• Tidak ada hasil yang ditemukan

Evaluasi Kondisi Bangunan Bersejarah Masjid Agung Demak

N/A
N/A
Protected

Academic year: 2017

Membagikan "Evaluasi Kondisi Bangunan Bersejarah Masjid Agung Demak"

Copied!
49
0
0

Teks penuh

(1)

EVALUASI KONDISI BANGUNAN BERSEJARAH

MASJID AGUNG DEMAK

DESKA ARI KURNIYANTI

DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA*

Dengan ini saya menyatakan bahwa skripsi berjudul Evaluasi Kondisi Bangunan Bersejarah Masjid Agung Demak adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

(4)

ABSTRAK

DESKA ARI KURNIYANTI. Evaluasi Kondisi Bangunan Bersejarah Masjid Agung Demak. Dibimbing oleh LINA KARLINA SARI dan FENGKY SATRIA YORESTA.

Masjid Agung Demak merupakan bangunan bersejarah yang memiliki arti penting bagi perkembangan agama islam di pulau Jawa. Sebagian besar komponen bangunan masjid yang digunakan merupakan kayu. Tujuan penelitian ini adalah mengevaluasi kondisi bangunan bersejarah Masjid Agung Demak melalui identifikasi visual serta analisis struktur bangunan terhadap ketahanan gempa.

Identifikasi bangunan dilakukan pada beberapa bagian ruang utama seperti atap, langit-langit, rangka dinding, dinding, kusen, lantai, pondasi, drainase, dan utilitas. Selanjutnya analisis struktur bangunan dilakukan dengan memodelkan struktur dalam portal 2D menggunakan software berbasis elemen hingga (Finite Element Methode). Struktur dianalisis dengan mengguanakan metode dinamik riwayat waktu (Time History Analysis). Hasil penilaian kondisi bangunan melalui identifikasi visual menunjukkan nilai kekokohan 82.15% yang berarti bangunan dalam kondisi baik. Nilai kekokohan tersebut menunjukkan bahwa komponen bangunan masih berfungsi karena ada pemeliharaan rutin. Berdasarkan hasil identifikasi jenis kayu yang digunakan pada kolom (saka guru) merupakan kayu jati (Tectona grandis). Hasil analisis struktur bangunan terhadap gempa yaitu diperoleh nilai berupa gaya dalam, tegangan aktual, dan respon gempa. Tegangan aktual dihitung menggunakan metode tegangan ijin (Allowable Stress Design) menggunakan nilai gaya dalam. Hasil analisis menunjukkan nilai tegangan aktual kolom kayu jati berada dibawah tegangan ijin. Sedangkan respon struktur dari dua portal yang dianalisis menunjukkan perpindahan, kecepatan, dan percepatan akibat gempa yang nilai nya tidak signifikan.

Kata kunci: analisis struktur, bangunan bersejarah, identifikasi visual

ABSTRACT

DESKA ARI KURNIYANTI. Evaluation of Historical Building Condition Demak Great Mosque. Supervised by LINA KARLINA SARI and FENGKY SATRIA YORESTA.

Demak Great Mosque is a historical building that has important role for development of the Islam religion in Java. Most of the building components used on that mosque are woods. The main objective of this research was to evaluate the condition of the historical building of the Demak Great Mosque through visual assessment and durability of building on earthquake based on seismic simulation.

(5)

82.15%. The robustness value indicates that the building components are still functioning since there has been maintenance activities. Wood identification denoted the wood species was teak wood (Tectona grandis). Seismic analysis on building structures which carried out were internal stress, actual tension, and response spectrum. Actual tension was calculated based out allowable stress method (Allowable Stress Design) using the value of internal stress. The results showed that value of the actual tension were still in below of its allowable stress. Response structures which calculated were displacement, velocity and acceleration. The result showed that there were not significant between two portal analysed for the value of displacement, velocity, and acceleration due to seismic simulation.

(6)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan

pada

Departemen Hasil Hutan

EVALUASI KONDISI BANGUNAN BERSEJARAH

MASJID AGUNG DEMAK

DESKA ARI KURNIYANTI

DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR

(7)
(8)

Judul Skripsi : Evaluasi Kondisi Bangunan Bersejarah Masjid Agung Demak Nama : Deska Ari Kurniyanti

NIM : E24100046

Disetujui oleh

Dr Lina Karlinasari, SHut, MSc, FTrop Pembimbing I

Fengky Satria Yoresta, ST, MT Pembimbing II

Diketahui oleh

Prof Dr Ir Fauzi Febrianto, MSc Ketua Departemen

(9)

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan sejak bulan Februari 2014 ini ialah evaluasi kondisi bagunan bersejarah, dengan judul Evaluasi Kondisi Bangunan bersejarah Masjid Agung Demak.

Ucapan terima kasih penulis sampaikan kepada Dr Lina Karlinasari dan Bapak Fengky Satria Yoresta ST, MT selaku pembimbing. Di samping itu, penghargaan penulis sampaikan kepada Direktorat Jendral Pendidikan Tinggi (DIKTI) yang telah memberikan kesempatan penulis menempuh pendidikan S1 di Institut Pertanian Bogor (IPB) melalui program Beasiswa Bidik Misi. Terimakasih juga penulis sampaikan kepada Bapak Suwagiyo dan seluruh pengurus takmir Masjid Agung Demak, Bapak Darsono dari Badan Pelestarian Cagar Budaya Jawa Tengah yang telah banyak membantu selama pengumpulan data, serta M. Ari Kurniawan (THH 46), Andi Priyakin (SIL 46), dan Dyka Indiani yang telah membantu selama pengolaan data penelitian. Selain itu, terima kasih juga disampaikan kepada teman-teman tercinta Eko Budi Cahyono, Nur Islamiah Latif, Dewi Wulandari, Faiza Nur Ilmi, Rahmazudi, Nurisna Ulia Ulfa, Nova Lestari, Eniza Rukisti, Syaiful Bahri, dan teman-teman THH 47 atas dukungan semangat yang diberikan selama penulisan skripsi dan keceriaannya selama perkuliahan. Ungkapan terima kasih juga disampaikan kepada ayah, ibu, serta seluruh keluarga, atas segala doa dan dukungan serta kasih sayangnya.

Semoga karya ilmiah ini dapat bermanfaat.

(10)

DAFTAR ISI

DAFTAR TABEL iv

DAFTAR GAMBAR iv

DAFTAR LAMPIRAN iv

PENDAHULUAN 1

Latar Belakang 1

Perumusan Masalah 2

Tujuan Penelitian 2

Manfaat Penelitian 2

Ruang Lingkup Penelitian 2

METODE 2

Lokasi dan Waktu Penelitian 2

Alat 3

Bahan 3

Prosedur Analisis Data 4

Penilaian Kekokohan Bangunan 4

Identifikasi Faktor Perusak 5

Identifikasi Jenis Kayu 6

Uji Sifat Fisis Kayu 6

Analisis Struktur Bangunan terhadap Gempa 6

Evaluasi Kondisi Bangunan 9

HASIL DAN PEMBAHASAN 9

Kondisi Umum Bangunan Masjid Agung Demak 9

Indeks Kondisi Bangunan 10

Faktor Perusak Bangunan 14

Identifikasi Jenis Kayu 15

Sifat Fisis Kayu Jati 16

Kadar air (KA) 16

Kerapatan dan Berat Jenis (BJ) 16

Analisis Struktur Bangunan Akibat Beban Gempa 17

Analisis Gaya Dalam 17

(11)

Evaluasi Kondisi Bangunan 21

SIMPULAN DAN SARAN 22

Kesimpulan 22

Saran 22

DAFTAR PUSTAKA 22

LAMPIRAN 25

(12)

DAFTAR TABEL

1 Teknik pembobotan pada tiap komponen konstruksi 4 2 Kategori nilai kondisi bangunan dan predikat nya 5

3 Ukuran komponen balok portal A-A dan B-B 7

4 Nilai MOE dan MOR kayu jati berdasarkan konstanta Bodig dan

Jayne (1993) 8

5 Data sifat-sifat bahan material bata merah menurut Pamungkas

(2011) 8

6 Hasil pemeriksaan kondisi bangunan Masjid Agung Demak 11 7 Gaya dalam kolom 4 K1 dan 8K1 pada portal A-A dan B-B akibat

gempa 18

8 Nilai tegangan kolom 4 K1 dan 8K1 pada portal A-A dan B-B akibat

gempa 18

9 Respon struktur maksimum joint 6 portal A-A dan B-B 19

DAFTAR GAMBAR

1 Lokasi Masjid Agung Demak 3

10 Denah bangunan Masjid Agung Demak 7

11 Portal bangunan Masjid Agung Demak 7

12 Akselelogram gempa El-Centro 19 Mei 1940 9

13 Bangunan masjid Agung Demak; (a) ruang utama, (b) serambi dan

(c) pewasrehan atau tempat sholat wanita 10

14 Bentuk kerusakan komponen reng dan kaso: (a) perubahan warna kayu (b) seragan jamur pelapuk, dan (c) tunel serangga 12 15 Bentuk kerusakan pada bubungan dan sirap: (a) karat pada seng

bubungan, (b) kemiringan sirap tidak sesuai, (c) retak, pecah,

perubahan warna sirap 12

16 Bentuk kerusakan pada rangka dinding: (a) bekas serangan rayap pada bagian kolom penyangga kuda-kuda, (b) bekas serangan rayap kolom saka guru, (c) retak pada kolom praktis bata merah 13 17 Faktor perusak bangunan kelompok Hymenoptera; (a) famili

