• Tidak ada hasil yang ditemukan

Deformation–wear transition map of DLC coating under cyclic impactloading.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Deformation–wear transition map of DLC coating under cyclic impactloading."

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Wear

j o ur n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / w e a r

Deformation–wear

transition

map

of

DLC

coating

under

cyclic

impact

loading

Mohd

Fadzli

Bin

Abdollah

a,∗

, Yuto

Yamaguchi

a

, Tsuyoshi

Akao

b

, Naruhiko

Inayoshi

c

,

Nobuyuki

Miyamoto

c

,

Takayuki

Tokoroyama

a

,

Noritsugu

Umehara

a

aDepartmentofMechanicalScienceandEngineering,GraduateSchoolofEngineering,NagoyaUniversity,Furo-cho,Chikusa-ku,Nagoya464-8603,Japan bTechnologyPlanningDepartment,DENSOCorporation,1-1Showa-cho,Kariya-shi,Aichi448-8661,Japan

cMaterialsEngineeringR&DDepartment,DENSOCorporation,1-1Showa-cho,Kariya-shi,Aichi448-8661,Japan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18May2011 Receivedinrevisedform 24November2011 Accepted28November2011

Available online 6 December 2011

Keywords:

Impacttesting DLCcoating

Deformation–weartransitionmap Impactwearmechanisms

a

b

s

t

r

a

c

t

Anewdeformation–weartransitionmapofhydrogen-freeamorphouscarboncoating(commonlyknown asDiamond-LikeCarbon(DLC)coating)ontungstenhighspeedsteel(SKH2)substrateundercyclicimpact loadinghasbeenproposedtoclarifytheinteractionsoftheoperatingparameters,deformationandwear. Thestudywascarriedoutusinganimpacttester,underlubricatedconditionsoverawiderangeofimpact cycles,andappliednormalloads.SKH2discswerecoatedwiththinDLCfilmsusingaPhysicalVapor Deposition(PVD)method.Tungsten(W)wasusedasaninterlayermaterial.TheDLCcoateddiscwas impactedrepeatedlybyachromiummolybdenumsteel(SCM420)pin.Allimpacttestswereconducted atroomtemperature.Ithasbeensuggestedthatthedeformation–weartransitionmapisaneasyway toillustratetheimpactwearmechanismsofDLCcoating,asshownbyitstransitionzones.Initially,the DLCcoatingonlyfollowstheplasticdeformationofthesubstrateuntilseveralimpactcycles.Then,a suppressionofplasticdeformationofthesubstrateistakingplaceduetothedecreasingcontactpressure withimpactcyclestotheyieldpoint.WearoftheDLCcoatingbecomesdominantwhenthecriticallimit ofmaximumnormalimpactloadandimpactcyclesisexceeded.Fromexperimentalobservations,some degradationoftheDLCcoatingoccurswithinthewearzone.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

DLChasattractedgreatattentionformanyapplicationsdueto itstremendousproperties,suchashighhardness,thermalstability, lowfrictioncoefficient,andgoodchemicalinertness.Furthermore, theDLCfilmshowedanexcellentwearresistanceindryand water-or oil-lubricatedconditions [1].The useof DLCcoating,onthe impactsurfacesofcomponents,provideshighlevelsofprotection againstsurfacedamage.

Theconceptofa‘wearmap’wasfirstdiscussedbyTabor[2], andwasinspiredbythepioneeringworkofFrost[3]on ‘defor-mationmaps’.Thedevelopmentofdeformation–weartransition mapisausefulwaytostudyandpredictthetransitionof deforma-tiontowearofonematerialimpactingagainstanotheratdifferent loadsandcycles.Furthermore,thelocationsofthetransitionzones

∗Correspondingauthor.Tel.:+81527892788;fax:+81527892788.

E-mailaddresses:mohdfadzli@utem.edu.my(M.F.B.Abdollah),

yamaguchi@ume.mech.nagoya-u.ac.jp(Y.Yamaguchi),

TSUYOSHIAKAO@denso.co.jp(T.Akao),NARUHIKOINAYOSHI@denso.co.jp

(N.Inayoshi),NOBUYUKIMIYAMOTO@denso.co.jp(N.Miyamoto),

tokoroyama@mech.nagoya-u.ac.jp(T.Tokoroyama),ume@mech.nagoya-u.ac.jp

(N.Umehara).

withintheoperatingparametersareimportant,inordertodesign engineerlesscomponentfailuresoccurringprematurely.

