• Tidak ada hasil yang ditemukan

Kekuatan sambungan baut double shear berpelat sisi baja pada kayu Sengon, Bintangur dan Kapur menurut berbagai sesaran

N/A
N/A
Protected

Academic year: 2017

Membagikan "Kekuatan sambungan baut double shear berpelat sisi baja pada kayu Sengon, Bintangur dan Kapur menurut berbagai sesaran"

Copied!
81
0
0

Teks penuh

(1)

KEKUATAN SAMBUNGAN BAUT

DOUBLE SHEAR

BERPELAT

SISI BAJA PADA KAYU SENGON, BINTANGUR DAN KAPUR

MENURUT BERBAGAI SESARAN

MUHAMMAD SHOLIHIN

DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR

(2)

KEKUATAN SAMBUNGAN BAUT

DOUBLE SHEAR

BERPELAT

SISI BAJA PADA KAYU SENGON, BINTANGUR DAN KAPUR

MENURUT BERBAGAI SESARAN

MUHAMMAD SHOLIHIN

E24060225

SKRIPSI

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan pada Fakultas Kehutanan

Institut Pertanian Bogor

DEPARTEMEN HASIL HUTAN

FAKULTAS KEHUTANAN

INSTITUT PERTANIAN BOGOR

(3)

Double-Shear Bolt Connection Strength with

Steel Plate in Sengon, Bintangur and Kapur Wood

According to Various Defraction

Muhammad Sholihin, Sucahyo Sadiyo, Imam Wahyudi

INTRODUCTION : Wood as raw material needs continue to increase for various purposes. Similarly, for component building materials or construction materials. As a construction materials, wood has been known to the public long before the public to use concrete or steel. In use as building construction materials, wood should be able to withstand various kinds of expenses in the period planned and have sufficient durability and has a cross-sectional size or length of span in accordance with the planning. Cross-cross-sectional size or long span timber in accordance with the plans for building construction is very difficult to obtain. This is because of the limited size of available timber in the market so it needs a connection. MATERIAL AND METHOD : The main material used is wood sorts Sengon (Paraserianthes falcataria (L). Nielsen), Bintangur (Calophyllum inophyllum L.) and Kapur (Dryobalanops sp.), bolts and steel plates. Wood used as a mechanical connection that unites steel plate with wood screws that penetrate the system using the plate-wood-plate which is the tightened with a nut for strong connection strength is based on ASTM D5652-95 with a direction perpendicular to the bolt load. Other properties tested were water content, density and maximum compressive strength parallel to grain. Tests physical properties following the ASTM D143-94, while the mechanical properties following the BS-373 1957.

RESULT : Double-shear strength bolt connection between the wood with steel plates in general are influenced by density of wood. The higher value density then the value of the power connection (which is expressed with the total load) and the value of load per bolt will be higher as well. Total expenses will increase with the number of bolts except from 6 to 8 pieces,while the load per bolt is not affected by the number of bolts. Total load and load per bolt tends to increase with increasing bolt diameter from 6.4 mm to 7.9 mm,but decreases when the diameter increased to 9.4 mm bolts.

Key words : double shear connection, timber, steel plate, bolt and density of wood.

(4)

RINGKASAN

Muhammad Sholihin. E24060225. Kekuatan Sambungan Baut Double Shear Berpelat Sisi Baja pada Kayu Sengon, Bintangur dan Kapur Menurut Berbagai

Sesaran. Dibimbing oleh Dr. Ir. Sucahyo Sadiyo, MS dan Prof. Dr. Ir. Imam Wahyudi, MS.

Kebutuhan kayu sebagai bahan baku untuk berbagai keperluan terus

meningkat. Demikian juga untuk komponen bahan bangunan atau bahan konstruksi.

Dalam penggunaannya sebagai bahan konstruksi bangunan, kayu harus mampu

menahan berbagai macam beban dalam jangka waktu yang direncanakan dan

mempunyai keawetan yang memadai serta mempunyai ukuran penampang atau

panjang bentang sesuai dengan perencanaannya tetapi ukuran penampang atau

panjang bentang kayu yang sesuai dengan perencanaasangat sulit diperoleh. Hal ini

karena terbatasnya ukuran kayu yang tersedia di pasaran. Kondisi ini mengharuskan

para arsitek dan insinyur sipil untuk membuat suatu sistem penyambungan agar

diperoleh ukuran yang sesuai dengan ukuran yang diinginkan.