Chrysididae; (b) famili Vespidae 14

18 Lumut kerak pada sirap bangunan Masjid Agung Demak 15 19 Penampang melintang kayu Jati secara makroskopis; (a) contoh uji

perbesaran 10X; (b) contoh uji perbesaran 30X; (c) pustaka Mandang

et al. 2008 15

(13)

DAFTAR LAMPIRAN

1 Kriteria pembobotan bangunan rumah sederhana 25

2 Hasil penilaian kondisi bangunan Masjid Agung Demak 29 3 Hasil pengukuran kadar air komponen bangunan Masjid Agung

Demak 30

4 Contoh perhitungan nilai tegangan maksimum kolom akibat gaya

(14)
(15)

PENDAHULUAN

Latar Belakang

Indonesia merupakan negara yang memiliki catatan sejarah cukup panjang. Hal ini terbukti dengan ditemukan berbagai benda serta sisa bangunan bersejarah yang tersebar di seluruh wilayah Negara Kesatuan Republik Indonesia. Bangunan bersejarah menjadi bagian dari cagar budaya yang perlu dilestarikan, mengingat keberadaannya untuk mendukung pewarisan nilai-nilai budaya. Menurut undang-undang No 11 tahun 2010 tentang cagar budaya, pada pasal 5 disebutkan bahwa cagar budaya merupakan benda, bangunan, atau struktur yang berusia 50 tahun atau lebih, mewakili masa gaya paling singkat berusia 50 tahun, dianggap memiliki arti khusus bagi sejarah, ilmu pengetahuan, pendidikan, agama, dan memiliki nilai budaya bagi penguatan kepribadian bangsa. Salah satu bangunan cagar budaya yang memiliki arti penting dalam sejarah perkembangan Agama Islam di Indonesia adalah Masjid Agung Demak.

Berdasarkan artefak arkeologi yang ditemukan, Masjid Agung Demak dibangun dalam tiga tahap pembangunan dan fungsi pemanfaatan. Pembangunan pertama ditandai dengan prasasti nogo mulat saliro wani yang terukir pada daun pintu tengah masjid yang bermakna tahun 1388 S identik dengan tahun 1466 M, pada saat itu masjid yang berfungsi sebagai masjid pesantren Gelagahwangi. Pembangunan kedua ditandai dengan prasasti kori trus gunaning janmi yang bermakna tahun 1399 S identik dengan tahun 1477 M, pada saat itu masjid berfungsi sebagai Masjid Kadipaten Glagahwangi. Pembangunan ketiga ditandai dengan prasasti bergambar bulus atau kura-kura yang terletak pada bagian dinding mimbar yang bermakna saliro sunyi kiblating gusti, yaitu tahun jawa 1401 S identik dengan 1479 M pada saat itu masjid berfungsi sebagai Masjid Kesultanan Bintoro Demak (Soenanto 2004).

Komponen bangunan Masjid Agung Demak sebagian besar menggunakan kayu. Hal ini dilihat dari empat buah kolom pada ruang utama (saka guru) dan delapan kolom saka majapahit pada bagian serambi yang terbuat dari kayu, serta komponen lain yaitu: kusen, daun pintu, daun jendela, sirap, langit-langit, atap, kuda kuda, serta dinding loteng tingkat dua dan tiga. Masijd Agung Demak telah mengalami beberapa kali usaha pelestarian akibat sebagian besar komponennya menggunakan kayu. Menurut Anom et al. (1986) usaha pelestarian masjid telah dimulai pada abad ke XVI. Selama tahun 1924-1974 masjid telah mengalami sebelas usaha perbaikan yang meliputi penguatan saka guru ruang utama dan saka majapahit pada serambi, penambahan konstruksi kuda-kuda pada atap masjid, rehabilitasi serambi, dan perbaikan sarana pengunjung (Hatmadji et al. 2011). Perbaikan terakhir dilaksanakan tahun 1983-1987 berupa pemugaran secara menyeluruh dan terpadu dalam Proyek Pemugaran dan Pemeliharaan Peninggalan Sejarah dan Purbakala Jawa Tengah.

(16)

2

dapat dilakukan secara efektif. Penelitian ini juga mencoba menganalisis kekuatan struktur bangunan dalam menahan beban gempa, mengingat tingginya tingkat resiko gempa bumi di Indonesia.

Perumusan Masalah

Semakin bertambahnya umur bangunan Masjid Agung Demak maka semakin rentan terhadap serangan faktor perusak karena sebagian besar komponen bangunannya menggunakan kayu. Kerusakan tersebut berpengaruh terhadap kekuatan, terutama pada komponen yang memiliki fungsi menahan beban seperti komponen penyusun atap, kuda-kuda, serta tiang penyangga. Penelitian ini juga mencoba menganalisis kekuatan struktur bangunan bersejarah Masjid Agung Demak apabila memperoleh beban gempa.

Tujuan Penelitian

Penelitian ini bertujuan untuk mengevaluasi kondisi bangunan bersejarah Masjid Agung Demak melalui pengamatan visual serta menganalisis struktur bangunan terhadap ketahanan gempa.

Manfaat Penelitian

Penelitian ini diharapkan menjadi informasi ilmiah bagi masyarakat terutama pengurus masjid dan lembaga pemerintah yang berwenang dalam kegiatan pemeliharaan kondisi bangunan bersejarah Masjid Agung Demak. Hal ini bermanfaat untuk menjaga keaslian bentuk dan struktur bangunan bersejarah sehinga kerusakan yang timbul dapat segera diatasi sedini mungkin.

Ruang Lingkup Penelitian

Penelitian ini mencakup penilaian kondisi bangunan, identifikasi kerusakan, faktor perusak, pengambilan sampel kayu dan data struktural. Selanjutnya yaitu identifikasi jenis kayu, uji sifat fisis kayu, penentuan keterandalan bangunan, dan analisis struktur bangunan terhadap gempa. Tahap terakhir yaitu evaluasi kondisi bangunan dengan mengkaji hubungan dari seluruh komponen data yang diperoleh.

METODE

Lokasi dan Waktu Penelitian

(17)

3 alun kota Demak, Desa Kauman Kecamatan Demak Kabupaten Demak Provinsi Jawa Tengah. Balai Pelesatrian Cagar Budaya Jawa Tengah untuk pengambilan data struktural. Laboratorium Teknologi Peningkatan Mutu Kayu Departemen Hasil Hutan untuk identifikasi dan uji sifat fisis kayu. Laboratorium Etnobiologi Hutan Departemen Silvikultur untuk identifikasi serangga perusak bangunan.

Alat

Alat yang digunakan dalam penelitian ini yaitu meteran, kaliper, gergaji, pisau cutter, botol film, moisturemeter, hygrometer, thermometer, timbangan elektrik, mikroskop untuk identifikasi kayu dan faktor perusak, kamera, notebook, Microsoft Office Excel 2007, software komputer berbasis elemen hingga.

Bahan

Bahan utama penelitian ini terdiri atas dua macam yaitu untuk penilaian kondisi bangunan secara visual dan analisis struktur. Bahan untuk penilaian kondisi bangunan secara visual yaitu bangunan bersejarah yang umurnya lebih dari 50 tahun yakni Masjid Agung Demak, tally sheet daftar penilaian kondisi tiap komponen bangunan, alkohol 70% untuk menyimpan faktor perusak (serangga) yang ditemukan, alumunium foil, dan plastik. Selanjutnya bahan untuk analisis struktur berupa data struktural dari laporan proyek Pemugaran dan Pemeliharaan Masjid Agung Demak Bantuan Presiden 1985-1986, gambar as built drawing rekonstruksi Masjid Agung Demak, serta sifat-sifat bahan (material properties) berupa data kerapatan, kekakuan, poissons’s ratio, dan modulus geser.

Gambar 1 Lokasi Masjid Agung Demak

(18)

4

Prosedur Analisis Data

Penilaian Kekokohan Bangunan

Penilaian kekokohan bangunan Masjid Agung Demak dilakukan dengan menggunakan metode rekayasa forensic. Metode forensic merupakan metode investigasi rekayasa dan penentuan penyebab kegagalan bangunan (Sulaiman 2005). Akan tetapi, sebelum dilakukan penilaian perlu dilakukan pembobotan pada tiap komponen konstruksi bangunan. Teknik pembobotan pada bagian konstruksi disajikan pada Tabel 1.

Tabel 1 Teknik pembobotan pada tiap komponen konstruksi

No Lingkup Pekerjaan Baik Sedang Rusak/ Kurang

Ringan Sedang Parah

% 5 4 3 2 1

A Pekerjaan Atap 27

Kuda-kuda 9

Rangka atap 10

Pendukung kuda kuda 1

Penutup atap 7

Balok atas/ring beton 5

(19)

5 Adapun cara untuk mendapatkan nilai kekokohan banguan digunakan persamaan:

e u t x 5 x

dimana BK adalah bobot kepentingan, Sn adalah skor nilai

Penentuan kategori kondisi bangunan dikelompokkan dalam lima kelas kondisi, tergantung pada persentase akhir nilai kekokohan yang diperoleh. Kategori nilai kekokohan bangunan dan predikatnya disajikan pada Tabel 2 berikut ini:

Identifikasi Faktor Perusak

Identifikasi faktor perusak bangunan dilakukan dengan memeriksa keseluruhan komponen di sekitar bangunan. Faktor perusak yang ditemukan diidentifikasi dengan mengamati ciri morfologi umum dan khusus untuk mengenali suku atau familinya. Hal tersebut berguna untuk mengetahui peranan faktor perusak pada bangunan, sehingga dapat digunakan sebagai acuan dalam usaha pelestarian bangunan.