Generally, the construction of transition maps follows two routes[4,5].Oneisempirical:datafromexperimentsareplottedon suitableaxesandidentifiedbywearrateorobservationand bound-ariesaredrawntoseparateclassesofbehavior.Theotherrouteis thatofphysicalmodeling:model-basedequations,describingthe wearratecausedbyeachmechanism,arecombinedtogiveamap showingthetotalrate,andthefieldofdominanceofeach.However, onlytheempiricalapproachisusedinthisstudy.

Theweartransitionmapsspecifictocertainmaterials,suchas ceramics[6],greycastiron[7],magnesiumalloy[8],brassalloy

[9], silicon nitrite [10], have been developed extensively for a decade.Allthetransitionmaps,whichappearintheabovestudies, wereconstructedusingeitheraphysicalmodelingoranempirical approachbasedontheslidingtestdata.However,inthiscentury, thereisstillnodevelopmentofdeformation–weartransitionmap oftheDLCcoatingundercyclicimpactloading.Therefore,theaimof thisstudyistoproposeanewdeformation–weartransitionmapof DLCcoatingbasedonvariationsofmaximumnormalimpactloads andimpactcycles.Afterashortdescriptionoftheimpacttestused inthisstudy,theconstructionofthedeformation–weartransition mapwillbepresentedusingexperimentaldataandobservations. Thetransitionmapof DLCcoating,undercyclicimpactloading,

0043-1648/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.

(2)

tendstofocusonthedescriptionofitsimpactwearmechanisms andthetransitionbetweenthem.

2. Experimentalmethod

2.1. Materials

TheSKH2discwasusedasasubstrate,whilstSCM420pinwas usedasanimpactor.Thediameterofthediscandthepinwere 10mmand2mm,respectively(asshowninFig.1).AllDLCfilms weredeposited onto the SKH2 substrate using a PVD method; whereWwasusedasaninterlayermaterial.Thefilmthicknesshc

isapproximately2.97␮m.TheaveragesurfaceroughnessRaofthe

as-depositedDLCcoatingisapproximately18.63nm,whichwas measuredbyAtomicForceMicroscopy(AFM).Materialproperties arelistedinTable1.

2.2. Impacttesting

Theimpacttestwasperformedusingtwoself-developedimpact testers,asshowninFig.2.Thehorizontalimpacttesterwasused formorethan102impactcycles,withafrequencyof10Hz;anda

drop-weightimpacttesterwasusedforthelowimpactcycles. TheimpacttestrigwasdesignedtoimpactaDLCcoateddisc withaSCM420pinfornumerousimpacts.Priortotheimpacttest, bothdiscandpinwerecleanedusingacetoneinanultrasonicbath. TheDLCcoateddiscwasrepeatedlyimpactedata90◦inclination

atroomtemperature.Severaldifferentmaximumnormalimpact loadswereappliedtotheDLCcoateddiscviaaspringsystemforthe horizontalimpacttester.Meanwhile,themaximumnormalimpact loadofthedrop-weightimpacttestercouldbeincreasedbyadding animpactormassm.Ithasbeenreportedthattheimpactormass doesnotsignificantlyaffectimpactperformances(deformationand wear)[11,12].Theappliedloadwasobservedbyaloadcell.

ThesurfacemorphologyoftheaffectedareaontheDLC coat-ing,aswellasonthecounterpartmaterial,wasobservedbyAFM, FieldEmissionScanningElectronMicroscopy(FE-SEM),andEnergy DispersiveX-raySpectroscopy(EDS).Inaddition,theFocusedIon

Fig.1. DimensionsoftheDLCcoateddiscandtheSCM420pin.

Table1

MaterialpropertiesoftheDLC,SKH2substrateandSCM420pin.

Properties DLC SKH2 SCM420

Youngmodulus,E(GPa) 251 378 295

Poisson’sratio,v 0.3 0.3 0.3

Hardness,H(GPa)a 17.14 9.80 7.43

Yieldstrength,Y(GPa)b 6.12 3.50 2.65

aFromthenanoindentationtest. b Y=H/2.8.

Fig.2. Schematicillustrationoftheimpacttester:(a)horizontalimpacttesterand (b)drop-weightimpacttester.

