International
lournal
of
Applied Mathernatics and Stalistics,Irrt.
l.,Appl.
Math.Stat.;
Vol.
55;
Issue
No.2;
Year 2016, ISSN0973'7371 (Prinl), I55N 0973'7545
(Online)Copyright
(O2016
by CESER PUBLiCATIONSBayesian
Multiperiod
Forecasting
for
lndonesia lnflation
Using ARMA
Model
ZulAmry
Department of Mathematics,
State University of Medan, lndonesia
e m a i I : er::rv n:lV_7. r(i; 8! IA1.|,ePry:l
ABSTRACT
'l'his paper pr-esenl a Eayestan approach ta fincl the Bayesran forecasting ttsing ARMA model
t.tnclr:r Jeffrey's prlor i)ssLtnlpttotl wtltt qua{lratic krss fi-;rtcllon applied to morthly national
rpflatiop
of
incionesia from ..jartuary 2a0Ab
Decentber 2a14. The forecastlttg ntodel beol)taine(l based lhe rnarginal r:onditional poslerior predictive density To conclude whether
the moclel
is
arlequate lsrised theLjung-Box Qsfafisflc, whiletolookattheaccttracyof the/nodel ls used lhe Root Mean Square error (RMSE)
Key
word:
ARMA model, Bayes theorem, national inflationMathernatical Subject Classification: 62C10
1, INTRODUCTION
The ciassical forecasting have been depeloved by Box and Jenkins (1976). There are three steps are
accomplished in the process of fitting the ARMA (p,q) model to a time series: identification of the model,
estimation of the pararneters, ancJ application to forecast. ln the classical approach,
the
parametersare considereri fixed but unknown, whereas
ihe
Bayesian approach considers the parameters asran6om variables, wliich are de scribe d by their probability density functicn, Several of works relating to
Bayesian forecasting in the ARIVA rriodelare Liu (1995), Anrry and Baharum (2015)Fan & Yao (2008),
Kleibergen & Hoek (1996), and Uturbey (2006). This paper focuses to find the Bayesian forecasting model for ARMA modei using Jeffrey's prror with quadratic loss function.
2. MATERIALS AND METHODS
Bayes theorem calculates the posterior distrlbution as proportional to the product of a prior distribution anrj the likelihoocl function, the prior distribution is a probability rrodel describirig the knowledge about
the parameters before observing the currently by the available data. Forecasting in
the
Bayesianapproach is based on the construction of the marginal conditional posterior predictive distribution. Main
idea of Bayesian forecasting is the preclictive distribution r:f the future given the fast data follows directly frorn the joint probabilrstic nrodel, predictive drstribution is derived from the sampling predrctive density
www. ceser. tn/ceserp www. eeserp. com/cp-;ou r
lnternstionol Journol of Applied Mothemqlics ond Stotislics
weighted by posterior distribution (Bijak, 2010)' The method
in this paper
is
studyof
literature byapplyingtheBayesiananalysisunderJeffrey,sassumption,whereasthenraterialsareson,]etheories
inmalhematrcsancJstatisticssuchastheARMAmodel'tsayestheorem,integralion,distributronof stat]stlcs
and
inflationdaia
frr:m January 2000to
December 2014. The forecastingmodel will be
appliedtcforecastthedatafromJanuaryZal|toDecemberZ}llbasedondatafromJanuary2000
to December 2013'3"1. Likelihood function
The k-step-ahead point forecast of
/
n * I3. RESULTS
is defined bY:
l(k)=li(r',,,
i.5,, IWhefe S, =(u,, ).:,.,., i,,,,u r)
The A.RMA (P,q) model is defined bY '
''
=io''
*ia'"'
*"
(32)
where{elissequenceolitclnrrrmalrandomvarialrleswither*NQ,r"1),r>0andunknown,0iand
01 are parsmeters" Residuals are written
as:
, = r,, - i,,, r,
,-f.o
r,.
(3 3)
0, where r = min(0, P+1*q)' one
kk,W,
.' ,(n 0t, 02,"''
0q) andr
(3 1)(3 4)
(3 5)
By conditioning the first p observations and letting ep = cp-1
='
'=er =
may approximate by Box & Jenkins [4]' the likelihood function for V= based
:,
is:ilt-i' I)-l
t\Y r:!;)*t
'
"'t7'Fufihermoretheequation(34)canbeexpressedas:
r.lv',
'i.s, )
-' r
l
ll.-, ir', I jl \ ,
i '",
where Br = (Yt, Yt ',
By letting W=lJUr
and V=Urxo,
n.
i/
and
D, are maximum likelihood estimator of r'l| ,l
rl 'i'1
,,I,f,\
i
-lQ,.r',-,
.rll
-
ir,.