Tabel 2 Kategori nilai kondisi bangunan dan predikat nya

No Nilai masih berfungsi tidak ada pemeliharaan rutin

3. 41-60 Rusak

Ringan

Apabila kerusakan terjadi pada komponen non struktural lebih sering terlihat sebagai kerusakan pada pekerjaan finishing, seperti penutup atap, pasangan plafon, pasangan kramik, pasangan bata, plesteran dan lain-lain

4. 21-40 Rusak

Sedang

Apabila kerusakan terjadi pada sebagian komponen non struktural maupun struktur atap, struktur langit-langit, struktur beton, lantai dan lain-lain. Pada fasilitas utilitas kerusakan yang terjadi sudah mengganggu fungsional dari fasilitas tersebut

5 0-20 Rusak

Berat

(20)

6

Identifikasi Jenis Kayu

Identifikasi jenis kayu dilakukan dengan pengamatan menggunakan mikroskop perbesaran 10X dan 30X pada bagian melintang potongan kayu. Hasil pengamatan kemudian diidentifikasi jenis kayunya berdasarkan Atlas Kayu Indonesia Jilid I Martawijaya et al. (1981) serta foto penampang melintang kayu Jati pada Pedoman Identifikasi Kayu Ramin dan Kayu Mirip Ramin (Mandang et al. 2008)

Uji Sifat Fisis Kayu

Pengujian sifat fisis kayu bangunan mencakup pengujian kadar air, berat jenis dan kerapatan. Kadar air merupakan banyaknya air yang ada di dalam kayu. Pengambilan data kadar air dilakukan dengan menggunakan moisture meter pada beberapa bagian komponen kuda-kuda, rangka atap, langit-langit, dan dinding.

Kerapatan merupakan perbandingan antara massa kayu dalam kondisi kering udara per volume kayu dalam kondisi kering udara menggunakan metode gravimetri (tanpa pencelupan pada paraffin). Nilai kerapatan kayu diperoleh dengan menggunakan rumus:

dimana adalah kerapatan kayu dalam kg/m3, m adalah massa kering udara dalam kg, dan V adalah volume kering udara dalam m3.

Selanjutnya berat jenis merupakan perbandingan antara berat kayu kondisi kering tanur per volume kayu dibagi dengan berat air pada volume yang sama. Berat kering tanur diperoleh dengan cara menimbang contoh uji yang telah di oven pada suhu 103±2ᵒC selama dua hari. Sedangkan volume kering udara kayu diukur menggunakan metode gravimetri (tanpa pencelupan pada paraffin). Nilai berat jenis dihitung dengan menggunakan rumus:

dimana BJ adalah berat jenis, BKT adalah berat kering tanur dalam kg, V adalah volume kering udara dalam m3, dan adalah kerapatan air dalam kg per m3. Analisis Struktur Bangunan terhadap Gempa

Struktur ruang utama Masjid Agung Demak memiliki ukuran panjang 23.10 m dan lebar 22.30 m. Bangunan terdiri atas tiga lantai dengan ketinggian lantai dua 7.1 m dan lantai tiga 13.62 m. Pada bagian ruang utama terdapat kolom kayu jati (K1) sebanyak 4 buah dan kolom bata merah (K2) sebanyak 12 buah seperti pada Gambar 2. Jarak antar kolom arah utara-selatan yaitu 4.80 m, 4.80 m dan 4.17 m. Kemudian jarak kolom arah barat-timur yaitu 4.82 m, 4.90 m, dan 4.79 m.

(21)

7

Gambar 3 Portal bangunan Masjid Agung Demak Gambar 2 Denah bangunan Masjid Agung Demak

Tabel 3 Ukuran komponen balok portal A-A dan B-B

Komponen Kode Material Dimensi (cm)

Balok B1 kayu jati b = 25; h = 30

B2A kayu jati b1 = 24; h1= 36 B2B kayu jati b1 = 22; h1= 36 B3 kayu jati b1 = 30; h1= 45

(22)

8

Sifat-sifat bahan (material properties) yang digunakan dalam pemodelan yaitu kerapatan, kekakuan (MOE) EL, ER, ET, poisson’s ratio (υ) υ12, υ13, d υ23, dan modulus geser (G) GLR, GLT, GRT. Nilai sifat-sifat bahan ditentukan berdasarkan literatur karena terbatas nya alat yang digunakan dalam penelitian. Nilai kerapatan kayu jati dan modulus of elasticity (MOE) menurut Martawijaya et al. (1981) masing-masing 670 kg/m3 dan 127,7 x 107 kg/m2. Menurut Mardikanto et al. (2011) nilai MOE tersebut belum memenuhi untuk dimasukkan ke dalam data sifat-sifat bahan karena merupakan data elastisitas hasil pengujian lentur saja (EL). Selanjutnya untuk mendapatkan nilai EL, ER, ET dan nilai modulus geser (G) digunakan konstanta elastisitas kayu rataan menurut Bodig dan Jayne (1993) yaitu:

EL : ER : ET≈ 2 : .6 : EL : GLR ≈ 4 : GLR : GLT : GRT ≈ : 9.4 : 1

Nilai MOE dan MOR hasil perhitungan menggunakan konstanta Bodig dan Jayne (1993) seperti pada Tabel 4 berikut:

Nilai poisson’s ratio yang digunakan merupakan nilai variabel orthotropis untuk kayu daun lebar menurut Bodig dan Jayne (1993). Menurut Karlinasari (2007) terdapat perbedaan khusus untuk nilai poisson’s ratio Bodig dan Jayne dengan software berbasis elemen hingga, dimana varia e υ12, υ13, d υ23 pada

d d y e ( 993) erup v r e υ21, υ31, d υ32 pada software berbasis elemen hingga secara berturut-turut: υ21 = 0.044, υ31= 0.027, υ32= 0.33.

Data sifat-sifat bahan untuk material bata merah yang digunakan untuk analisis struktural berdasarkan hasil penelitian Pamungkas (2011) seperti disajikan pada Tabel 5 berikut:

Struktur portal dianalisis dengan menggunakan metode dinamik riwayat waktu (Time History Analysis) dari record gempa El-Centro yang terjadi di Imperrial Valley 19 Mei 1940. Adapun bentuk dari akselerogram gempa El-Centro ditunjukkan pada Gambar 4.

Tabel 5 Data sifat-sifat bahan material bata merah menurut Pamungkas (2011)

Sifat bahan Nilai

MOE 326589720 kg/m2

Poisson's ratio 0.19 Massa Jenis 1700 kg/m3

Tabel 4 Nilai MOE dan MOR kayu jati berdasarkan konstanta Bodig dan Jayne (1993)

Sifat bahan Nilai (kg/m2) Sifat bahan Nilai (kg/m2)

EL 1.28E+09 GLR 9.12E+07

ER 1.02E+08 GLT 8.57E+07

(23)

9

Hasil analisis dari pemodelan struktur yaitu berupa gaya-gaya dalam dan respon struktur. Nilai gaya dalam berupa tekan, tarik, geser, dan momen digunakan untuk menghitung tegangan aktual elemen struktur. Tegangan aktual elemen struktur dihitung dengan menggunakan metode Allowable Stress Design (ASD). Metode ini membandingkan antara nilai tegangan aktual dan tegangan ijin. Tegangan ijin dihitung menurut daftar IIa PKKI 1961 untuk kayu Jati seperti berikut:

Tegangan ijin lentur = 130 kg/cm2

Tegangan ijin tekan/tarik sejajar serat = 110 kg/cm2

Tegangan ijin geser = 15 kg/cm2

Respon struktur menurut Matani et al. (2013) merupakan riwayat waktu dari perpindahan (displacement), percepatan (acceleration), dan kecepatan (velocity) dari fungsi beban tertentu, untuk struktur dengan derajat kebebasan tunggal atau banyak. Ketiga nilai dari respon struktur tersebut dihubungkan untuk mengetahui prilaku struktur saat mengalami pembebanan gempa.

Evaluasi Kondisi Bangunan

Evaluasi kondisi bangunan dilakukan dengan membandingkan data hasil pengamatan visual dan analisis struktural. Data hasil pengamatan visual yang berupa penilaian kekokohan bangunan dan bentuk kerusakan bangunan dibandingkan dengan hasil analisis struktur bangunan terhadap gempa. Sehingga hasil yang diperoleh dapat digunakan sebagai penentu kondisi bangunan dan ketahanananya terhadap beban gempa.

HASIL DAN PEMBAHASAN

Kondisi Umum Bangunan Masjid Agung Demak

Masjid Agung Demak merupakan bangunan cagar budaya yang memiliki nilai historis bagi perkembangan Agama Islam di Pulau Jawa. Pada jaman dahulu masjid ini memiliki fungsi sebagai masjid negara kesultanan Demak. Fungsi Sumber: http://peer.berkeley.edu/nga/

(24)

10

tersebut ditunjukkan dari letaknya yang berada di pusat perkotaan yaitu disebelah barat alun-alun dan disebelah timur alun-alun dijumpai Lembaga Pemasyarakatan dan di utara dijumpai sungai Tuntang (Anom et al. 1986).