Beam(FIB)wasusedtomillthetestedsample,inordertoexamine thecrosssectionoftheDLCcoatingontheSKH2substrate.

2.3. Residualimpactcratervolume/depth

Therawdatacollectedincludedthemeasurementsofthe resid-ualimpactcratervolumeanditsdepth/radius.Thedepthhrand radiusaroftheresidualimpactcrateroftheDLCcoatingwere mea-sureddirectlyfromacross-sectionalAFMtopographyimage.The cross-sectionalimage,paralleltothey-axis,wastakenatthecenter ofimpactcrater,asshowninFig.3.Inordertocalculatetheresidual impactcratervolume,rawdatafromtheAFMwasexportedto Orig-inPro8.1.Anillustrationofhowtheresidualimpactcratervolume wascalculatedisshowninFig.3.Therawdataofx-axiswere dis-cretetoncross-sectionswiththethicknessofx.ThesurfaceareaA

ofeachcross-sectionwasdeterminedusingtheintegrationmethod functioninOriginPro8.1.TheresidualimpactcratervolumeVris determinedusingthefollowingequation:

Vr= n−1

j=1

(A×x)j (1)

2.4. Transitionofcontactpressure

(3)

Fig.3.(a)Discretionsofx-axisofanimpactcratertoncrosssections,withthethicknessofxand(b)determinationofeachsurfacearea(AAcrosssection)usingthe integrationfunctioninOriginPro8.1.

(a)Contactconditionisassumedtobepointcontact.

(b) Themajor(y)axisandminor(x)axisoftheresidualcontact radius,obtainedexperimentallyfromeachimpactcycle,isused.

Meancontactpressurepmeanforiimpactcyclesiscalculatedby usingthefollowingequation[14]:

pmean,i= Fz

arxary

i

(2)

whereFzisthemaximumnormalimpactload,aryandarxarethe residualradiiofthemajorandminoraxes,respectively.

2.5. Wearmeasurements

InordertodeterminetheweardepthoftheDLCcoating,its crosssectionontheSKH2substratewaspreparedusingaFIBand observedbyFE-SEM,asshowninFig.4.Thetestedsamplewas milledalongthecentreoftheimpactcraterofthemajoraxis.From

Fig.5,itisassumedthattheweardepthhw(measuredfromthe FIB-milledcross-sectionalimage)isconstantthroughoutthecontact surface,andthus

hp=hr−hw (3)

wherehp istheplasticdeformationdepthandhristheresidual depthofimpactcrater.

Fig.4.FE-SEMcross-sectionalviewoftheFIB-milledDLCcoatingontheSKH2substrate(tiltedat60◦),whereh60c1isthenon-impactedfilmthickness,andh60c2isthe

(4)

Fig.5.Schematicillustrationoftheweardepthhw.

2.6. Constructionofthedeformation–weartransitionmap

Inthisstudy,theconstructionofthedeformation–wear transi-tionmapisacombinationofproceduresbyAshbyandLim[5]and ShuandShen[6].

Nouniversaldeformation–weartransitionmapexists,because thecontrollingvariables differfrom mechanism tomechanism. Therefore,suitableaxesofthemaphavetobedecided.Inthisstudy, theappropriateaxesaredeterminedtobethemaximumnormal impactloadFzandtheimpactcyclesN.Thesevariableswere cho-senfortworeasons:firstly,theydirectlydeterminetheresidual impactcratervolumeandsecondly,theyareunderthecontrolof theoperator,andeasilymeasured.

Alldata points of the residual impact crater volume Vr are plottedasfunctionsofFz andN,asshowninFig.6.Some

inter-polations and extrapolations are needed to obtain an evenly distributeddataset.Then,thelocationsofbothload-andimpact cycle-dependentdeformation–weartransitions,areidentifiedby experimentalobservationsanddatatrendanalysis.Arrowsindicate theonsetofthesevariable-dependentdeformation–wear transi-tions.Thebestfittingcurvesconnectingallofthetransitionpoints arethentracedandillustratedinthegraphofFzvs.N,asshown inFig.7.Thesecurvesrepresentthedeformation–weartransition boundaryoftheimpactedDLCcoating.