,
\!t=,,,]l
I I l I I I I
(-i =l
I
.-'
L;,
j
where
r, = ,i" -. ,,
lnternalionol Journcl of Applied Mnlhepnotics
snd
Stotislicsarrd r'i
,
ihe iikelihooci function in eqL;alron (3 5) can be expressed as."l
| 't'
r
,
.t
\
-'t
r ,'t' 1t'1"
iJ 6)'_t]
3.t. P*stericr
distributicn3:.rsud ihe likeiiiroorl funclion in equatic;tt {l}.6). the "..}effrey's ptior is
/{/,,itr t''fi
By appiying the Bayes theorem lo equatian {3.6) and (3.7), the posterior
cf r"
arid r'
is(.3 7')
l,r i I :r') i,
-' r
t
".t7,
( i.ti)
3.3. Conditionai posterior predictiv*
Eased on
,,. , :r,
)-p,, wiih,'
.r{rrr
'l
will be gotten thatI t L' li '|' ., , 1.:'r,,']
", r,,,, , i, )
t
,
1l ii rxp;re ssr:c
in
'
. it lrtili i;econtes:..:
ji t, .\' .tlJ r .' \.1:r I r ,. . \. , Y0 ,' , -i
Bascrj ihe equation (3.9), the conditional predictive density of
Yn'
t
is:{3 e)
(3.1 1 )
: r. ) ,. tt tt tl ) = 'l' h,.,
105
Basucl un the equation (3.9) anci (3.12), the conciitional posterior preeltctive density of Y,,.r' is:
/,
l',,,
l5.l' '1'' 7t)
'= '(5' ''''
"s, )7r "', 't, s:''v'r
t
)
,.\.tt
l.
,
""''''
rltt
'l
'o
^
'.'
1,a.
il
(3.13)r
(\'/'
i
''
t
llr'
')''
r
''l' + ';r^-,lt
ll lnlernationol Journol of Applied Molhemoticssnd
Stolistics' i r .. iril
" r .\7ri ,i';-' -:'Y'JJ. '.\,-t*\'l/t ' , ]',i
- ri
,rt,t,
!,1,;, ,*v''
Rv'
:v'' 8,,.^ ,.\', ]
(g'tZ)where ll ..,t'],,,t. totl ,1,,0
,
ancj fy''8,,,
,)'
-'l't
RYwhereZ=W+R
3.4. Marginal conditional posterior predictive
The marginal conditional posterior predictive density of Y,*r is obtained by integrating equation (3.13) with respect
to
il
andf
7, that is:intk-l-1tt
I
t;
ll
l
(3.14)
The marginal conditional posterior predictive density
of
Yn*x is a univariate student's t-distribution on(n+k-1*p) degrees of freedom with mean
,-(.t
a;,,,2
'8,,',. )'' (1t!-,z
r"')3.5 Peint forecast
For quadratic loss function, the point forecast of Y,r*r, is the posterir:r mean of the marginal conditional
posterior predictive, that is:
rir -.
.r")fi
B,; -,,,z
'r1.,,,,,l'
\rt;-,,z
't']
(3 15)4. APPLICATICIN
'lhe fore casting nroclel rs applied for infiation mclnthly data based on Consumen Price lndex (CPl), which
lrave coiiecteci for the periocl of January 2000 to December 2014, where the data period of January 2000 - December 2013 are used to forecast the period of January-December 2014.
