunan, 2000 68(2)

CONTENTS

Research Reports

Page

Transfonnation of Cojlea arabica using chitinase gene and regeneration of plantlets from transformed-zygotic embryos (Transformasi cッュセ。@ arabic a menggunakarl gen kinitase dan regenerllsi planlet dad embrio zigotik haL<£! transfarmasi) - A. Budiani, 

T.  Chaidamsari, Priyono, S.  Mawardi & Siswanto  ... . 

I ­ 11 

Overexpression  of chitinase  gene  with  a  GC­rich ­synthetic  enhancer in  tobacco  plant 

(Nicotia't/a tabacum) (Overeskpresi gen kinitase dengan enhancer sintesis kaya GC  pada tanaman tembakau (Nicotiana  tabacum)  D.  SantoslJ,  T.  Chaidamsari,  A. 

Budiani, H. Minarsh, S. Dwi  Utomo & Siswanto  ... ..  12 ­ 20  Development of tobacco plant cells 

in

the presence of kanamycin  at various levels  for 

transgenezis  (Perkembangan sel tanaman tembakau pado berbagai konsentrasi

kanamisin untuk transgenesis) - D.  Santoso, Ferry I Cugito &  H. Minarsih  ... ..  21  28 

Extraction  and  characterization  of humic  acid  from  plantation's  solid  organic  waste  composts (Ekstraksi dan karakterisasi asam humat dari kompos limbah padat organic

Perkebunan) ­ Laksmita P. Santi, D.H. Goenadi,  H.  Widiastuti, N.  Mardiana & Isroi  29  36 

Solubilization  of insoluble  phosphates  by Aspergillus niger (Pelarutan fosfat sukar larut oleh Aspergillus niger) ­ Laksmita P.  Santi, D.H.  Goenadi, Siswanto, I. Sailah & 

Gambar

Table I.  Solubilization of Ca3(PO.h, AIPO., Cileungsi rock phosphate (CRP), and Madura rock phosphate (MRP) by Aspergillus niger BCC FI94 in nine-day incubation
Figure  I.   The correlation between pH and organic acid production [top). P ­ solubilizing ability of Aspergilus niger BCC FI94 lind oxalic acid production (middle), and P­ SOlubilizing ab;lity and pH (bOUOln) with rock phosphate from Madura and  from Cilcul1gs: as r sources in  Pikovskaya medillm 
Figure 3.   Effect  of temperature  (A).  and  heating  period  (minute)  セエ@ so·e  011  acti·.'ity  or phosphatase enzyme (8).  and effect of heating period M 80· C on organic acid (citric acid) concentration (e)
Table 2.  Relative agronomic effectiveness of constructed effect ofbiosupcrphosphate (SPab) of cocoa, rubber, and oil palm seedlings dry weight '

Referensi

Dokumen terkait

Uji potensi antiplasmodial ekstrak kulit buah pepaya mentah dilakukan terhadap mencit yang terinfeksi Plasmodium berghei dengan cara suntikan subkutan

Mengingat luasnya pembahasan yang akan diteliti dan juga agar tidak meluasnya pembahasan, maka penelitian ini akan dibatasi dan diarahkan pada analisis efektivitas pengaruh

(3) Pedoman penataan arsip inaktif pada Perangkat Daerah dan BUMD di lingkungan pemerintah Provinsi Jawa Tengah tercantum dalam Lampiran I sebagai bagian yang

Pulau­pulau prisma akresi merupakan prisma akresi yang terangkat sampai ke permukaan laut 

[r]

commercial kit (Wako pure chemical, Ltd) with Clinical Chemistry Analyzer CL-7000 (Shimadzu, Total excretion of urinary allantoin was calculated from urinary

• Pada bulan pertama kehidupan bayi hampir semua ibu menyusui , tetapi ibu yang memberi ASI Eksklusif sampai 4 bulan adalah 3 %, hasil penelitian Irawati tahun 2004 hanya 2,6%.

Pemerintah Republik Indonesia dan Gerakan Aceh Merdeka (GAM) menegaskan komitmen mereka untuk penyelesaian konflik Aceh secara damai, menyeluruh, berkelanjutan