3. Resultsanddiscussion

3.1. Deformation–weartransitionmap

Themaximumnormalimpactloadandimpactcyclesareboth importantparametersandeithervariablecaninduceatransition from deformation to wear of DLC coating, as shown in Fig. 6. Therefore,adeformation–weartransitionmapwasgeneratedby simultaneouslyvarying the maximum normal impact load and impactcycles,whichrevealedthistransitionverywell.

Besides,theimpactwearmechanismsoftheDLCcoatingcan easilybeshownbyitstransitionzonesonthedeformation–wear transitionmap,asshowninFig.7.Threezoneswereidentified:

(a)Theplasticdeformationofthesubstratezone,wherethe resid-ualimpactcratervolumechangeswiththemaximumnormal impactloadandimpactcycles.Asdemonstratedinprevious experiment[12],thedeformationofanelastic-perfectplastic substrateshouldnotbealteredbythepresenceofathinfilm, whichitselfsimplyfollowsthedeformationofthesubstrateat theinterface.Thestraininthefilmisgovernedbythesurface strainofthesubstrate.Furthermore,Fig.8clearlyshowsthat almostnowearisobservedat70and160Nofthemaximum normalimpactload.Inaddition,theweardepthisalmostzero

Fig.6.ResidualimpactcratervolumeoftheimpactedDLCcoating,plottedasa functionof(a)maximumnormalimpactloadand(b)impactcycles.(Arrowsindicate theonsetofload/cycle-dependentdeformation–weartransitions.)

at200and240Nunderlowimpactcycles.Thisthereforereveals thatonlyplasticdeformationofthesubstratehasoccurred. (b)Suppressionofplasticdeformationofthesubstratezone,where

theresidualimpactcratervolumeremainsconstantwiththe impactcycles. Thisisduetothedecreasingcontactpressure withimpactcyclestotheyieldpoint,asshowninFig.9.Asthe numberofimpactcyclesisincreased,thecontactareaspreads. Additionally, thisexperiment wasunder theconstant maxi-mumnormalimpactloadforeachimpactcycle,andtherefore, thecontactpressureisdecreased.Inthiszone,thedeformation ofsubstrateismostlikelytoundergoanelasticdeformation ifthecontactpressure isalmostorbelowitsyieldpoint.By increasingthemaximumnormalimpactload,thesuppression ofplasticdeformationofthesubstratetakingplace,isfaster.At 240Nofmaximumnormalimpactload,theplasticdeformation ofthesubstrateissuppressedafter101impactcycles,because

(5)

Fig.7. Deformation–weartransitionmapofDLCcoatingundercyclicimpact load-ing.Theillustrationofthepredictedboundaryisbasedonthecontactpressure approachingtheyieldpoint.

Fig.8.Comparisonoftheresidualdepthoftheimpactcraterhrandtheplastic deformationdepthhpasafunctionoftheimpactcycles.Thedifferencebetween bothcurves(patternedinverticallines)givestheapproximateweardepthofthe DLCcoating.

Fig.9. Relationshipbetweenmeancontactpressureandimpactcycles.

reason.Thepredictedboundary,showninFig.7,isillustrated basedonthecontactpressureapproachingtheyieldpoint. (c)WearoftheDLCcoatingzone,wheretheresidualimpactcrater

volumeincreasesrapidly/radicallywiththemaximumnormal impact loadand impact cycles. A critical maximum normal impactloadandacriticalimpactcycleexiststhatwill precipi-tatetheweartransitionoftheDLCcoating.Moreover,atthose criticalimpactloadsand impactcycles,weargraduallyrises asmaterialiswornaway.Fig.8showsthatnowearoccursif themaximumnormal impactloadisvery small,buta wear transitionoccurs(duetotheimpactcycles)whenthe maxi-mumnormalimpactloadreachesabove160N.Generally,the presenceofatransferlayeronthecounterpartmaterialafter repeatedimpactsmodifiesthetribologicalcontactfromthatof SCM420/DLCtoDLC/DLC;anda significanttemperaturemay resultatthecontactpointduetothelowthermal conductiv-ityofDLC,thuspromotinggraphitization.Inaddition,interface failurescanbefound,wherethecoatinglosesadhesiontothe substrateduetobothshearandtensilestress[15].Cracksmay startfromdefectsattheinterfaceandsometimescause catas-trophic failure withdelamination of ratherbig flakesof the coating.Iftheloadishighenough,cohesivefailuresandfatigue can alsobefound[15].The cohesivefailuresnormally con-sistofacontinuousremovalofthecoating,startingfromthe middleofthesphericalcalotte.Thefatigueoccursdueto peri-odicalstressloadsandshowsmicro-crackswithinthecoating. Consequently,theincreaseinwear,asthemaximumnormal impactloadandimpactcyclesisincreased,maybeduetothe combinationofgraphitizationandcrackingfromcyclicimpact loading.Thisisinagreementwiththisstudy,wheresome degra-dationoftheDLCcoating,suchascrackpropagationofthefilm, phasetransformation,andatribochemicalreactionofthewear debris/transferlayer,wasobserved.Inaddition,theformation ofatransferlayerontheaffectedareaofthecounterpart mate-rialwasalsoobservedexperimentallyinthiszone.Detailsabout thiswearwillbebrieflydiscussedinSection3.2.