Mengingat penelitian tentang pengaruh jumlah dan diameter baut pada

sambungan yang menggunakan pelat baja pada kayu sengon (Paraserianthes falcataria), bintangur (Calophyllum inophyllum) dan kapur (Dryobalanops sp.) masih terbatas, maka dilakukanlah penelitian ini untuk mengetahui pengaruh

faktor-faktor tersebut terhadap kekuatan sambungan baut double shear pada tiga jenis kayu dengan nilai BJ yang berbeda.

Hasil penelitian menunjukkan bahwa kekuatan sambungan baut double shear antara kayu dengan pelat baja secara umum dipengaruhi oleh BJ kayu. Semakin

tinggi nilai BJ kayu maka nilai kekuatan sambungan (yang dinyatakan dengan beban

total) dan nilai beban per baut akan semakin tinggi pula. Beban total akan meningkat

seiring dengan bertambahnya jumlah baut kecuali dari 6 ke 8 buah, sedangkan beban

per baut tidak dipengaruhi oleh jumlah baut. Beban total dan beban per baut

cenderung meningkat seiring meningkatnya diameter baut dari 6,4 mm ke 7,9 mm

namun berkurang ketika diameter baut meningkat menjadi 9,4 mm.

(5)

PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI

Dengan ini saya menyatakan bahwa skripsi saya yang berjudul “Kekuatan Sambungan Baut Double Shear Berpelat Sisi Baja pada Kayu Sengon, Bintangur dan Kapur Menurut Berbagai Sesaran” adalah hasil karya saya sendiri dan belum pernah diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber informasi

yang berasal atau kutipan dari karya yang diterbitkan maupun yang tidak diterbitkan

dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka

di bagian akhir skripsi.

Bogor, Maret 2011

(6)

LEMBAR PENGESAHAN

Judul Penelitian : Kekuatan Sambungan Baut Double Shear Berpelat Sisi Baja pada Kayu Sengon, Bintangur dan Kapur Menurut Berbagai Sesaran

Nama Mahasiswa : Muhammad Sholihin

Nomor Pokok : E24060225

Program Studi : Teknologi Hasil Hutan

Menyetujui, Komisi Pembimbing

Ketua, Anggota,

Dr. Ir. Sucahyo Sadiyo, MS Prof. Dr. Ir. Imam Wahyudi, MS NIP. 19580501 198403 1 002 NIP. 19630106 198703 1 004

Mengetahui,

Ketua Departemen Hasil Hutan Fakultas Kehutanan Institut Pertanian Bogor

Dr. Ir. I Wayan Darmawan, MScF. NIP. 19660212 199103 1 002

(7)

RIWAYAT HIDUP

Penulis bernama lengkap Muhammad Sholihin, dilahirkan di

Padang, Sumatera Barat pada tanggal 9 Mei 1988 sebagai anak

ketiga dari lima bersaudara dari keluarga Jaratin Munas, B.Sc

(ayah) dan Yuwelmar (ibu).

Pada tahun 2006, penulis lulus dari SMA Negeri 1 Padang dan pada tahun

yang sama penulis lulus seleksi masuk IPB melalui jalur Seleksi Penerimaan

Mahasiswa Baru IPB (SPMB). Setelah menempuh Tingkat Persiapan Bersama,

penulis diterima di Departemen Hasil Hutan, Fakultas Kehutanan, Institut Pertanian

Bogor.

Selama menjadi mahasiswa, penulis aktif pada berbagai organisasi

kemahasiswaan, yaitu staf Komisi Eksternal Dewan Perwakilan Mahasiswa Fakultas

Kehutanan (DPM-E) IPB tahun 2008-2009, Ketua Himpunan Mahasiswa Padang dan

Padang Pariaman (HIMAPD) tahun 2009-2010 dan berbagai kepanitian kegiatan.

Penulis berkesempatan magang di PT. Pelindo II Teluk Bayur, Padang pada

bagian Kendali Mutu tahun 2008. Pada bulan Juli-Agustus 2010 penulis

melaksanakan Praktek Kerja Lapang di CV. Rakabu Furniture, Surakarta, Jawa

Tengah. Penulis pernah Juara 1 Lomba Kreasi Pertanian IPB tahun 2010 dengan

judul “Pembudidayaan Lele dan Kangkung Darat “.

Penulis juga berkesempatan melakukan Praktek Pengenalan Ekosistem Hutan

(P2EH) tahun 2008 di Cilacap dan Baturraden. Pada tahun 2009, penulis melakukan

Praktek Pengelolaan Hutan (P2H) di Gunung Walat, Sukabumi.