Basecl
on
the plot
of
series, ACF, PACFin
Figure 1, 2 and3
can be concluded that the collection of data is stationary ancl based on the value of d ,d
and AIC in Table 1,a
suitable model for the datalnlernotionol Journsl of Applied Molhemotics
snd
Stolisiicsplot of time series dala
I
$
$
5
I
.t
irJ,l.l
tt
''ttI
Fiqure 2: plot of autocorrelation function
[image:5.612.99.516.70.767.2]l
ll,il
tl
I IFigure 3; plot of partial autocorrelation funclton
Table
1.
value of 'l',
e
and A/CModel a () AIC
ARMA(710)
ARMA(0,7)
0,7Vp5
'Aiisi-
424.53 0.2696ARMA(1, / -0.2738 0.5250 423.84
By using ihe Bayesian forecasting model in equation (3.15), the results of point forecast are presented in Table 2 as follows:
l[11
0 2ri30'178
I
0.t398343 0.06975640.0361444 0.0183071
0.2870595
0.15'15332 0.2759849
94llll]
0"8568429
lnternqtionol Journol of Applied Molhemolics
snd
SiotislicsTesiing the result
of
point forecast on the forecasting modelto
conclude whether is adequate' investigation to autocorrelations of residuais by using the Ljung-Box Q statistic (Wei, 1994) is:U:=n{ n I
1/,, ,\
X'\t\ - 11 -qtt (4 1)
l{
Q>X
,,ttt
7,,4)
theaclequacyofthe
modelisreiectatthelevel
o
wherenisthesamplestze'
p,
is lhe autocorrelaticn of residuals at lag kand
K is
the number of lags being tesi' By supporting the calculationin lhe
Table3 it
can be obtainedthar
0 "" !t)'\|te,
whereas /'"'"(rl\--l(t
9t90^n'
i"/
" 7 '',,, ,, g , , uo can be concluded that the results of point forecast are adequate
Table 3. Computation of Ljung-Box Q statistic
one measure to cjetermine the accuracy of a forecasting model is Root Mean Square
(RMSE)'
(Assis etall
2010), that is:l? i\15l: {4.2)
,,\. / r
I /t.\tt
-\l-;
where ESS = the
colum '1 through
5quarus
of'
('
error sum of square,
and
n-
the number of observations. By calculation in Table 4' 5 contain the period(/
), observation ("'),
result of forecast1t
). residual('''
), and) is obtained RMSH
'
0 336964Number of lags: k Arrtocorrelation
r)' I
-t-'t;
I
0. 1 0304 1
-0.1s0 i
0.022500 [image:6.612.77.532.122.721.2]Nnfernsfionol Journsl of ,Applied Mathemsiie s
snd
SlqlisiicsTable. 4 . Computation
of
RMSE169
1.07 10.2630176 0.8069824 0.65'12205939ltotoA
joi:ge:+:
0i241657 0.0144397955izr
I
cog
00697564 0.0102436 0.00010493'13a7z'tt
-
I
c.oiot4+a
0.02
l i-0.0561444 0.003'1s21937
173
io16
0.0183071 0.1 41 6929 0.0200768779174 A43
01939937LI
175
{)93
i
0 532460Ui
'176
a47
0 28705950.2360063
o.a3is4oo o 1
sisaos
0.05569B9736
-'o
ti3e3325G
b o::+o722bba\ a1 ,l { f 1f r'J ,
\J1t : tJ t:)iil,).)z
I
I
otszgaor
oa3346rzz6501184668
f
A14034s82"7I
177
r'r B
aie
180
FSS = 1.362533 RMSE = 0 336964
5. CONCLUSION
This paper focus on
ihe
stuciyof
mathematicsin
the Bayesian forecastingof
A,RMA model underlhe Jeffrey's prior assumption with quadratic loss function. By observing the behavior of ACF graph
shaped the damped sine wave in Figure 2 and based on the smallesi AIC value in Table 1 can be
concluded thert the time series daia {cr monthly national inflation of lndonesian starting on January
200Cuntil December20l3wasslationaryasuitablemodelforthedataisARMA{0,1)with
0=0
1696\,4athematically the poinl fcirecast in equation (3.15) is obtained based the posterior predictive mean
r:f
the
marginal conditional posterior predictivedensity. Finally, based
an
investigation toautocorrelations of residuals by usinE the Ljung-Box Q statistic, can be conclude thai the forecasting
model is adequate with accuracy measure RMSE=0.336964.
REFERENCES
Amry,
Z
and
Baharum,
A.
(2015).
Bayesian Multiperiod Forecastingfor
Arma
Model underJeffrey's
?rior
Mathemafrcs and Slalisilcs 3(3), 65-7A.Assis, et
all
(20'10). Forecasting Cocoa Bean Prices Using Univariate Time Series Models. Journalof Ads & Cr:mnierce. lSSl/ 2229-4686, Vol.- l, !ssue- 1,71-BABain, L.,J
and
Engelirardt,M.
