Bagaimana menentukan persamaan garis lurus yang salah satu titiknya diketahui dan sejajar atau tegak lurus dengan garis linier yang yang

22  71  Download (4)

Teks penuh

(1)

BAB I

PENDAHULUAN

1. LATAR BELAKANG

Matematika sebagai salah satu ilmu dasar, memegang peranan penting dalam mempercepat penguasaan ilmu pengetahuan dan teknologi. Hal ini disebabkan karena, matematika merupakan sarana berfikir untuk menumbuh kembangkan cara berfikir logis, sistematis, dan kritis.

Matematika banyak berhubungan dengan ide-ide abstrak yang diberi simbol-simbol yang tersusun secara hierarkis dan penalarannya deduktif sehingga belajar matematika merupakan kegiatan mental yang tinggi dan terkadang memerlukan waktu yang lama dan butuh kesabaran. Dalam belajar matematika, mempelajari konsep B yang mendasarkan konsep A, seorang siswa perlu memahami terlebih dahulu konsep A. tanpa memahami konsep A, tidak mungkin orang memahami konsep B. ini berarti mempelajari matematika haruslah bertahap dan berurutan, serta berdasarkan kepada pengalaman belajar yang lalu Sehingga banyak siswa yang merasa kesulitan bahkan tidak senang belajar matematika. Karena, kehierarkisan matematika itu, maka belajar matematika yang terputus-putus akan menggangu terjadinya proses belajar. Ini berarti proses belajar matematika akan terjadi dengan lancar bila belajar itu dilakukan secara kontinyu.

(2)

kesulitan yang mereka alami sangat fatal pengaruhnya dan akibatnya bisa menjadi anggapan bahwa matematika adalah momok bagi mereka.

Salah satu materi dalam pelajaran matematika yang terkadang tidak disenangi oleh siswa adalah persamaan garis lurus, mengkhusus pada penentuan persamaan garis lurus yang salah satu titik atau gradien diketahui. Dalam materi ini siswa harus memahami beberapa materi yang ada sebelumya seperti gradien atau kemiringan garis sehingga menimbulkan kesulitan dari siswa.

Mengingat kesulitan yang dialami siswa tersebut maka dipandang perlu untuk melakukan perhatian yang lebih baik berbagai pihak untuk meningkatkan mutu hasil belajar matematika. Utamanya dari kalangan pendidik dalam hal ini seorang guru, karena gurulah yang banyak atau yang paling dekat dengan siswa. Usaha-usaha yang dilakukan kearah peningkatan hasil belajar diharapkan akan selalu ditingkatkan. Jangkauannya diperluas dan mencakup sasaran yang lebih mendasar seperti peningkatan keterampilan matematis, pengembangan penyelesaian masalah matematika, perbaikan cara belajar matematika, bamyak guru mulai menggunakan beberapa pendekatan dalam pemecahan soal matematika agar siswa merasa senang dan mampu menyelesaikan soal yang diberikan dan lain-lain.

(3)

2. RUMUSAN MASALAH

Berdasarkan latar belakang diatas maka penulis merumuskan permasalahan yakni “Bagaimana menentukan persamaan garis lurus yang salah satu titiknya diketahui dan sejajar atau tegak lurus dengan garis linier yang yang lain?”

3. BATASAN ISTILAH

a. Persamaan adalah kalimat terbuka yang menyatakan hubungan ”sama dengan”

b. Persamaan garis lurus adalah persamaan yang berbentuk Ax + By = C c. Dua buah garis sejajar adalah apabila jarak kedua garis itu diukur

disembarang titik diperoleh jarak yang sama.

d. Dua buah Garis tegak lurus adalah apabila perpotongan kedua garis itu memebentuk sugut siku-siku atau 90 derajat.

(4)

BAB II

PEMBAHASAN

A. Pengertian Pembalejaran Matematika

Secara umum Gagne Dan Briggs yang dikutip oleh Ismail (1998) mengatakan bahwa pembelajaran sebagai upaya orang yang tujuannnya adalah membantu orang belajar.dan secara lebih terinci pembelajaran adalah seperangkat acara peristiwa eksternal yang dirancang untuk mendukung terjadinya beberapa proses belajar yang sifatnya internal. Corey yang dikutip oleh ismail (1998) bahwa pembelajaran adalah suatu proses dimana lingkungan seseorang secara sengaja dikelola untuk memungkinkan ia turut serta dalam kondisi-kondisi khusus atau menghasilkan respon terhadap situasi tertentu.