Penulis melakukan penelitian dan menyusun skripsi dengan judul “Kekuatan

Sambungan Baut Double Shear Berpelat Sisi Baja padaKayu Sengon, Bintangur dan

(8)

UCAPAN TERIMA KASIH

Puji syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan

rahmat, karunia serta hidayah-Nya, sehingga penulis dapat menyelesaikan penulisan

skripsi ini dengan judul ”Kekuatan Sambungan Baut Double Shear Berpelat Sisi Baja pada Kayu Sengon, Bintangur, dan Kapur Menurut Berbagai Sesaran”.

Pada kesempatan ini penulis mengucapkan terima kasih kepada semua pihak

yang telah membantu dalam penulisan skripsi ini, terutama kepada:

1. Dr. Ir. Sucahyo Sadiyo, MS dan Prof. Dr. Ir. Imam Wayhudi, MS selaku dosen

pembimbing, atas segala bimbingan dan pengarahan yang diberikan kepada

penulis.

2. Ayahanda Jaratin Munas, B.Sc, Ibunda Yuwelmar dan Nenek tercinta atas semua

dukungan dan kasih sayang yang diberikan, baik moril maupun materil serta doa

yang selalu mengalir tanpa henti kepada penulis.

3. Kakak-kakakku tercinta Rikha Rahmah, Amd. dan Susanti, S.T., serta adik-

adikku tersayang Yulia Anggraini dan Muhammad Ikhsan atas semua dukungan

dan kasih sayang yang diberikan, baik moril maupun materil serta doa yang selalu

mengalir tanpa henti kepada penulis.

4. Seluruh Dosen, Staf dan Laboran Departemen Hasil Hutan yang telah banyak

memberikan dukungan dan bantuannya selama ini kepada penulis.

5. Ir. Emi Karminarsih, MS selaku dosen penguji perwakilan dari Departemen

Manajemen Hutan, Dr. Ir. Agus Priyono Kartono, MS selaku dosen penguji dari

Departemen Konservasi Sumberdaya Hutan dan Ekowisata dan Ir. Iwan Hilwan,

MS selaku dosen penguji dari Departemen Silvikultur yang telah memberikan

saran dan masukan untuk perbaikan skripsi ini.

6. Seluruh Laboran pada Laboratorium Sifat Fisik Mekanik Kayu di Pusat Penelitian

dan Pengembangan Hasil Hutan, Gunung Batu, Bogor atas bantuannya selama

penulis menjalani penelitian.

7. Teman-teman satu bimbingan yaitu Kak Agussalim dan Nurhasanah. Terimakasih

atas segala bantuan, kebersamaan dan nasehat-nasehatnya kepada penulis selama

(9)

8. Teman-teman Fakultas Kehutanan angkatan 43 khususnya teman-teman Hasil

Hutan angkatan 43 yang tidak dapat disebutkan satu per satu atas dukungan,

semangat dan kerjasamanya selama menempuh masa perkuliahan.

9. Teman- teman Kost Darmaga Regency, Kost Gravehouse, Kost Perwira,

HIMAPD dan IPMM. Terima kasih atas kebersamaan yang telah terjalin selama

ini, dengan segala pahit manisnya persahabatan yang kita alami.

10.Semua pihak yang telah membantu penulis selama penelitian dan penyusunan

skripsi, yang tidak dapat penulis sebutkan satu persatu.

Semoga Allah SWT memberikan limpahan rahmat-Nya dan membalas

kebaikan semua pihak yang telah membantu penulis, baik yang tersebutkan maupun

yang tidak tersebutkan.

Penulis menyadari bahwa dalam penulisan skripsi ini masih banyak

kekurangannya. Semoga skripsi ini dapat bermanfaat bagi semua pihak yang

(10)

KATA PENGANTAR

Puji syukur penulis ucapkan kepada Allah SWT atas segala rahmat dan

karunia-Nya, sehingga penulis dapat menyelesaikan penelitian serta menyusun

skripsi ini yang berjudul ”Kekuatan Sambungan Baut Double Shear Berpelat Sisi Baja pada Kayu Sengon, Bintangur dan Kapur Menurut Berbagai Sesaran”. Skripsi ini merupakan salah satu syarat untuk memperoleh gelar Sarjana Kehutanan di

Fakultas Kehutanan Institut Pertanian Bogor.