Bangunan Masjid Agung Demak merupakan kompleks seluas ±1.5 hektar yang dipisahkan oleh pagar sekeliling nya (Anom et al. 1986). Kompleks Masjid Agung Demak, terdiri atas bangunan masjid, museum, kantor pengurus, penginapan pengunjung, paseban, kompleks makam, sekolah, perpustakaan, tempat wudhu, dan toilet. Bagunan masjid terdiri atas tiga bagian yaitu ruang utama, serambi dan pawestren atau tempat sholat wanita seperti ditunjukkan pada Gambar 5.

Menurut Anom et al. (1986) ruang utama masjid berukuran 23.10 meter di arah utara-selatan dan 22.30 meter di arah barat timur dan ukuran ruang mighrab 1.40 x 2.40 meter. Di dalam ruang utama terdapat 12 kolom bata merah dan 4 kolom kayu jati. Kolom bata merah berfungsi untuk menopang loteng tingkat II dan atap masjid. Sedangkan kolom kayu jati atau disebut saka guru adalah kolom yang dibuat oleh empat orang wali dan dulu nya merupakan kolom utama masjid saat pertama kali dibangun.

Menurut Prasetyo (2003) bangunan masjid jawa memiliki hirarki seperti ruang lantai dasar merupakan ruang sholat umum, lantai satu merupakan ruang yang lebih privasi, dan lantai paling atas untuk adzan. Namun saat ini pada loteng tingkat I dan III bangunan tidak memiliki fungsi khusus yaitu hanya sebagai ventilasi udara ruang utama. Atap masjid tersusun atas tiga bagian dan yang teratas berbentuk piramida. Fungsi atap masjid yaitu sebagai penutup loteng tingkat I, II, dan III.

Indeks Kondisi Bangunan

Penilaian kondisi bangunan dilakukan pada bagian ruang utama serta komponen pendukung bangunan Masjid Agung Demak. Berdasarkan metode yang digunakan penilaian kondisi bangunan meliputi pekerjaan (1) atap, (2)

(a) (b) (c)

(25)

11 langit-langit, (3) rangka dinding, (4) dinding, (5) kusen atau daun, (6) pondasi, (7) lantai, (8) drainase, dan (9) utilitas. Kegiatan penilaian meliputi identifikasi komponen struktural dan non struktural secara visual. Menurut Brito dan Junior (2013) teknik identifikasi secara visual telah terbukti sangat efisien untuk mendeteksi serangan akibat faktor perusak yang menyerang pada permukaan kayu, terutama untuk memperkirakan kerusakan yang disebabkan oleh faktor abiotik seperti pecah, retak, deformasi, dan faktor biotik seperti kumbang, rayap dan jamur karena sederhana serta memerlukan peralatan yang minimum.

Hasil identifikasi nilai kekokohan tiap lingkup pekerjaan dan total lingkup pekerjaan bangunan Masjid Agung Demak disajikan pada Tabel 6.

Rerata penurunan kekokohan komponen bangunan berdasarkan lingkup pekerjaan yaitu sebesar 17% apabila dibandingkan dengan nilai acuan penilaian (BK maksimum). Di samping itu, apabila kekokohan bangunan ditinjau dari tiap lingkup pekerjaan kemudian dibandingkan dengan acuan penilaian maka lingkup pekerjaan yang memiliki penurunan kekokohan tertinggi yaitu pekerjaan atap sebesar 27%. Kerusakan sebagian besar ditemukan pada bagian komponen rangka atap seperti: reng, usuk atau kaso, bubungan, serta komponen penutup atap. Kerusakan pada reng dan kaso berupa: perubahan warna kayu akibat rembesan air hujan, perubahan warna akibat serangan jamur pelapuk, dan tunel serangga seperti disajikan pada Gambar 6.

Tabel 6 Hasil pemeriksaan kondisi bangunan Masjid Agung Demak

No Lingkup

(26)

12

Bentuk kerusakan lain komponen rangka atap yaitu pada bubungan dijumpai adanya karat pada seng akibat mengalami oksidasi (Gambar 7a). Menurut Hatmadji (2011) pada bubungan Masjid Agung Demak terdapat banyak kotoran kelelawar dan menyebabkan seng bubungan rusak hingga berlubang. Bentuk kerusakan penutup atap atau sirap berupa kemiringan sirap tidak sesuai (Gambar 7b) serta retak, pecah, perubahan warna akibat mengelupas nya lapisan coating (Gambar 7c).

Selanjutnya penurunan kekokohan terbesar kedua yaitu pada lingkup pekerjaan rangka dinding sebesar 25%. Kerusakan pada rangka dinding berupa kerusakan pada elemen sloof dan kolom. Pada elemen sloof kerusakan terjadi akibat terjadinya kapilarisasi air tanah pada bagian ruang utama sudut barat daya setinggi 180 cm. Sedangkan pada elemen kolom ditemukan bekas serangan rayap pada bagian kolom penyangga kuda-kuda loteng tingkat II (Gambar 8a), bekas Gambar 6 Bentuk kerusakan komponen reng dan kaso: (a) perubahan warna

kayu; (b) seragan jamur pelapuk; (c) tunel serangga

(a) (b) (c)

Gambar 7 Bentuk kerusakan pada bubungan dan sirap: (a) karat pada seng bubungan; (b) kemiringan sirap tidak sesuai; (c) retak, pecah, perubahan warna sirap

(27)

13 serangan rayap kolom saka guru (Gambar 8b), dan retak pada kolom praktis bata merah (Gambar 8c).

Di samping itu lingkup pekerjaan yang memiliki penurunan kekokohan terendah yaitu pondasi sebesar 0%. Hal tersebut disebabkan karena dalam penelitian identifikasi pondasi bangunan tidak dapat dilakukan secara langsung akibat pondasi tertutup oleh plesteran lantai. Oleh sebab itu penilaian kekokohan pondasi dilakukan dengan menggunakan data laporan pemugaran Masjid Agung Demak. Bentuk pondasi bangunan Masjid Agung Demak dapat digolongkan dalam pondasi setempat karena dibuat di bawah kolom-kolom pendukung bangunan. Dalam hal ini bentuk pondasi setempat dianggap yang terbaik karena berfungsi untuk menahan kolom pada bangunan bertingkat. Ukuran pondasi yang berada dibagian bawah kolom saka guru berukuran 1.3 x 1.3 m sedalam 1 m. Konstruksi pondasi tersebut berupa beton bertulang tebal 20 cm dengan campuran 1 semen : 2 pasir : 3 koral.

Apabila ditinjau dari keseluruhan lingkup pekerjaan bangunan, nilai total kekokohan Masjid Agung Demak yaitu 82.15 %. Nilai kekokohan tersebut masuk dalam predikat kategori baik seperti pada Tabel 2. Hal tersebut disebabkan kondisi komponen bangunan masih berfungsi baik dan ada pemeliharaan rutin. Adapun bentuk pemeliharaan rutin berupa pembersihan komponen bangunan, pengawetan sirap baru, perawatan komponen kayu ulang, konservasi bahan besi dan baja. Apabila ditinjau dari kondisi lingkungan, hasil pengukuran suhu dan kelembaban pada penelitian ini masing-masing 28-29 °C dan 62.5-67.5%. Kondisi tersebut menunjukkan bahwa kondisi lingkungan masjid memiliki suhu tinggi dan kelembaban rendah. Priadi (2010) menyebutkan bahwa volume kayu bangunan rumah yang mengalami biodeteriorasi cenderung lebih tinggi di daerah bersuhu rendah dengan kelembaban tinggi, dibandingkan dengan daerah bersuhu tinggi dengan kelembaban rendah.

Gambar 8 Bentuk kerusakan pada rangka dinding: (a) bekas serangan rayap pada bagian kolom penyangga kuda-kuda; (b) bekas serangan rayap kolom saka guru; (c) retak pada kolom praktis bata merah

(28)

14

Faktor Perusak Bangunan

Kerusakan bagunan sebagian besar terjadi pada bagian atas bangunan yaitu sirap, kaso, reng, kuda-kuda, dan gording. Adapun faktor perusak yang ditemukan yaitu jamur pelapuk, serangga, dan lumut kerak. Serangan jamur pelapuk pada bangunan merupakan yang paling mendominasi. Hal ini diduga terjadi karena beberapa komponen bangunan merupakan kayu lama. Selain itu sirap berbahan dasar kayu mengalami retak, pecah, dan terbuka di beberapa bagian serta talang yang bocor menjadi faktor utama merembes nya air hujan pada komponen bagunan. Kondisi kayu yang basah sangat mendukung pertumbuhan jamur pada komponen bangunan. Menurut Ridout (2004) dalam Subekti (2012) jamur pelapuk putih banyak menyerang bagian yang lebih basah karena membutuhkan air lebih banyak untuk mendegradasi kayu.

Serangga yang ditemukan di sekitar bangunan termasuk dalam kelompok Hymenoptera. Serangga pada Gambar 9a termasuk dalam famili Chrysididae karena memiliki ciri-ciri berwarna biru metalik atau hijau, panjang nya tidak lebih dari 12 mm, tubuhnya kasar dan berlekuk-lekuk tidak rata seperti disebutkan Borror et al. (1982). Menurut Houston (2013) serangga famili Chrysidisae bersifat parasit terhadap serangga lainnya yaitu berperilaku mencuri sarang serangga lain untuk menyimpan telur. Serangga Gambar 9b termasuk famili Vespidae. Menurut Buck et al. (2008), Erniwati dan Kahono (2009), Erniwati (2010), disebutkan bahwa famili Vespidae merupakan lebah sosial dan beberapa jenis merupakan hama bagi serangga lain, predator, dan kelompok serangga penyerbuk. Secara umum serangga kelompok Hymenoptera tidak menggunakan kayu sebagai sumber makanan, melainkan hanya sebagai sarang.