Dalam kamus besar bahasa Indonesia kata pembelajaran adalah kata benda yang diartikan sebagai “proses, cara, menjadikan orang atau makhluk hidup belajar” kata ini berasal dari kata kerja belajar yang artinya berusaha untuk memperoleh kepandaian atau ilmu, berubah tingkah laku atau tanggapan yang disebabkan oleh pengalaman.

(5)

B. Pengertian Persamaan Garis Lurus

Sebelum memahami pengertian persamaan garis lurus, ada baiknya kami mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam koordinat Cartesius. Untuk itu, pelajarilah uraian berikut. Setiap titik pada bidang koordinat Cartesius dinyatakan dengan pasanganberurutan x dan y, di mana x merupakan koordinat sumbu-x (disebut absis) dan y merupakan koordinat sumbu-y (disebut ordinat). Jadi, titik pada bidang koordinat Cartesius dapat dituliskan (x, y).

Pada Gambar di bawah ini terlihat ada 3 buah titik koordinat pada bidang koordinat Cartesius. Dengan menggunakan aturan penulisan titik koordinat, keenam titik tersebut dapat dituliskan dalam bentuk sebagai berikut.

A (0,1), B (-2,1), C (2,-2)

A

B(-2,1) C (2,-2)

(6)

(2,2)

Dari penjelasan diatas dapat dibuat pengertian garis lurus adalah kumpulan titik-titik yang letaknya sejajar. Terlihat pada 3 titik pada gambar di atas yakni (0,0), (1,1) dan (2,2)

C. Menggambat Persamaan Garis Lurus

Apa yang kita ketahui tentang persamaan garis lurus? Pesamaan garis lurus adalah suatu persamaan ang jika digambarkan ke dalam bidang koordinat kartesius akan membentuk sebuah garis lurus. Cara menggambar garis lurus adalah menentukan nilai x dan y secara acak. Hanya dibutuhkan minimal dua titik untuk menggambar garis lurus. Misalkan kita akan menggambat garis x + y = 4. Langkah pertama yang kita lakukan adalah menentukan nilai x dan y yang memenuhi persamaan x + y = 4.n Misalkan

x = 0 maka 0 + y = 4 maka y = 4, sehingga diperoleh titik koordinat (0,4). x = 3 maka 3 + y = 4 maka y = 1, sehingga diperoleh titik koordinat (3,1).

Kemudian dari dua titik koordinat tersebut dapat digambarkan garis lurus sebagai berikut :

(7)

D. Pengertian Gradien

Pernahkah kita mendaki gunung? Jika ya, kita pasti akan menyusuri lereng gunung untuk dapat sampai ke puncak. Lereng gunung memiliki kemiringan tanah yang tidak sama, ada yang curam ada juga yang landai. Sama halnya dengan garis yang memiliki kemiringan tertentu. Tingkat kemiringan garis inilah yang disebut gradien. Secara matematika Gradien suatu garis adalah bilangan yang menyatakan kecondongan suatu garis yang merupakan perbandingan antara komponen y dan

komponen x.Ada berbagai cara untuk menghitung gradien dari suatu persamaan

garis. Hal ini bergantung pada letak titik koordinat dan bentuk persamaan garis yang diberikan. Berikut ini akan diuraikan cara menghitung gradien berdasarkan titik koordinat atau bentuk persamaan garis.

1. Menghitung Gradien pada Persamaan Garis y = mx

Seperti yang telah dijelaskan sebelumnya, gradien suatu garis dapat ditentukan melalui perbandingan antara ordinat dan absis sehingga dapat ditulis sebagai berikut.

Gradien = absis ordinat

m = x y

maka, y = mx

(8)

Tentukanlah gradien dari persamaan garis berikut. a. y = -2x

b. y = 3x

c. 4x – 6y = 0 Jawab :

a. Persamaan garis y = -2x sudah memenuhi bentuk y = mx. Jadi, diperoleh m = -2. b. Persamaan garis y = 3x sudah memenuhi bentuk y = mx. Jadi, diperoleh m = 3. c. Persamaan garis 4x-6y = 0 diubah terlebih dahulu menjadi bentuk y = mx

sehingga -6y = -4x maka y = x

6 4

sehingga diperoleh m =

6 4

2. Menghitung Gradien pada Persamaan Garis y = mx + c

Sama halnya dengan perhitungan gradien pada persamaan garis y = mx, perhitungan gradien pada garis y = mx + c dilakukan dengan cara menentukan nilai konstanta di depan variabel x. Untuk lebih jelasnya, mari kitaperhatikan contoh berikut