Kekuatan sambungan baut double shear merupakan kekuatan yang terjadi pada dua buah side member yang mengapit main member. Kekuatan sambungan baut yang dimaksud dalam penelitian ini yaitu beban total dan beban per baut. Sambungan

pada kayu merupakan titik kritis atau terlemah yang menghubungkan antar titik

hubung atau elemen antar kayu dari suatu bangunan struktural sehingga dalam

membuat sambungan harus diperhitungkan cara menyambungnya agar dapat

menerima dan menyalurkan gaya yang bekerja padanya. Gaya-gaya tersebut yang

dapat mempengaruhi beban total yang dapat diterima sambungan. Penelitian ini

dilakukan untuk mengevaluasi berapa besar beban total yang dapat diterima

sambungan kayu pada tiap diameter dan jumlah baut yang berbeda.

Penulis mengucapkan terima kasih kepada semua pihak yang telah membantu

dalam penyelesaian karya ini. Penulis menyadari bahwa dalam penulisan karya ini

masih jauh dari sempurna, namun penulis berharap semoga karya ini tidak

mengurangi hakekat kebenaran ilmiahnya dan bermanfaat bagi semua pihak.

Bogor, Februari 2011

(11)

DAFTAR ISI

(12)

3.3.2 Pembuatan Sambungan Balok Kayu dengan Pelat Baja dan Baut 19

3.4 Pengujian Contoh Uji ... 21

3.4.1 Kadar Air, Kerapatan dan Berat Jenis Kayu... 21

3.4.2 Kekuatan Tekan Maksimum Sejajar Serat ... 21

3.4.3 Kekuatan Sambungan Baut Double Shear... 22

3.5 Rancangan Percobaan ... 23

3.6 Pengolahan Data ... 23

BAB IV HASIL DAN PEMBAHASAN 4.1 Sifat Fisis Kayu ... 25

4.2 Sifat Mekanis Kayu ... 27

4.2.1 Kekuatan Tekan Maksimum Sejajar Serat ... 27

4.2.2 Kekuatan Sambungan Baut Double Shear ... 29

4.2.2.1 Beban Total Sambungan Baut Double Shear Tiga Jenis Kayu Pada Berbagai Sesaran ... 29

4.2.2.2 Beban Per Baut Sambungan Double Shear Tiga Jenis Kayu Pada Berbagai Sesaran ... 35

BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan ... 42

5.2 Saran ... 42

DAFTAR PUSTAKA ... 43

(13)

DAFTAR TABEL

No. Halaman

1. Hasil pengukuran sifat fisis tiga jenis kayu ... 25

2. Rata-rata beban total kekuatan sambungan baut double shear tiga jenis kayu menurut sesaran ……….. 30 3. Analisis ragam beban total tiap sesaran... 30

4. Uji Duncan jenis kayu terhadap beban total sambungan baut double shear 32 5. Uji Duncan diameter baut terhadap beban total sambungan baut

double shear ……….. 34 6. Uji Duncan jumlah baut terhadap beban total sambungan baut

double shear………. 35 7. Rata-rata beban per baut sambungan double shear tiga jenis kayu tiap

sesaran ... 36

8. Analisis ragam beban per baut sambungan double shear tiap sesaran …... 37 9. Uji Duncan terhadap jenis kayu pada beban per baut sambungan double

shear……….. 38 10. Uji Duncan diameter baut terhadap beban per baut sambungan double

(14)

DAFTAR GAMBAR

No. Halaman

1. Sambungan baut yang menerima beban searah beban ... 6

2. Sambungan baut yang menerima beban tegak lurus arah serat... 7

3. Sambungan baut yang menerima beban membentuk sudut α…………... 7

4. Model kerusakan Im pada sambungan kayu geser ganda ... 10

5. Model kerusakan IIIs pada sambungan kayu geser ganda ... 11

6. Model kerusakan IIIs pada sambungan kayu geser ganda ... 11

7. Model kerusakan IV pada sambungan kayu geser ganda ... 12

8. Universal Testing Machine (UTM) merk Shimadzu ... 16

9. Tumpukan sortimen kayu... 16

10. Pelat baja dan baut yang digunakan... 17

11. Pola pemotongan sortimen kayu …………... 17

12. Pola pemotongan contoh uji... 18

13. Contoh uji kekuatan sambungan baut double shear ... 18

14. Contoh uji sifat fisis kayu... 19

15. Contoh uji tekan sejajar serat maksimum... 19

16. (a) Pengaturan komposisi dan (b) Proses pembuatan contoh uji kekuatan sambungan baut double shear... 20