Serangga lain yang diduga menjadi penyebab kerusakan bangunan yaitu rayap. Dibuktikan dengan ditemukan bekas serangan berupa liang kembara pada bagian kolom penyangga kuda-kuda. Faktor perusak lain yang ditemukan yaitu lumut kerak atau lichen yang dijumpai bagian ujung sirap (Gambar 10).

(a) (b)

(29)

15 Munculnya lichen pada komponen bangunan dapat mengganggu tampilan estetika bangunan dan memicu pelapukan kayu secara perlahan.

Identifikasi Jenis Kayu

Pengamatan jenis kayu dilakukan dengan menggunakan sampel kayu lama yang saat ini berada pada museum masjid. Sampel kayu tersebut dulunya merupakan kolom (saka guru Sunan Bonang) dan terletak di sisi barat laut ruang utama. Hasil identifikasi penampang melintang menunjukkan bahwa ciri makroskopis yang ada pada sampel kayu, mirip dengan ciri makroskopis kayu Jati (Tectona grandis) seperti ditunjukkan pada Gambar 11.

Ciri umum kayu jati yaitu pori soliter dan tersusun tata lingkar, diameter pori besar hingga kecil, frekuensi pori jarang (2-5 buah per mm2), terdapat endapan berwarna putih, jari-jari homogen dan jarang (4-5 per mm). Selain itu ciri-ciri diatas didukung dengan pernyaataan Suranto (2012) yang menyatakan bahwa kayu jati berwarna coklat merah keemasan karena banyak memiliki kandungan lignin dan ekstraktif yang tinggi.

(a) (b) (c)

Gambar 11 Penampang melintang kayu Jati secara makroskopis: (a) contoh uji perbesaran 10X; (b) contoh uji perbesaran 30X; (c) pustaka

Mandang et al. 2008

(30)

16

Sifat Fisis Kayu Jati

Kadar air (KA)

Pengukuran kadar air (KA) dilakukan pada beberapa bagian komponen bangunan loteng tingkat I, II, dan III. Nilai KA rerata komponen bangunan terus meningkat dari loteng tingkat I, II, dan III masing-masing secara berurutan 11.79 %, 14.87 %, dan 17.23 % (Gambar 12). Meningkat nya nilai KA Rerata dari loteng tingkat I ke loteng tingkat III disebabkan karena perbedaan kondisi kayu dan faktor lingkungan.

Nilai rerata kadar air pada bagian loteng tingkat I merupakan yang terendah yaitu 11.79%. Hal ini disebabkan karena ruangan banyak mendapatkan sinar matahari dari kaca penerangan. Pada loteng tingkat II nilai kadar air lebih tinggi yaitu 14.87% akibat kondisi atap yang curam dan loteng terletak pada ketinggian 7.1-13.62 meter. Kondisi tersebut menyebabkan cahaya matahari yang masuk kedalam ruangan lebih sedikit.

Sementara itu nilai kadar air loteng tingkat III merupakan yang tertinggi yaitu 17.23% akibat loteng berada di bagian teratas bangunan yaitu pada ketinggian 13.62-21.65 meter. Selain itu sebagaian besar komponen kayu loteng tingkat III merupakan kayu lama. Komponen kayu lama bangunan lebih rentan terhadap perubahan kondisi lingkungan. Menurut Beikircher et al. (2013) nilai KA yang terdapat pada bangunan berkisar antara 12% hingga 35%, tergantung pada lokasi komponen bangunan yang diperiksa (lantai dasar, lantai atas, dan loteng).

Kerapatan dan Berat Jenis (BJ)

Pengujian kerapatan dan berat jenis kayu dalam penelitian ini menggunakan 2 contoh uji. Contoh uji yang digunakan merupakan kayu lama kolom (saka guru Sunan Bonang). Hasil pengujian menunjukkan nilai kerapatan kayu sampel A dan B masing-masing 563 kg/m3 dan 562 kg/m3. Sedangkan nilai BJ sampel A dan B masing-masing 503 dan 502.

Nilai kerapatan dan BJ kedua sampel hasil pengujian tidak berbeda jauh. Namun nilai kerapatan tersebut cukup rendah untuk nilai kerapatan dan BJ kayu

Gambar 12 Kadar air rerata komponen bangunan atap Masjid Agung Demak

(31)

17 jati lama. Kayu jati lama yang digunakan sebagai komponen konstruksi biasa nya memiliki nilai BJ dan kerapatan yang tinggi. Menurut Suranto (2012) kayu jati lama yang dipanen pada hutan jati adalah yang berstatus miskin riab atau minimal berumur 120 tahun. Kayu yang memiliki daur pertumbuhan yang lama akan memiliki nilai kerapatan, berat jenis, dan kekuatan yang tinggi akibat ukuran dinding sel yang tebal. Menurut Martawijaya et al. (1981) nilai kerapatan kayu jati berkisar antara 670 kg/m3.

Menurun nya nilai kerapatan dan BJ kayu jati diduga karena kayu telah berusia cukup lama yaitu sekitar 500 tahun. Dalam hal ini faktor lama pembebanan dan pengaruh lingkungan dapat menjadi penyebab kayu mengalami degradasi. Menurut Suranto (2010) variabilitas lingkungan pemakaian mengakibatkan reaksi dan perubahan pada kayu yang bersifat degradatif dan hal tersebut mempengaruhi komponen selulosa, hemiselulosa, lignin, dan zat ekstraktif penyusun kayu. Bahtiar (2012) menyatakan beberapa faktor lingkungan yang dapat menjadi faktor penyebab degradasi kayu yaitu sinar ultra violet (UV) dari sinar matahari, perubahan suhu dan KA, serta abrasi oleh debu dan partikel yang diterbangkan angin.

Analisis Struktur Bangunan Akibat Beban Gempa

Analisis struktur bangunan dilakukan dengan tujuan untuk mensimulasi kondisi bangunan apabila mengalami beban gempa. Berdasarkan hasil analisis menggunakan metode time history dari record gempa El-Centro 1940 diperoleh nilai gaya dalam dan respon struktur. Nilai gaya dalam berupa gaya axial (tekan dan tarik), geser, serta momen. Respon struktur berupa nilai perpindahan, kecepatan, dan percepatan.

Analisis Gaya Dalam

Analisis gaya dalam meliputi dua hal yaitu membandingkan nilai gaya maksimum serta menghitung nilai tegangan aktual elemen portal pada posisi berbeda. Elemen portal yang dianalisis merupakan kolom 4 K1 dan 8 K1 pada portal A-A dan B-B. Pemilihan kolom tersebut dikarenakan posisinya yang berbeda yaitu kolom 4 K1 terletak pada struktur bagian atas dan 8 K1 terletak pada struktur bagian bawah.

Berdasarkarkan hasil analisis kolom yang mengalami gaya aksial tertinggi yaitu kolom 4 K1 portal B-B sebesar -3454 kg dan bernilai negatif (Tabel 7). Nilai negatif menunjukkan bahwa kolom 4 K1 portal B-B mengalami gaya aksial tekan. Sementara itu berdasarkan Tabel 8 nilai tegangan kolom 4 K1 portal B-B mengalami nilai tegangan aksial tekan aktual terbesar yaitu 1.11 kg/cm2.

(32)

18

Nilai gaya geser tertinggi berdasarkan Tabel 7 yaitu kolom 8 K1 portal A-A sebesar 2565 kgf. Berdasarkan Tabel 8 nilai tegangan geser kolom 8 K1 portal A-A mengalami nilai tegangan geser terbesar yaitu 0.77 kg/cm2. Nilai gaya geser dan tegangan geser yang timbul pada elemen kolom, memiliki hubungan yang berbanding lurus. Apabila nilai gaya geser yang muncul akibat beban gempa cukup besar maka tegangan geser yang terjadi akan besar. Menurut Mardikanto et al. (2011) tegangan geser merupakan perbandingan antara beban sejajar penampang dengan luas penampang geser. Akibat luas penampang geser pada kolom sama, maka yang berpengaruh terhadap besar kecilnya nilai tegangan geser yaitu gaya geser.

Tingginya nilai gaya dan tegangan geser yang terjadi pada kolom 8 K1 portal A-A disebabkan oleh beberapa faktor seperti jenis tumpuan, posisi kolom, dan bentuk struktur. Tumpuan portal kolom 8 K1 dimodelkan sebagai tumpuan jepit sendi. Menurut Prihatmaji (2007) kombinasi antara dua tumpuan yaitu sendi untuk mengurangi getaran gempa dan jepit untuk menstabilkan bangunan ketika menerima gaya gempa. Kombinasi tumpuan jepit sendi menyebabkan kolom 8 K1 menjadi kurang kaku dibandingkan dengan kolom 4 K1 yang menggunakan tumpuan jepit jepit. Oleh karena itu, nilai tegangan geser kolom 8 K1 lebih tinggi dibandingkan kolom 4 K1. Posisi kolom yang terletak dibagian bawah portal menyebabkan kolom mendapatkan gaya geser lebih besar. Di samping itu karena portal A-A memiliki jarak antar kolom yang lebih rapat mengakibatkan kekakuan yang timbul pada bangunan tinggi dan nilai tegangan geser yang timbul juga tinggi .