3.2. DegradationofDLCcoatingwithinthewearzone

3.2.1. Crackpropagation

Asthethinhardcoatingfullytransmitstheimpactgenerated stressfieldtotheductilesubstrate,thesubstrateundergoesalarge

(6)

Fig.11.FE-SEMmicrographoftheweardebristakenfromtheedgeofimpactcrater. Thetop-leftmicrographisanimpactcrater.

plasticdeformation(largeindentdepth)thatthecoatingcannot accommodateotherthanbydevelopinganetworkofcracks.Radial crackscan therefore beobserved in theDLCfilm, as shown in

Fig.10.Thismicrographhasbeentakenafter104 impactcycles

at240N,usingFE-SEM.Radialcrackingisobservedinthecoating belowtheimpaction,which initiatesfromthecoating/substrate interface and propagates upwards into the coating. The main reason for this is the low yield stress of the substrate, which allowedplastic strainunder theimpactor; which the hard and oftenbrittlecoatingcouldnotfollow.Toreducethestressinthe coating,itstartstobuildaradialcrackinsidethecoating.Theradial cracksobservedinthisstudyhavealsobeenidentifiedinastudy onindentationandscratching[16].Tensilestressconcentrationsat

Fig.12.Ramanspectrumoftheweardebrisandtransferlayerafter104and105

impactcyclesat240N.TheRamanspectrumoftheas-receivedSCM420pinandthe as-depositedDLCcoatingareforcomparison.

thecoating/substrateinterfaceduringloadinghavebeenidentified asadrivingforcethatcausesthistypeofcrack[17,18].

3.2.2. Phasetransformationandtribochemicalreactionofwear debrisandtransferlayer

TheweardebrisoftheimpactedDLCcoatingwereonlyobserved ontheedgeoftheimpactcraters,asshowninFig.11.Inthecaseof acontinuouspresenceofoillubricant,thegenerateddebris com-binedwithoil,andremovedprogressivelybyitsevacuationoutside oftheimpactcraters.However,someoftheweardebristransferred tothecounterpartmaterial,asatransferlayer.Thegraphitization ofweardebris,aswellasthetransferlayer,isconfirmedbythe

(7)

Ramanspectroscopystudy[19].FromFig.12,theGpeakofthewear debrisshiftedtoahigherfrequencycomparedtotheas-deposited DLCcoating.Therefore,thismeansthatthesp2 bondingfraction

increases,partialtetrahedralbondshavebeenbroken,andhave transformedintotrigonalbonds[20].ThedecreaseintheFWHMG

indicatedtheremovalofabondangledisorderandthe increas-ingdominanceofcrystallites[20].Fromtheanalysisabove,thesp2

coordinatedcarbonbecomesgraduallydominantandcausesphase transformationfromsp3tosp2,whichwouldinducegraphitization.

Asforthetransferlayer,thegraphitizationisexpectedtooccur sinceitmainlycomesfromtheweardebris.Thisisconfirmedasthe Gpeakisshiftedtohigherfrequencythanthatoftheas-deposited DLCcoating,asshown in Fig.12.However,the wideningofits FWHMG,after105impactcyclesat240N,suggeststhatthesize

ofthelargersp2clustersisreducedduetothemechanicalcrushof

thelargersp2clusters.