17. Contoh uji kekuatan sambungan baut double shear... 20

18. Penimbangan contoh uji saat pengujian sifat fisis kayu ... 21

19. Pemberian beban vertikal saat pengujian tekan maksimum sejajar serat …………... 22

20. Pengujian kekuatan sambungan baut double shear... 22

21. Diagram Alir Penelitian ... 24

22. Diagram rata-rata kadar air tiga jenis kayu... 26

23. Diagram rata-rata kerapatan tiga jenis kayu... 26

24. Diagram rata-rata berat jenis tiga jenis kayu... 27

25. Diagram rata-rata nilai kekuatan tekan maksimum sejajar serat... 28

26. Diagram pengaruh jenis kayu terhadap beban total kekuatan sambungan baut double shear pada berbagai sesaran... 31

(15)

28. Diagram pengaruh jumlah baut terhadap beban total kekuatan sambungan baut double shear... 35 29. Diagram pengaruh jenis kayu terhadap beban rata-rata per baut kekuatan sambungan double shear pada berbagai sesaran... 38 30. Diagram pengaruh diameter baut terhadap beban per baut kekuatan

(16)

DAFTAR LAMPIRAN

No. Halaman

1. Hasil pengukuran sifat fisis (kadar air, kerapatan dan berat jenis) kayu

Sengon (Paraserianthes falcataria L. Nielsen)... 46 2. Hasil pengukuran sifat fisik (kadar air, kerapatan dan berat jenis) kayu

Bintangur (Calophyllum inophyllum L.)... 49 3. Hasil pengukuran sifat fisik (kadar air, kerapatan dan berat jenis) kayu

Kapur (Dryobalanops sp.)…………... 52 4. Hasil Pengujian Kekuatan Tekan Maksimum Sejajar Serat Kayu Sengon

(Paraserianthes falcataria L. Nielsen)... 55 5. Hasil Pengujian Kekuatan Tekan Maksimum Sejajar Serat Kayu Bintangur

(Calophyllum inophyllum L.)... 56 6. Hasil Pengujian Kekuatan Tekan Maksimum Sejajar Serat Kayu Kapur

(Dryobalanops sp.)... 57 7. Hasil pengujian kekuatan sambungan baut double shear tiga jenis kayu

pada sesaran 0.80 mm... ……… 58 8. Hasil pengujian kekuatan sambungan baut double shear tiga jenis kayu

pada sesaran 1.50 mm ………. 61 9. Hasil pengujian kekuatan sambungan baut double shear tiga jenis kayu

(17)

BAB I

PENDAHULUAN

1.1Latar Belakang

Kebutuhan kayu sebagai bahan baku untuk berbagai keperluan terus

meningkat. Demikian juga untuk komponen bahan bangunan atau bahan

konstruksi. Beberapa jenis kayu baik yang berasal dari hutan alam, hutan rakyat

maupun tanaman kebun telah digunakan untuk keperluan komponen bangunan

baik yang struktural maupun non struktural seperti sengon (Paraserianthes falcataria L. Nielsen), bintangur (Calophyllum inophyllum L.) dan kapur (Dryobalanops sp.).

Sebagai bahan konstruksi, kayu sudah dikenal masyarakat jauh sebelum

masyarakat menggunakan beton atau baja sebagaimana saat ini. Penggunaan

kayu untuk kuda-kuda, memperlihatkan adanya penghematan biaya 40-50%

dibandingkan dengan penggunaan baja. Dalam penggunaannya sebagai bahan

konstruksi bangunan tersebut, kayu harus mampu menahan berbagai macam

beban yang bekerja dalam jangka waktu yang direncanakan dan mempunyai

ketahanan atau keawetan yang memadai serta mempunyai ukuran penampang

atau panjang bentang sesuai dengan perencanaannya.

Ukuran penampang atau panjang bentang kayu yang sesuai dengan

perencanaan untuk suatu konstruksi bangunan saat ini sangat sulit diperoleh. Hal

ini karena terbatasnya ukuran kayu yang tersedia di pasaran akibat efisiensi

dalam pengangkutan kayu. Kondisi ini mengharuskan pengguna kayu khususnya

para arsitek dan insinyur sipil untuk membuat suatu sistem penyambungan agar

diperoleh ukuran yang sesuai dengan ukuran yang diinginkan.

Sambungan merupakan titik kritis atau terlemah dari suatu sistem

penyambungan sehingga dalam membuat sambungan harus diperhitungkan cara

atau teknik penyambungan yang optimal agar gaya yang bekerja padanya dapat

disalurkan secara merata (Tular dan Idris 1981). Kekuatan suatu sistem

penyambungan dipengaruhi oleh komponen pembentuk sambungan. Pada

sambungan kayu, faktor yang menentukan kekuatan sambungan tersebut adalah

(18)

bentuk sambungan yang akan dibuat. Berat jenis (BJ), kerapatan dan kadar air

kayu serta jumlah dan diameter alat sambung merupakan faktor-faktor yang

harus diperhatikan karena sangat mempengaruhi kekuatan sambungan yang

dihasilkan.