Kolom 8 K1 portal A-A memperoleh nilai momen dan tegangan lentur tertinggi, masing-masing sebesar 18210 kgf (Tabel 7) dan 84.47 kg/cm2 (Tabel 8). Nilai momen dan tegangan lentur memiliki hubungan dengan nilai perpindahan dan tegangan geser. Menurut Mardikanto et al. (2011) tegangan geser kolom Tabel 8 Nilai tegangan kolom 4 K1 dan 8K1 pada portal A-A dan B-B akibat

gempa

Nilai tegangan Kolom 4 K1 Kolom 8 K1

Portal A-A Portal B-B Portal A-A Portal B-B

Tekan/tarik (kg/cm2) 1.05 1.11 0.25 0.84

Geser (kg/cm2) 0.15 0.13 0.77 0.75

Lentur (kg/cm2) 31.28 34.27 84.47 81.79

Tabel 7 Gaya dalam kolom 4 K1 dan 8K1 pada portal A-A dan B-B akibat gempa

Gaya Dalam Kolom 4 K1 Kolom 8 K1

Portal A-A Portal B-B Portal A-A Portal B-B

Gaya Aksial (kgf) -3292 -3454 668 2228

Gaya geser (kgf) -491 -446 2565 2484

(33)

19 menyebabkan deformasi berupa perpindahan horisontal. Perpindahan memiliki hubungan yang berbanding lurus dengan nilai momen. Semakin jauh perpindahan elemen akibat pembebanan menyebabkan nilai momen menjadi semakin tinggi. Selain itu, momen juga berpengaruh terhadap nilai tegangan lentur pada kolom. Hal ini disebabkan tegangan lentur merupakan perbandingan antara momen lentur dengan tahanan momen penampang kolom. Semakin besar momen yang terjadi pada kolom akan meningkatkan tegangan lentur nya.

Nilai tegangan lentur dipengaruhi oleh dimensi penampang dan tinggi kolom. Menurut Prihatmaji (2007) semakin tinggi dan kecil penampang kolom maka relatif semakin letur dan mampu menahan getaran agar tidak merambat pada bagian atas namun beresiko patah. Ukuran penampang yang proporsional sangat diperlukan untuk mengurangi nilai tegangan lentur. Berdasarkan hasil pengukuran, nilai tegangan lentur kolom 8 K1 portal A-A tidak melebihi nilai tegangan ijin sehingga kolom aman menahan momen yang timbul.

Respon Struktur Bangunan

Respon struktur berupa nilai perpindahan, kecepatan, dan percepatan portal A-A dan B-B diambil pada titik joint 6. Pemilihan titik joint tersebut karena dianggap memiliki respon struktur terbesar akibat posisinya yang berada pada bagian puncak bangunan. Nilai respon struktur hasil analisis menunjukkan tanda negatif (-) dan positif (+). Tanda negatif diasumsikan bahwa struktur berpindah pada arah kanan dan positif struktur perpindah pada arah kiri.

Berdasarkan hasil analisis respon struktur perpindahan tertinggi terjadi pada portal B-B 0.271 m (Tabel 9). Nilai perpindahan struktur sangat dipengaruhi oleh faktor gerakan tanah. Hal ini disebabkan pada analisis dinamik riwayat waktu pemodelan struktur diberikan catatan rekaman gempa dan respon struktur dihutung langkah demi langkah pada interval waktu tertentu (Supranto dan Sudarno 2009). Oleh karena itu, besarnya gaya yang timbul pada tiap komponen struktur bangunan berbeda-beda tergantung dari gerakan tanah dasar. Perbedaan nilai gaya inilah yang berpengaruh terhadap respon perpindahan pada tiap sambungan.

Faktor lain yang berpengaruh terhadap nilai perpindahan adalah variasi kekakuan. Menurut Suryanita et al. (2006) semakin besar kekakuan maka perpindahan maksimum yang dihasilkan akan semakin kecil. Supit et al. (2013) menyatakan bahwa kekakuan memiliki formulasi yang berbanding lurus dengan modulus elastisitas (E) dan momen inersia (I) namun berbanding terbalik dengan panjang bentang (L). Pernyataan tersebut mendukung hasil analisis yang diperoleh, dimana portal A-A memiliki panjang bentang yang lebih kecil atau

Tabel 9 Respon struktur maksimum joint 6 portal A-A dan B-B

Respon struktur Joint 6

Portal A-A Portal B-B

Perpindahan (m) 0.268 0.271

Kecepatan (m/s) -1.22 -1.28

(34)

20

dengan kata lain memiliki kekuan struktur yang lebih tinggi dibandingkan portal B-B. Akibat rendah nya nilai kekakuan maka nilai perpindahan sambungan portal B-B akibat beban gempa menjadi lebih tinggi.

Respon struktur kecepatan terbesar berdasarkan Tabel 9 adalah portal B-B yaitu -1.28 m/s. Menurut Suryanita et al. (2006) kecepatan maksimum yang bernilai negatif menunjukkan bahwa kecepatan terjadi pada arah yang berlawanan dengan beban respon kecepatan struktur dipengaruhi oleh frekuensi alami struktur, massa, dan kekakuan. Menurut Suryanita dan Safrika (2007) nilai kecepatan cenderung bertambah besar seiring bertambahnya massa bangunan, sedangkan cenderung mengecil seiring bertambahnya kekakuan. Kondisi tersebut sesuai dengan hasil analisis respon kecepatan dimana respon kecepatan maksimum dialami oleh portal B-B bangunan yang memiliki massa bangunan lebih tinggi dan kekakuan rendah.

Respon percepatan tertinggi yang terjadi pada portal A-A yaitu 8.39 m/s2. Nilai percepatan yang timbul akibat gempa dipengaruhi oleh kekuatan gempa bumi (magnitude), kedalaman gempa, jarak pusat gempa ke bangunan, dan jenis

Gambar 13 Respon perpindahan struktur portal A-A dan B-B joint 6 -0,20

(35)

21 tanah sebagai media perambatan gelombang bangunan yang dituju (Ismail 2012). Percepatan struktur juga dipengaruhi oleh frekuensi alami, dan kekakuan struktur bangunan. Menurut Prihatmaji (2007) nilai percepatan yang semakin cepat dapat menggoyangkan keseluruhan model struktur.

Nilai percepatan portal A-A lebih tinggi dibandingkan portal B-B karena portal memiliki massa bangunan yang rendah dan kekakuan yang lebih tinggi. Apabila faktor tersebut dihitung melalui persamaan gerak sistem derajat kebebasan tunggal, menyebabkan nilai respon percepatan portal A-A menjadi lebih tinggi dibandingkan portal B-B.

Evaluasi Kondisi Bangunan

Evaluasi kondisi bangunan dilakukan berdasarkan hasil penilaian keterandalan bangunan dan analisis struktur. Hasil penilaian keterandalanan menunjukkan bahwa bangunan berada pada kondisi baik meskipun ditemukan beberapa kerusakan. Kerusakan yang timbul pada bangunan sebagian besar telah mengalami perbaikan dan kondisi komponennya masih berfungsi dengan baik.

Ditinjau dari faktor perusak yang ditemukan maka kerusakan pada komponen bangunan sebagian besar terjadi akibat serangan jamur pelapuk. Kegiatan perawatan kuratif perlu dilakukan untuk menangani kerusakan akibat serangan faktor perusak. Kegiatan perawatan kuratif menurut Winarno et al. (2006) meliputi pembersihan, perbaikan, penambalan, konsolidasi, pengawetan, coating, dan pelapisan bahan kedap air. Selain itu, perawatan preventif juga dapat dilakukan guna mencegah terjadinya kerusakan yang lebih parah. Bentuk kegiatan perawatan preventif meliputi perawatan rutin dan pemantauan kondisi lingkungan mikro. Kegiatan perawatan rutin dilakukan dengan membersihkan komponen bangunan dari debu dan kotoran setiap hari atau secara berkala. Mengingat pada bagian atap bangunan masjid sangat rentan terhap debu dan kotoran kalelawar. Pemantauan kondisi lingkungan mikro dapat dilakukan dengan mengukur kondisi cuaca dan iklim bangunan secara berkala seperti tiap tahun sekali.

(36)

22

Berdasarkan hasil analisis struktur bangunan akibat beban gempa berupa penilaian gaya dalam dan nilai tegangan memperlihatkan bahwa kolom memiliki nilai tegangan yang berada dibawah nilai tegangan ijin. Hal tersebut sesuai dengan pernyataan Yurisman (2003) dimana pada metode ASD nilai tegangan yang diperoleh disyaratkan lebih kecil dari tegangan ijin. Apabila tegangan aktual kurang dari tegangan ijin maka struktur aman untuk memikul beban gempa. Jika ditinjau dari nilai respon struktur terhadap gempa dengan membandingkan dua portal diperoleh nilai respon yang berbeda. Nilai respon yang bebebeda disebabkan karena portal memiliki ukuran yang berbeda, namun tidak signifikan.