Inaddition,thetribochemicalreactiontotheenvironment dur-ingimpactoccurredatthematingmaterialwherethetransferlayer adhered;aswellasintheweardebris[19].Thiswasduetothe oxi-dationofferrum(Fe)tomagnetite(Fe3O4)andhematite(␣-Fe2O3)

phaseswithapredominantpeakatapproximately680cm−1and

1317cm−1.Thebroadpeakatabout1350cm−1,whichis

proba-blyduetothedisorderedgraphite(Dpeak),overlappedwiththe

␣-Fe2O3peak.Thus,theDpeakisnotclearlyvisibleinFig.12.

3.2.3. Formationofthetransferlayer

Undertribologicalconditions,thesofterofthetwomaterials willusuallybeworn.InthecaseofDLC,thissituationmaybe dif-ferentsincethewearofDLC,whichhasagraphiticnature,canbe depositedontothepartnersurface,formingtheso-calledtransfer layer.TheDLCthencontactsagainstitsowntransferlayerandeven thoughitisthehardersurface,onlytheDLCiswornataverylow wearrate,whereasthesofterpartnersurfacewillnotbeworn.The EDSmaps(asshowninFig.13)confirmthattheDLCcoating trans-ferredtothecounterpartmaterialofSCM420pinafter105impact

cyclesat240N.

4. Conclusions

Anewdeformation–wear transitionmap ofDLCcoating has beenproposedusingthetest resultstostudyofhowindividual impact parameters suchas maximum normal impactload and impactcyclesinfluencethistransition.

TheimpactwearmechanismsoftheDLCcoatingcaneasilybe shownbyitstransitionzonesonthedeformation–weartransition map.Threezoneshavebeenidentifiedasfollows:

(a)The plastic deformation of the substrate zone:the residual impact cratervolume increases with the maximum normal impactloadandimpactcycles.Onlythesubstrateisplastically deformed.Inaddition,wearhasnotbeenobservedinthiszone. (b)Suppression of plastic deformation of the substrate zone: theresidualimpactcratervolumeremainsconstantwiththe impactcyclesandplasticdeformationofthesubstratenolonger appears.Thisisduetothedecreasingcontactpressure with impactcyclestotheyieldpoint.

(c)WearoftheDLCcoatingzone:theresidualimpactcratervolume increasesrapidly/radicallywiththemaximumnormalimpact loadandimpactcycles,duetomaterialloss.TheDLCcoating appearstoapproachahighdegreeofwearwhenthecritical limit of maximumnormal impactloadand impactcyclesis exceeded.Thiswearisassociatedwithsomedegradationofthe DLCcoating,suchasthepropagationofradialcracksintheDLC film,phasetransformationoftheweardebris/transferlayer,and itstribochemicalreactionwiththeenvironment.Inaddition, formationofatransferlayeronthecounterpartmaterialhas alsobeenobservedexperimentallyinthiszone.

Acknowledgments

TheauthorMohdFadzliBinAbdollahgratefullyacknowledges thescholarshipfromUniversitiTeknikalMalaysiaMelaka(UTeM) forhisDoctoralstudy.

References

[1]K.Holmberg,H.Ronkainen,A.Matthews,Tribologyofthincoatings,Ceram.Int. 26(2000)787–795.

[2]D.Tabor,Statusanddirectionoftribologyasascienceinthe80s:understanding andprediction,in:Proc.Int.Conf.Tribol.80s,vol.1,1984,pp.1–17. [3]H.J.Frost, M.F. Ashby,DeformationMechanism Maps: ThePlasticityand

CreepofMetalsandCeramics,firsted.,PergamonPress,Oxford,NewYork, 1982.

[4] S.C.Lim,M.F.Ashby,Wear-mechanismmaps,ActaMetall.35(1987)1–24. [5]M.F. Ashby, S.C. Lim, Wear-mechanism maps, Scripta Metall.24 (1990)

805–810.

[6]S.M.Hsu,M.C.Shen,Ceramicwearmaps,Wear200(1996)154–175. [7] A.R.Riahi,A.T.Alpas,Wearmapforgreycastiron,Wear255(2003)401–409. [8]H.Chen,A.T.Alpas,SlidingwearmapforthemagnesiumalloyMg–9Al–0.9Zn

(AZ91),Wear246(2000)106–116.

[9]K.Elleuch,R.Elleuch,R.Mnif,V.Fridrici,P.Kapsa,Slidingweartransitionfor theCW614brassalloy,Tribol.Int.39(2006)290–296.