(1992)
lntroducti<tn ta Prababilily and Matherrtatical Sla/islics, 2n'r.DLrxbury Press. Belmont, California
Bi1ak.
J
(2C10). Bayesian Forecastingand
lssuesof
Uncertainty Centre for Papulation Change.University of Soulhampk)n. 1-1L
0.47
'
0 27598491
.50
A.73444412.46
| 0.8568429lniernstionol Journql of Applied Molhemolics ond Stqtislics
Bcx
G["F.
and Jenkins,
G. MHolde'r DuY, San Francisco
(1976).
Tirne
Serles Analysis. Farecasting and ControlFnders, W. (1995). Applied Econometnc Ilme Serles John Wiley
&
Son.lnc.
NewYork.Fan, C. and Yao, S. (2008). Bayesian Approach for ARMA Process and its Application lnternatianal Eusiness Research, 1(4), 49-55.
Gelrran, A. (2008), Oblections to Bayesian Statrstics, Bayesian Analysis 3(3), 4 45*450.
Geweke.
J
and
Whiteman,C.,
(2004)
Bayesian Forecasting, Departmentof
Economics,UniverSity of lowa.
Hussein, H. M. A. (2008). Bayesian Analysis
of
the
AutoregressiveMoving Average Model
withExogenous lnputs Using Gibb Sampling. Journalof Applied Sciences Research, 4(12),1585-1892.
lhaka R. (2005).
lme
Series Analysis. Statistics Depailment Universityof
Auckland.Kleibergen.
F
andHoek,
H (1996). Bayesian Analysisof
ARMA
nroclelusing
Non
informativePrior. Paper, Econometric lnstitute, Fmsmus University, Rotterdarn, 1-24
Liu,
S.l.
(1995).Bayesian
Multiperiod Forecastsfor
ARX
Models.Ann.
Sfaflsl. Math. Vot.47,no. 2, 21 1-224.
Liu,
S.l.
(1995).
Comparisonof
Forecastsfor
AR
Models BetweenA
Random Coefficient Approach and A Bayesian Approach.Commun. Sfatrst.-Iheory Meth., 24(2), 319-333Pole, A.,
West,
M.and
Harrison, J. (1994).Applied
tsayesian Forecastingand
Time
SeriesAnalysls Chapnan
and
Hall, New York.Rarnachandran, K.
.M and
Tsokos, CP
(2009). MathematicalSfafisllcs with Apptications, ElsevierAcademic Press. San Diego, California.
Safadi,
T. and
Morettin,P.
A.
(2000).
Bayesian Analysisof
Threshold Autoregressive MovingAverage Models. Sankhya.'l'he lndian Journalof Sfa/lsfics, Valurne 62, Series B,
Pt
3,353-371.Uturbey, W. (2006) lde ntification of ARMA Model by Bayesian Methods Applied
to
Streamflow Data9tt' lnternational Canference Prababilistic Methocl Apptied ta Pawer Syslenrs KTH (1 1- 1 S June
20A6 Sbckltolnt, Sweden
),
1-7Lampiran 7 TEMBAR
HASIL PENITAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW
KARYA ILMIAH: JURNAL INTERNATIONAL
Judul /jurnal llmiah (Artikel)
Jumlah Penulis Status Penulis Penulis Jurnal llmiah ldentitias Jurnal llmiah
Kategori Publikasi llmiah
Beri pada kategori yang tepat
Hasil Penilaian Peer Review
Nomor ISSN
Volume, Nomor, bulan, Tahun
DOI artikel
Alamat web Jurnal
Terindeks di:
"Bayesian Multiperiod Forecasting for lndonesia Inflation Using ARMA Model"
L orang Mandiri ZulAmry
a.
Nama Jurnal International Journal of Applied Mathematics and Statistics097 3-!377,(Pri nt) 0973-7545 on li ne
Vol. 55, No. 2
2016
www.ceserpublications.com
Scopus
b.
c.
d, e.
f.