Alat sambung yang digunakan untuk membuat suatu sambungan dapat

berupa pelat baja, paku dan baut dalam berbagai jumlah dan ukuran. Selain paku,

baut merupakan alat sambung tipe dowel yang relatif mudah diperoleh dan

mudah pula dalam pengerjaannya sehingga banyak digunakan dalam suatu

konstruksi bangunan di Indonesia.

Mengingat penelitian tentang pengaruh jumlah dan diameter baut pada

sambungan yang menggunakan pelat baja pada kayu sengon (P. falcataria), bintangur (C. innophyllum) dan kapur (Dryobalanops sp.) masih terbatas, maka dilakukanlah penelitian ini untuk mengetahui pengaruh faktor tersebut termasuk

BJ kayu terhadap kekuatan sambungan baut double shear.

1.2Tujuan Penelitian

Tujuan penelitian ini adalah untuk mempelajari pengaruh jumlah dan

diameter baut sebagai alat sambung serta BJ kayu terhadap kekuatan sambungan

double shear pada tiga jenis kayu perdagangan Indonesia.

1.3Hipotesis

Hipotesis yang diajukan pada penelitian ini adalah jumlah dan diameter

baut serta BJ kayu akan mempengaruhi kekuatan sambungan yang didisain

dimana semakin banyak jumlah baut, semakin besar diameter baut dan semakin

tinggi BJ kayu, semakin tinggi pula kekuatan sambungan yang dihasilkan.

1.4Manfaat Penelitian

Dengan diketahuinya pengaruh variabel yang diteliti terhadap kekuatan

sambungan yang dihasilkan, maka para insinyur sipil dapat menentukan jumlah

dan ukuran diamater baut yang harus digunakan untuk masing-masing jenis kayu

(19)

BAB II

TINJAUAN PUSTAKA

2.1 Sambungan Kayu

Sambungan merupakan lokasi sederhana yang menghubungkan dua

bagian atau lebih menjadi satu dengan bentuk tertentu pada ujung-ujung

perlekatannya (Hoyle, 1973), sedangkan menurut Tular dan Idris (1981),

sambungan kayu merupakan titik kritis atau terlemah yang menghubungkan

elemen antar kayu dari suatu bangunan struktural sehingga dalam membuat

sambungan harus diperhitungkan cara menyambungnya agar dapat menerima dan

menyalurkan gaya yang bekerja padanya. Dalam suatu konstruksi bangunan dari

kayu, teknik penyambungan antar kayu harus diperhatikan sehingga gaya tarik

dan gaya tekan yang timbul dalam batas-batas tertentu dapat diterima atau

disalurkan dengan baik (Tular dan Idris, 1981).

Komponen-komponen penyusun dari suatu sambungan kayu seperti jenis

dan ukuran kayu yang disambung dan alat sambungnya dapat mempengaruhi

kekuatan sambungan. Komponen penyusun sambungan yang paling lemah sangat

menentukan kekuatan sambungan tersebut. Faktor-faktor lain yang

mempengaruhi kekuatan sambungan kayu adalah kerapatan kayu, besarnya beban

yang diberikan dan keadaan alat sambungnya (Surjokusumo, 1984). Kekuatan

kayu dianggap 100% apabila tanpa sambungan, sedangkan apabila menggunakan

alat sambung baut maka akan terjadi perlemahan sehingga kekuatan kayu

berubah menjadi 30%. Kekuatan kayu tetap 100% apabila menggunakan perekat

sebagai alat sambung (Yap, 1984).

Penyambungan kayu bertujuan memperoleh panjang yang diinginkan

atau membentuk suatu konstruksi rangka batang sesuai dengan yang diinginkan.