SIMPULAN DAN SARAN

Kesimpulan

Hasil identifikasi menunjukkan bangunan Masjid Agung Demak memiliki nilai kekokohan 82.15 % yang berarti bangunan dalam kondisi baik. Kondisi tersebut menunjukkan bahwa komponen bangunan masih berfungsi dengan baik karena ada pemeliharaan rutin. Faktor perusak yang menjadi penyebab kerusakan terbesar bangunan yaitu jamur pelapuk. Hasil identifikasi jenis kayu kolom saka guru yang terletak di sisi barat laut merupakan kayu Jati. Jenis kayu ini diduga juga digunakan untuk komponen struktur bangunan lainnya. Berdasarkan hasil analisis struktur bangunan terhadap gempa menggunakan pemodelan portal menunjukkan struktur mampu dalam merespon gaya gempa. Hal tersebut dikarenakan nilai tegangan aktual (tekan, tarik, geser, dan lentur) yang terjadi pada struktur lebih rendah dari nilai tegangan ijin yang disaratkan untuk struktur yang menggunakan kayu jati.

Saran

Perlu dilakukan perawatan bangunan yang lebih intensif guna menjaga kondisi bangunan bersejarah agar tetap baik. Serta perlu dilakukan analisis struktur pada keseluruhan komponen bangunan masjid untuk memporeleh nilai analisis respon struktur gempa yang lebih akurat.

DAFTAR PUSTAKA

Anom et al. 1986. Laporan Pemugaran Masjid Agung Demak, Proyek Pemugaran dan Pemeliharaan Masjid Agung Demak Bantuan Presiden 1985-1986. Yogyakarta (ID): KR-Offset

(37)

23 Beikircher W, Zingerle P, Kraler A, Flach M. 2013. Condition assessment of historic wood structures experience from around the globe. Di dalam: Ross RJ, Wang X, editor. Proceedings: 18th International Nondestructive Testing and Evaluation of Wood Symposium; 24-27 September 2013; Madison, Wisconsin. Madision (US). FPLGTR226: 207-215

Bodig J dan Jayne BA. 1982. Mechanics Of Wood and Wood Composite. Malabar, Florida (US): Krieger Publishing Company

Borror DJ, Triplehorn CA, Johnson NF. 1996. Pengenalan Pelajaran Serangga Edisi Keenam. Partosoedjono S, penerjemah. Yogyakarta (ID): Gadjah Mada University Press. Terjemahan dari: An Introduction to the Study of Insect Sixth edition

Brito LD dan Junior CC. 2013. Nondestructive assessments of the timber roof structure t e “ ã Fr c sc C urc ” F r p s, r z . Di dalam: Ross RJ, Wang X, editor. Proceedings: 18th International Nondestructive Testing and Evaluation of Wood Symposium; 24-27 September 2013; Madison, Wisconsin. Madison (US). FPLGTR226: 245-252

Buck M, Marshall S, Cheung DKB. 2008. Identification atlas of the Vespidae (Hymenoptera Aculeata) of the Northestern Nearctic region. Canadian Journal of Arthropod Identification. 5

Erniwati. 2010. Kajian aspek ekologi lebah sosial (Hymenoptera: Apidae) dan biologi reproduksi tanaman pertanian yang mendukung konsep pengembangan pengelolaan [laporan akhir program insentif penelitian dan perkayasa LIPI]. Bogor (ID): Pusat Penelitian Biologi LIPI

Erniwati dan Kahono S. 2009. Peranan tumbuhan liar dalam konservasi serangga ordo Hymenoptera. Jurnal Teknik Lingkungan. 10(2): 195-203

Hatmadji T, Astuti D, Wardhani S, Widyanti WW, Sudarno, Marsono, Mujihara, Semi. 2011. Kajian Konservasi Masjid Agung Demak 2011. Prambanan (ID): Balai Pelestarian Peninggalan Purbakala Jawa Tengah

Houston T. 2011. Cuckoo wasps (family Chrysididae) [information sheet]. Australia (AU). Western Australia Museum

Ismail F A. 2012. Pengaruh penggunaan seismic base isolation system terhadap respon struktur hotel IBIS Padang. Jurnal Rekayasa Sipil. 8(1): 45-60

Karlinasari L. 2007. Analisis kekakuan kayu berdasarkan metode non destruktif metode gelombang ultrasonik dan kekuatan lentur kayu berdasarkan pengujian destruktif [disertasi]. Bogor (ID): Institut pertanian Bogor

Mardikanto TR, Karlinasari L, Bahtiar ET. 2011. Sifat Mekanis Kayu. Bogor (ID): IPB Press

Matani CD, Manalip H, Windah RS, Dapas SO. 2013. Analisis menara air akibat gempa menggunakan solusi numerik integral duhmel. Jurnal Sipil Statik. 1(4): 298-304

Mandang YI, Damayanti R, Komar TE, Nurjanah S. 2008. Pedoman Identifikasi Kayu ramin dan Kayu Mirip Ramin. Bogor (ID): Badan Penelitian dan Pengembangan Kehutanan, Departemen Kehutanan

Martawijaya et al. 1981. Atlas kayu Indonesia Jilid 1. Bogor (ID): Pusat penelitian dan Pengembangan Kehutanan

(38)

24

Prasetyo B. 2003. Peranan dinding dan bukaan dinding Masjid Agung Demak terhadap kondisi thermal ruang sholat utama [tesis]. Semarang (ID): Universitas Diponegoro

Priadi T, Nandika D, Sofyan K, Achmad, Witarto AB. 2010. Biodeteriorasi komponen kayu rumah di beberapa daerah yang berbeda suhu dan kelembaban. Jurnal Ilmu dan Teknologi Hasil Hutan. 3(1): 26-31

Prihatmaji YP. 2 7. Per u ru tr d s j w “j ” ter d p empa. Dimensi Tekhnik Arsitektur. 35(1): 1-12

Sadio S. 2011. Analisis sesaran batas proporsional dan maksimum sambungan geser ganda batang kayu dengan paku majemuk berpelat sisi baja akibat beban uni-aksial tekan. Jurnal Tekhnik Sipil. 18(2): 127-136

Soenanto. 2004. Sebuah Karya Besar Peninggalan 9 Wali Masjid Agung Demak: Demak (ID). ’ r M j d A u De

Subekti N. 2012. Biodeteriorasi kayu pinus (Pinus merkusii) oleh rayap tanah Macrothermes gilvus Hagen (Blattodea: Termitidae). Bioteknologi. 9 (2): 57-56 Sulaiman. 2005. Keterandalan konstruksi bangunan pendidikan (studi kasus pada

gedung sekolah dasar) [tesis]. Bogor (ID): Institut Pertanian Bogor

Supit NWA, Sumajow MDJ, Tambato WJ, Dapas SO. 2013. Struktur bangunan beton bertulang bertingkat banyak dengan variasi orientasi sumbu kolom. Jurnal Sipil Statik. 1(11): 696-704

Supranto K dan Sudarto. 2009. Evaluation of performance of asymetrically dual system structurs using pushover and time history analyses. Journal of Civil Engineering. 29(1): 36-45

Suranto Y. 2012. Aspek kualitas kayu dalam konservasi dan pemugaran cagar budaya berbahan kayu. Jurnal Konservasi Cagar Budaya Borobudur. 6 (1): 87-93

Suranto Y. 2010. Konservasi Cagar Budaya Berbahan Kayu dengan Bahan Tradisional. Jogjakarta (ID). Balai Konservasi Peninggalan Borobudur

Suryadi D. 2005. Kekokohan konstruksi bangunan sekolah dasar negeri (studi kasus: Kec. Cibarusah Kab. Bekasi [skripsi]. Bogor (ID): Fakultas Teknik Universitas Pakuan

Suryanita dan Safrika H. 2007. Respons struktur SDOF akibat beban sinusodial dengan metode integral duhamel. Jurnal Tekhnik Sipil. 7(3): 266-278

Suryanita, Mudjiatko, Safrika H. 2006. Respon struktur sistem derajat kebebasan tunggal akibat beban dinamis dengan pola pembebanan segitiga. Jurnal Sains dan Teknologi. 5(2): 32-37

Undang Undang No 11 Tahun 2010 Tentang Cagar Budaya

Winarno et al. 2006. Petunjuk Teknis Perawatan Benda Cagar Budaya Bahan Kayu. Jakarta (ID). Direktorat Peninggalan Purbakala, Direktorat Jendral Sejarah dan Purbakala, Departemen Kebudayaan dan Pariwisata

(39)
(40)

Lampiran 1 Kriteria pembobotan bangunan rumah sederhana

1. Kuda-Kuda  Bahan bangunan

memenuhi Standar kuat III, kadar air >30%, tidak dilapisi anti rayap, terdapat cacat,

sambungan sesuai dengan pedoman.

 Bahan baja tidak dilapisi anti korosi atau tidak

 Kayu tidak sesuai dengan ukuran normal, kelas kuat V, kadar air >30%, tidak dilapisi anti rayap, terdapat cacat, sambungan tidak sesuai dengan pedoman.