Fl
t u rna I ll mia h I nternasional/ I nternasiona I BereputasiKomponen yang dinilai
Nilai Maksimal Jurnal llmiah NilaiAkhir
yang
diperoleh lnternasional
{
Nasional Terakred itasi
NasiopalTidak
Terakred itasi
a Kelengkapan Unsur isi artikel (10%)
q
J
b Ruang Lingkup dan kedalaman pembahasan (30%)
/2-
4
c Kecukupan dan kemuktahiran data/ informasi
dan metodoloei(30%)
/L
10
d Kelengkapan unsure dankualitas terbitan/ jurnal
/L
//
1e121=(100%)
1o
Nilai Pengusul=
3f
USU Medan
yang, M. S
1986011001
Medan,
September 2016Reviewer 1,
Prof. Dr. Tulus, M.Si
NrP. 19620901 198803 1002
Unit Kerja : Guru Besar FMIPA USU
LEMBAR
HASIL PENITAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW
KARYA ILMIAH: JURNAL INTERNATIONAL
Lampiran 7
lnternational Journal of Applied Mathematics and Statistics
097 3-!377,(Pri nt) 0973-7545 on li ne
Vol, 55, No. 2
20L6
www. cese rpublications.com
Scopus
Judul /jurnal llmiah (Artikel)
Jumlah Penulis Status Penulis Penulis Jurnal llmiah ldentitias Jurnal llmiah
Kategori Publikasi llmiah
Beri pada kategori yang tepat
Hasil Penilaian Peer Review
Lubis, M.Pd., Ph.D
"Bayesian Multiperiod Forecasting for Indonesia lnflation Using ARMA Model"
1 orang Mandiri ZulAmry
a.
Nama Jurnalb.
Nomor ISSNc.
Volume, Nomor, bulan, Tahund.
DOI artikele.
Alamat web Jurnalf.
Terindeks di:Fl
: urnal ll miah I nternasional/ I nternasiona I BereputasiMedan,
September 201-6Reviewer 2,
Dr. Firmansyah, M.Si
NtP. 19671110 199303 1003
Unit Kerja: Univ. Muslim Nusantara
Komponen yang dinilai
Nilai Maksimal Jurnal llmiah NilaiAkhir
yang
diperoleh
I nternasional
{
Nasional
Terakreditasi
NasioJral Tidak
Terakreditasi
a Kelengkapan Unsur isi artikel (10%)
h
)
b Ruang Lingkup dan kedalaman pembahasan (30%)
IL
t1c Kecukupan dan kemuktahiran data/ informasi
dan metodologi (30%)
IL
1td Kelengkapan unsure dankualitas terbitan/ jurnal
IL
,u1e131=(100%)
4o
Nilai Pengusul=
3L
Judul /jurnal llmiah (Artikel)
Jumlah Penulis
Status Penulis Penulis Jurnal llmiah ldentitias .lurnal llrnia h
Kategori Publikasi llmiah Beri pada kategori yang tepat
Hasil Penilaian Peer Review
I-EMBAR
I-IASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW
KARYA lLMlAhl : JURIUAL INTERNATIONAL
f.
Terindeks di:"Bayesian
Multipeniod
Forecasting
for
lndonesia
lnflation
Using ARMA Mlodel"1 orang
lVla ndiri
ZulArnry
a.
Namaiurnal
: lnternational Journal of Applied Mathematics and Statisticsb.
NonnonISSN
: 0973-1377,(Printi 0973-7545 onlinec"
Volume,Nomor,
:Vol. 55, No. 2bulan, Tahun : 2016
d.
DOia'rtikel
:e"
Alamat webJurnal
: { HYPERLINK"http:ffwww.ceserpublications.com" )
: Scopus
Larnpinan 7
Nilai Akhir yang
3 Komponen yang dinilai
Kelengkapan Unsur isi artikel (10%)
Ruang Lingkup dan kedalaman pembahasan (30%)
Kecukupan dan kemuktahiran data/ informasi
{ul_'elgqqggtqo_Y,)
_
_
Kelengkapan unsure dankua litas terbitan/ jurnal
1e131=(100%)
Nilai Pengusul=
Fl
lurnal
llmiah lnternasional/ lnternasional BereputasiNilai Maksimal Jurnal llmiah
t
t"rdi"".t-f-
N;6;;i
-lN*i"rrI
ridrk
./
lTerakreditasiI
Terakreditasi diperoleh4
IL
l3'
tJ-1o
u
tl
IL
37-Prof. Dr. Asmin, M.Pd NrP. 19570804 198503 1002