Sebuah sambungan pada suatu konstruksi merupakan titik kritis atau terlemah

sehingga kayu yang akan disambung harus merupakan pasangan yang cocok dan

pas, penyambungan tidak boleh sampai merusak kayu yang disambung , sesudah

sambungan jadi hendaknya diberi bahan pengawet agar tidak cepat lapuk dan

sebaiknya sambungan kayu yang dibuat terlihat dari luar agar mudah untuk

(20)

Sambungan dapat dibagi menjadi tiga golongan besar yaitu sambungan

desak, sambungan tarik dan sambungan momen. Alat-alat sambung apabila

dilihat dari cara pembebanannya dibagi menjadi:

1. Alat sambung untuk dibebani geseran contohnya paku, baut, perekat dan pasak kayu.

2. Alat sambung untuk dibebani bengkokan atau lenturan, misalnya paku, baut dan pasak kayu.

3. Alat sambung untuk dibebani jungkitan, misalnya pasak kayu.

4. Alat sambung untuk dibebani desakan, misalnya kokot dan cincin belah.

Contoh alat-alat sambung lainnya yaitu skrup kayu, pasak-pasak kayu

keras, alat-alat sambung modern dan perekat (Wirjomartono, 1977). Sambungan

kayu dengan perekat hanya digunakan pada struktur yang relatif kecil seperti

tiang dengan ukuran sedang (Thelandersson danLarsen, 2003).

2.2 Baut sebagai Alat Sambung

Baut merupakan suatu benda yang berbentuk batang atau tabung dengan

alur heliks pada permukaan atau bidang miring yang membungkusnya. Baut dan

jenis dowel lainnya juga merupakan alat sambung dalam struktur kayu yang

digunakan untuk memikul beban yang besar (Thelandersson dan Larsen 2003,

Breyer et al. 2007). Komposisi baut terbuat dari berbagai jenis bahan tetapi kebanyakan dibuat dari baja karbon (carbon steel), logam campuran (alloy steel), dan baja antikarat (stainless steel). Bahan lain adalah baut dari titanium dan alumunium tetapi penggunaannya terbatas hanya dalam industri luar angkasa.

Baja karbon merupakan bahan pembuat baut paling murah dan paling

banyak digunakan. Baut jenis ini biasanya dilapisi dengan zinc agar tahan terhadap korosi, dan kekuatannya bisa mencapai 55 ksi. Baja logam campuran

adalah baja karbon berkekuatan tinggi yang dapat mencapai 300 ksi. Jika akan

digunakan untuk keperluan industri luar angkasa, baja jenis ini biasanya dilapisi

dengan cadmium untuk melindungi dari korosi. Baja antikarat tersedia dalam beberapa variasi logam campuran dimana memiliki kekuatan berkisar 70-220 ksi.

Baja antikarat biasanya tidak membutuhkan pelapisan dan memiliki toleransi

yang besar terhadap suhu dibandingkan jenis baja karbon atau baja logam

(21)

Baut memiliki ulir coarse dilengkapi dengan cincin yang memiliki panjang 3D dan tebal 0,3 D, dimana D adalah diameter baut. Lubang baut

biasanya dibuat lebih besar 1-2 mm dari diameter baut. Besarnya lubang yang

dibolehkan NDS 2005 adalah 1/32-1/16 inci dari diameter baut, sedangkan

Peraturan Konstruksi Kayu Indonesia (PKKI) NI-5 mensyaratkan lubang baut

tidak lebih dari 1,5 mm dari diameter baut.

Sambungan dengan baut telah banyak digunakan atau diaplikasikan

dalam konstruksi-konstruksi kayu yang menerima beban besar. Sambungan

dengan baut lebih cocok digunakan untuk sambungan kayu dengan baja dan atau

sambungan kayu dengan panel. Bentuk-bentuk dari alat sambung baut yang

sering digunakan yaitu bentuk countersunk head, round head, dan coach screw (Porteous, 2007). Akan tetapi, baut masih memiliki efisiensi kecil dan deformasi

besar (Yap, 1964).

Dalam PKKI NI-5 rumusan untuk menentukan kekuatan baut dalam

sambungan dibagi dalam tiga golongan kelas kuat kayu yaitu golongan I adalah

semua kayu dengan kelas kuat I ditambah dengan kayu rasamala, golongan II

adalah semua kayu dengan kelas kuat II dan kayu jati, dan golongan III adalah

semua kayu kelas kuat III. Golongan lainnya untuk kayu dengan kelas kuat IV

dan V tidak diadakan karena dalam praktek kayu-kayu tersebut hampir tidak

pernah digunakan untuk konstruksi.

Dalam PKKI Pasal 14 ditetapkan peraturan sambungan dengan baut yaitu

sebagai berikut:

1. Alat sambung baut harus terbuat dari bahan baja St. 37 atau dari besi yang mempunyai kekuatan paling sedikit seperti St. 37.