Tentukanlah gradien dari persamaan garis berikut. a. y = 4x + 6

b. y = –5x – 8 c. 2y = x + 12 Jawab :

a. Persamaan garis y = 4x + 6 sudah memenuhi bentuk y = mx + c. Jadi,nilai m =4. b.Persamaan garis y = –5x –8sudah memenuhi bentuk y = mx + c. Jadi, nilaim=–5. c. Persamaan garis 2y = x + 12 diubah terlebih dahulu menjadi bentuk y = mx + c sehingga

(9)

y =

2 12

+ x

6 2+

= x y

Jadi nilai m = 1/2

3. Menghitung Gradien pada Persamaan Garis ax + by + c = 0

Sama seperti sebelumnya, gradien pada persamaan garis ax + by + c = 0 dapat ditentukan dengan cara mengubah terlebih dahulu persamaan garis tersebut ke dalam bentuk y = mx + c. Kemudian, nilai gradien diperoleh dari nilai konstanta m di depan variabel x. Perhatikan Contoh berikut :

Tentukanlah gradien dari persamaan garis x + 2y + 6 = 0

Persamaan garis x + 2y + 6 = 0 diubah terlebih dahulu menjadi bentuk y = mx + c

sehingga

x + 2y + 6 = 0 2y = –x –6

2 6

-= x

y sehingga diperoleh

2 1

-=

m

4. Sifat-sifat gradien

· Jika garis sejajar dengan sumbu-x maka nilai gradiennya adalah nol

· Jika garis sejajar dengan sumbu-y maka nilai garis tersebut tidak memiliki gradien.

· Setiap garis yang sejajar memiliki gradien yang sama.

(10)

D. Persamaan Garis yang Melalui Sebuah Titik (x1, y1) dengan Gradien m

Misalkan suatu garis mempunyai gradien m dan melalui sebuah titik (x1, y1).

Bentuk persamaan garis tersebut adalah y = mx + c.

Untuk menentukan persamaan garis tersebut perhatikan langkah – langkah

berikut.

(a) Substitusi titik (x1, y1) ke persamaan y = mx + c.

y = mx + c

y1 = mx1 + c

c = y1 – mx1

(b) Substitusi nilai c ke persamaan y = mx + c.

y = mx + c

y = mx + y1 – mx1

y y1 = mx mx1

y y1 = m(x x1)

Persamaan garis yang melalui titik (x1, y1) dan bergradien m adalah y y1 = m(x x1).

E. Menentukan persamaan garis yang melalui dua titik

o y y1 = m(x x1). Adalah rumus untuk persamaan garis yang melalui

satu titik koordinat.

o

1 2

1 2

x x

y y m

-= adalah rumus gradient dari dua titik koodinat.

(11)

)

Sehingga diperoleh rumus persamaan garis melalui dua titik adalah

)

F. Menyelesaikan Persamaan Garis dari Gradien dan Titik Koordinat. Contoh : Tentukan persamaan garis yang melalui titik (3,5) dan memiliki

gradien -2 Penyelesaian :

Pada pemaparan di atas kami telah menuliskan rumus persamaan garis melalui satu titik dan gradient m yakni y y1 = m(x x1) sehingga diperoleh

y – 5 = -2 (x - 3) y – 5 = -2x + 6 y = -2x + 6 + 5

y = -2x + 11 atau 2x + y = 11

G. Menyelesaikan Persamaan Garis yang Melalui Dua Titik

Contoh : Tentukan persamaan garis yang melalui titik (2,6) dan (4,-2) Penyelesaian : Cara 1

Pada pemaparan di atas kami telah menuliskan rumus persamaan garis melalui

(12)

sehingga diperoleh

(2,6) maka x1 = 2 dan y1 = 6 (4,-2) maka x1 = 4 dan y1 = -2 Persamaannya adalah

Garis melaui (2,6) dengan gradien -4 adalah : y y1 = m(x x1)

(13)

H. Menyelesaikan Persamaan Garis yang melalui satu titik dan sejajar dengan garis yang lain.

Contoh : Tentukan persamaan garis lurus yang melalui titik (2,3) dan sejajar terhadap garis dengan persamaan 3x + 5y = 15 adalah ….