 Kaki kuda-kuda (Split) 6/12

 Tiang kuda-kuda (Hanger) 6/12

 Balok Penyokong (Skor) 6/12

 Balok Bin 6/12

 Balok Ikatan Angin 4/6

 Balok Gapit 6/12

(41)

25

1. Rangka Plafon Kayu kelas kuat II, belum dirusak oleh

Kayu kelas kuat III, jenis kayu heterogen, terdapat lubang bertulang coran tebal >15 cm

 Kolom beton bertulang coran tebal >15 cm

 Retak atau turun

 Kolom bata bukan adukan 1:3

 Kolom beton bertulang coran tebal <15 cm

 Bata merah atau batako

(42)

26

 Kayu lapis kelas kuat III

 Pintu mulai rusak dan

 Kayu lapis kelas kuat III

 Pintu rusak dan tidak bisa ditutupi

 Kusen mulai diserang oleh rayap

 Terdapat lobang penggerek

 Kusen/daun jendela dan pintu tidak berfungsi sama sekali dan harus diganti

2. Jendela

F. LANTAI Bahan keramik granit /marmer, adukan/perekat

G. PONDASI Pondasi menerus, diatas tanah keras, bahan dari batu kali 1:1:2, kedalaman 80-130 cm, lebar > 25 cm

Pondasi menerus, diatas tanah keras, bahan dari batu kali 1:1:2, lebarnya tidak mencukupi

Pondasi menerus, di atas tanah keras, bahan dari batu kali, mulai turun, retak, lebar tidak mencukupi

Pondasi menerus, di atas tanah keras, bahan dari batu kali, mulai turun, retak,adukan

Ada dan masih berfungsi Tidak ada perawatan Mulai rusak pada beberapa bagian

Tidak bocor dan dirawat Tidak ada perawatan Pipa pembuangan bocor Bocor dan masih bisa diperbaiki

Tidak berfungsi

(43)

27

Lingkup Pekerjaan

Hasil Pemeriksaan

Baik Sedang Rusak

Ringan Sedang Parah

3. Tempat Pembuangan  Tersedia luas dan bersih

 Tersedia masih berfungsi

 Tersedia dan memenuhi ukuran standar

Kotor tidak dibersihkan Tidak mengalir Kecil Tidak terdapat

Sungai

Peresapan Buatan

Septic tank

4. Jalan Aspal/coran semen Aspal mulai rusak Bukan aspal Becek Tidak ada

I. UTILITAS

1. Penerangan Tersedia listrik/ aman darn penerangan alami

Tersedia listrik, tidak ada perawatan dan penerangan alami

Tersedia listrik tapi tidak berfungsi dan penerangan alami kurang

Tidak tersedia listrik, caha matahari kurang

Gelap

2. Air Tersedia/mencukupi dan memenuhi standar

Air sumur kurang bersih Kotor Tidak ada Tidak ada

3. Pengatur Udara/ Suhu Ventilasi tersedia cukup unutk sirkulasi udara

Ventilasi tersedia cukup untuk sirkulasi udara tapi tidak ada perawatan

Pada bagian tertentu mulai rusak

4. Telekomunikasi Tersedia dan berfungsi baik Tersedia tapi tidak dirawat Tidak ada tapi tersedia link Tidak ada dan tidak tersedia link

Tidak ada, tidak tersedia link , dan tidak dapat dipasang

(44)
(45)

29 Lampiran 2 Hasil penilaian kondisi bangunan Masjid Agung Demak

(46)

30

Lampiran 3 Hasil pengukuran kadar air komponen bangunan Masjid Agung Demak

Bagian Komponen n Kadar Air

Loteng tingkat I Reng 4 10.77

Kaso 4 12.23

Gording 4 11.83

Tiang penyangga 4 12.35

Rerata 11.79

SD ±0.79

Loteng tingkat II Tiang soko guru 4 17.68

Dinding 4 15.04

Skoor penyokong kuda-kuda 12 12.78

Tiang penyokong kuda-kuda 12 12.82

Balok penghubug 4 19.42

Balok bin (kuda-kuda) 4 11.50

Rerata 14.87

SD ±2.57

Loteng tingkat III Tiang penyangga 4 16.22

Dinding 4 16.15

Kress 4 17.15

Kaso 3 24.24

Reng 3 12.54

Tiang Soko guru 4 17.07

Rerata 17.23

(47)

31 Lampiran 4 Contoh perhitungan nilai tegangan maksimum kolom akibat gaya

dalam

1. Cek tegangan tekan aktual kolom 4 K1 portal B-B

P = 3292 kgf (gaya aksial tekan berdasarkan analisis menggunakan software berbasis elemen hingga)

d = 65 cm l = 268 cm

Berat jenis (BJ) = 0.67 Beban tetap + gempa, = 5/4 Konstruksi terlindungi, = 1

Tegangan ijin kolom = � tk //r = 110 kg/cm2

Panjang tekuk kolom tumpuan jepit-jepit = ltk = 1/2 . L

= 1/2 .268 = 134 cm Karena dalam pemodelan penampang kolom berbentuk lingkaran maka, I min = d

2. Cek tegangan tarik aktual kolom 8 K1 portal B-B

P = 2228 kgf (gaya aksial tarik berdasarkan analisis menggunakan software berbasis elemen hingga)

d = 65 cm

Faktor perlemahan = 20 % (sambungan baut) Berat jenis (BJ) = 0.67

Beban tetap + gempa, = 5/4 Konstruksi terlindungi, = 1

(48)

32

3. Cek tegangan geser kolom 8 K1 portal A-A

V = 2565 kgf (gaya geser berdasarkan analisis menggunakan software berbasis elemen hingga)

d = 65 cm

Berat jenis (BJ) = 0.67 Beban tetap + gempa, = 5/4 Konstruksi terlindungi, = 1

Tegangan ijin geser kolom 8 K1 = � tk //r = 15 kg/cm2 Luas penampang geser = A = ¼ x � x d2

= ¼ x 3.14 x 652 = 3316.63 Tegangan aktual geser = //r =

A =

= 0.77 kg/cm

2

< 15 kg/cm2….O

4. Cek tegangan lentur aktual kolom 8 K1 portal A-A

M = 18210 kg.m (momen lentur berdasarkan analisis menggunakan software berbasis elemen hingga)

d = 0.65 m

Faktor perlemahan = 20 % (sambungan baut) Berat jenis (BJ) = 0.67

Beban tetap + gempa, = 5/4 Konstruksi terlindungi, = 1

Tegangan ijin geser kolom 8 K1 =�lt = 130 kg/cm2 Tahanan momen lingkaran = W =

=

= 0.027 m 3

Tegangan lentur aktual = � lt = c. M =

(49)

RIWAYAT HIDUP

Penulis dilahirkan di Bondowoso pada tanggal 14 Desember 1991 sebagai anak pertama dari tiga bersaudara dari pasangan Haryoto dan Suryantik. Penulis menyelesaikan pendidikan dasar pada tahun 2004 di SDN Kademangan 1. Kemudian melanjutkan pendidikan menengah pertama di SMPN 1 Bondowoso dan lulus pada tahun 2007. Sedangkan pada tahun 2010 penulis menamatkan pendidikan menengah atas di SMAN 2 Bondowoso. Pada tahun yang sama penulis diterima di IPB melalui jalur Undangan Seleksi Masuk IPB (USMI) dan memperoleh Beasiswa Bidik Misi.

Penulis memilih minat studi Laboratorium Rekayasa Desain Bangunan Kayu, program studi Hasil Hutan, Fakultas Kehutanan. Selama perkuliahan penulis aktif dalam kegiatan kepanitiaan dan merupakan anggota aktif Himpunan Mahasiswa Hasil Hutan (HIMASILTAN) tahun 2011-2013. Selama menempuh pendidikan di Fakultas Kehutanan penulis juga mengikuti Peraktik Pengenalan Ekosistem Hutan (2012), Praktik Pengelolaan Hutan (2013), dan Praktik Kerja Lapang di PT. Sumber Mas Indah Plywood Gresik, Jawa Timur (2013).

Gambar

Gambar 1  Lokasi Masjid Agung Demak
Tabel 1 Teknik pembobotan pada tiap komponen konstruksi
Tabel 2 Kategori nilai kondisi bangunan dan predikat nya
Gambar 2  Denah bangunan Masjid Agung Demak
+7

Referensi

Dokumen terkait

Penulis mengambil permasalahan Board Game Bangunan-Bangunan Bersejarah di Kota Bandung, karena tema yang diajukan oleh fakultas adalah “Kontribusi Desain Komunikasi Visual untuk

Sampel yang diambil yaitu wisatawan yang berkunjung di obyek wisata Masjid Agung Demak yang pada saat penelitian wisatawan tersebut bertujuan untuk melakukan ziarah.. Sampel

Wisatawan yang berkunjung di Masjid Agung Demak mempunyai tujuan yang sama yaitu untuk beribadah selain itu untuk mengingat kembali, meneguhkan iman atau menyucikan diri. Disamping

Tujuan dalam penelitian ini adalah mendapatkan gambaran/pemahaman struktur bentang lebar Masjid Agung Demak yang terbuat dari bahan kayu, memberikan pengetahuan

Masjid Agung Demak merupakan salah satu masjid yang banyak dikunjungi oleh wisatawan baik lokal maupun mancanegara dan pada umumnya tujuan utama dari para wisatawan tersebut adalah

Dengan modal dasar berupa pengetahuan sejarah tentang kerajaan Demak dalam menyebarkan agama Islam di tanah Jawa, maka pengembangan kawasan wisata Masjid Agung

Hasil temuan penelitian ini adalah, pertama, argumentasi kelompok yang menghendaki pengubahan saf arah kiblat Masjid Agung Demak disesuaikan dengan hasil pengukuran

Dari diskusi dalam tulisan ini dapat ditarik kesimpulan bahwa Masjid Agung Demak didirikan dengan konsep dan nilai – nilai lama yang mengakar pada masyarakat Jawa sebelum