[10] J.R.Gomes,A.S.Miranda,J.M.Vieira,R.F.Silva,Slidingspeed-temperaturewear transitionmapsforSi3N4/ironalloycouples,Wear250(2001)293–298.

[11]P.Robinson,G.A.O.Davies,Impactormassandspecimengeometryeffectsin lowvelocityimpactoflaminatedcomposites,Int.J.Eng.12(1992)189–207. [12] M.F.B.Abdollah,Y.Yamaguchi,T.Akao,N.Inayoshi,T.Tokoroyama,N.

Ume-hara,Theeffectofmaximumnormalimpactload,absorbedenergy,andcontact impulseontheimpactcratervolume/depthofDLCcoating,Tribol.Online6 (2011)257–264.

[13] T.Yoshimi,S.Matsumoto,Y.Tozaki,T.Yoshida,H.Sonobe,T.Nishide,Work hardeningandchangeincontactconditionofrollingcontactsurfacewith plas-ticdeformation,Tribol.Online4(2009)1–5.

[14] K.L.Johnson,ContactMechanics,firsted.,CambridgeUniversityPress, Cam-bridge,1985.

[15]C.P.O. Treutler, Industrial use of plasma deposited coatings for compo-nentsofautomotivefuelinjectionsystems,Surf.Coat.Technol.200(2005) 1969–1975.

[16]Z.H.Xie,R.Singh,A.Bendavid,P.J.Martin,P.R.Munroe,M.Hoffman,Contact damageevolutioninadiamond-likecarbon(DLC)coatingonastainlesssteel substrate,ThinSolidFilms515(2007)3196–3201.

[17]A.C.Fischer-Cripps,B.R.Lawn,A.Pajares,L.Wei,Stressanalysisofelastic-plastic contactdamageinceramiccoatingsonmetalsubstrates,J.Am.Ceram.Soc.79 (1996)2619–2625.

[18]A.Abdul-Baqi,E.VanderGiessen,Numericalanalysisofindentation-induced crackingofbrittlecoatingsonductilesubstrates,Int.J.SolidStruct.39(2002) 1427–1442.

[19]M.F.B.Abdollah,Y.Yamaguchi,T.Akao,N.Inayoshi,N.Umehara,T.Tokoroyama, Phasetransformationstudiesonthea-Ccoatingunderrepetitiveimpacts,Surf. Coat.Technol.205(2010)625–631.

Gambar

Fig. 1. Dimensions of the DLC coated disc and the SCM420 pin.
Fig.integration 3. (a) Discretions of x-axis of an impact crater to n cross sections, with the thickness of �x and (b) determination of each surface area (A–A cross section) using the function in OriginPro 8.1.
Fig. 7.
Fig. the yield  approaching ofpredicted    is on contact   thepressure   based boundary ofDLC coating  under   cyclic impact load-ing.7.Deformation–weartransitionmap Theillustrationthepoint.
+2

Referensi

Dokumen terkait

Penelitian ini merupakan Penelitian pre-experimental yang bertujuan untuk mengetahui perbandingan peningkatan keterampilan proses sains (KPS) dan hasil belajar

Komunikasi terapeutik merupakan komunikasi interpersonal yang dilakukan antara perawat dan petugas kesehatan lainnya dengan pasien yang berfokus pada kesembuhan

h) Pemanfaatan teknologi informasi dan komunikasi untuk meningkatkan efisiensi dan efektivitas pembelajaran. Agar peserta didik tidak gagap terhadap perkembangan ilmu dan

Klausula bank (Banker’s Clause) merupakan salah satu klausula yang tercantum di dalam polis asuransi yang secara tegas dinyatakan bahwa Pihak Bank sebagai penerima ganti

Residu pestisida organofosfat profenofos mempunyai hubungan signifikan dengan respons imun (IL-2 dan IL-4), dimana peningkatan residu pestisida profenofos akan

Berdasarkan hasil penelitian dapat disimpulkan bahwa implementasi model pembelajaran make a match dengan macromedia flash pada siswa kelas VII B SMP Negeri 2

Perbaikan pembelajaran Matematika dengan penggunaan model pembelajaran TGT pada peserta didik kelas V B SD Negeri 2 Brabo Kecamatan Tanggungharjo Kabupaten Grobogan

Praktik mengajar yang dimaksud adalah praktik mengajar di dalam kelas dan mengajar siswa secara langsung. Praktik mengajar di dalam kelas terdiri dari praktik