Penyelesaian : 3x + 5y = 15

5 3 15

3 15 5

x y

x y

-=

-=

sehingga diperoleh

5 3

-= m

Garis sejajar maka m1 = m2 =

5 3

Persamaan garis yang melalui (2,3) dengan gradien m2 =

5 3

adalah

3x – (-5y) = 3x1 – (-5y1) 3x + 5y = 3 . 2 + 5 . 3 3x + 5y = 21

I. Menyelesaikan Persamaan Garis yang sejajar dengan garis lurus yang lain

Contoh : Tentukan persamaan garis lurus yang melalui titik (2,3) dan tegak lurus terhadap garis dengan persamaan 3x + 5y = 15 adalah …. Penyelesaian :

(14)

5

Garis tegak lurus maka m1 = 2

Persamaan garis yang melalui (2,3) dengan gradien m2 =

3

J. Menyelesaikan Persamaan Garis dengan Menggunakan Rumus Jitu Langkah Jitu untuk Menentukan Persamaan Garis

· Persamaan garis melalui (x1,y1 ) bergradien

Kedua titik disusun ke bawah q d

(15)

ax + by = a . x1 + b. y1

· Persamaan Garis yang melalui satu titik (x1,y1) dan tegak lurus dengan garis ax + by = c

bx - ay = b . x1 + a. y1

K. Menyelesaikan contoh soal dengan Menggunakan Langkah Jitu

Contoh : Tentukan persamaan garis yang melalui titik (3,5) dan memiliki

Contoh : Tentukan persamaan garis yang melalui titik (2,6) dan (4,-2) Penyelesaian :

Contoh : Tentukan persamaan garis lurus yang melalui titik (2,3) dan sejajar terhadap garis dengan persamaan 3x + 5y = 15 adalah ….

(16)

Menggunakan persamaan jitu : ax + by = a . x1 + b . y1 3x + 5y = 3 . 2 + 5 . 3 3x + 5y = 6 + 15 3x + 5y = 21

Contoh : Tentukan persamaan garis lurus yang melalui titik (2,3) dan tegak lurus terhadap garis dengan persamaan 3x + 5y = 15 adalah …. Penyelesaian :

Diketahui a = 3, b = 5, c = 15, x1 = 2 dan y1 = 3 Menggunakan persamaan jitu : bx - ay = b . x1 + a . y1

(17)

BAB III PENUTUP

1. Kesimpulan

Rumus Jitu untuk menentukan persamaan garis lurus · Persamaan garis melalui titik (x1,y1) bergradien m

b a

= adalah

ax–by = a . x1–b. y1.

· Persamaan garis melalui titik (a,b) dan (c,d) adalah

q d c

b a

p ú

û ù ê ë é

dimana p = a x d dan q = b x c

· Persamaan garis melalui titik (x1,y1) dan sejajar dengan garis ax + by = c. ax + by = a . x1 + b . y1

· Persamaan garis melalui titik(x1,y1)dan tegak lurus dengan garis ax+by= c. bx - ay = b . x1 + a . y1

2. Saran

Kami dari penulis selalu menyarankan kepada semua guru agar kiranya selalu membantu siswa untuk berbuat kreatif dalam meyelesaikan soal-soal yang ada. Sebaiknya mereka tidak hanya memepelajari rumus atau konsep yang ada pada buku yang mereka miliki, namun mereka diberi keleluasaan untuk menciptakan atau membuat ide dalam menemukan cara lain dalam menyelesaikan tugas yang ia peroleh.

(18)
(19)

Daftar Pustaka

Anwar. 2008. Konsep Jitu Matematika SMP. Jakarta : Wahyu media

Budi rahayu. 2008. Contextual Teaching and Learning Matematika. Jakarta : Pusat Perbukuan DEPDIKNAS

(20)
(21)

Tugas Kelompok

Mata Kuliah : Problematika Pendidikan Matematika Dosen Pengajar : DRS. Ahmad Thalib, M.Si.

RUMUS JI TU

MENENTUKAN PERSAMAAN GARI S LURUS

DI SUSUN OLEH :

EDI AMAN AR

WAHI DA JAMALUDDI N

PROGRAM PASCASARJANA

JURUSAN PENDI DI KAN MATEMATI KA

UNI VERSI TAS NEGERI MAKASSAR

(22)

Figur

Memperbarui...

Referensi

Memperbarui...