2. Lubang baut harus dibuat secukupnya dan kelonggaran tidak boleh melebihi 1,5 mm.

3. Diameter baut yang digunakan minimal 10 mm (3/8“), sedangkan untuk sambungan baik itu single shear maupun double shear dengan ketebalan kayu lebih dari 8 cm harus menggunakan alat sambung baut dengan diameter

minimal 12,7 mm (1/2“).

(22)

5. Sambungan dengan baut dibagi dalam 3 golongan menurut kekuatan kayu, yaitu golongan I, II, dan III. Yang termasuk dalam golongan I adalah semua kayu dengan kelas kuat I ditambah dengan kayu rasamala. Golongan II adalah semua kayu dengan kelas kuat II, dan golongan III adalah semua kayu dengan kelas kuat III.

6. Jika pada sambungan single shear salah satu pelatnya terbuat dari besi (baja), atau pada sambungan double shear pelat-pelat penyambungnya terbuat dari besi (baja), maka nilai dari kekuatan sambungan dapat dinaikkan sebesar 25%.

7. Apabila sambungan baut digunakan pada konstruksi dalam keadaan selalu terendam dalam air atau untuk bagian konstruksi yang tidak terlindung dan memungkinkan kadar air kayu akan selalu tinggi, maka dalam pehitungan kekuatan sambungan harus dikalikan dengan angka 2/3. Apabila sambungan baut digunakan untuk konstruksi yang tidak terlindung tetapi kayu tersebut dapat cepat mengering, maka dalam perhitungan kekuatan sambungan harus dikalikan dengan angka 5/6.

8. Untuk bagian konstruksi yang tegangannya diakibatkan oleh muatan tetap dan muatan angin atau untuk bagian konstruksi yang tegangannya diakibatkan oleh muatan tetap dan muatan tidak tetap, maka kekuatan sambungan dapat dinaikkan dengan 25%.

9. Penempatan baut harus memenuhi syarat sebagai berikut :

a. Arah gaya searah serat kayu (Gambar 1).

Jarak minimum:

Antara sumbu baut dan ujung kayu:

Kayu muka yg dibebani = 7 d dan > 10 cm Kayu muka yg tidak dibebani = 3,5 d

Antara sumbu baut dalam arah gaya = 5 d Antara sumbu baut tegak lurus arah gaya = 3 d Antara sumbu baut dengan tepi kayu = 2 d

(23)

b. Arah gaya tegak lurus arah serat (Gambar 2).

Jarak minimum:

Antara sumbu baut dan tepi kayu (sejajar terhadap gayanya):

Kayu muka yang dibebani = 5 d

Kayu muka yang tidak dibebani = 2 d

Antara baut dengan baut searah gaya = 5 d

Antara baut dengan baut tegak lurus gaya = 3 d

Gambar 2. Sambungan baut yang menerima beban tegak lurus arah serat.

c. Arah gaya membentuk sudut a (antara 00 - 900) dengan arah serat kayu. Jarak minimum:

Antara sumbu baut dan tepi kayu:

Yang dibebani searah gaya = 5 d s/d 6 d

Yang tidak dibebani = 2 d

Antara baut dengan sumbu baut = 5 d s/d 6 d

Antara baut dengan baut searah gaya = 3 d

(24)

10.Perlemahan luas tampang batang konstruksi rangka kayu dengan sambungan baut sebesar 20 – 25 %.

Kekuatan sambungan baut dapat dipengaruhi oleh daya dukung baut itu

sendiri terhadap lenturan, geseran pada titik hubung dan sesaran (keduanya

tergantung dari gaya tarik (gaya normal) yang timbul dalam baut itu), dan

kekuatan kayu (Wirjomartono, 1977). Dalam penggunaannya pada

konstruksi-konstruksi kayu, prinsip dasar baut adalah untuk menahan beban tegak lurus

terhadap sumbu baut pada beban yang bersudut 0o hingga 90o terhadap arah serat kayu (Hoyle, 1973). Jarak antar baut dan lubang baut pada konstruksi sambungan

kayu juga dapat mempengaruhi kekuatan dari konstruksi sambungan kayu.

2.3 Sifat Fisis

Sifat fisis kayu sangat mempengaruhi kekuatan kayu yang akan dijadikan

sebagai bahan bangunan atau konstruksi. Selain sifat fisis, sifat mekanik juga

memberikan peran penting dalam suatu konstruksi bangunan dari kayu

(Haygreen et al. 2003). Menurut Haygreen et al. (2003), faktor-faktor yang mempengaruhi sifat fisik kayu diantaranya adalah:

1. Jumlah zat kayu yang terdapat pada suatu volume tertentu dan jumlah air di dalam dinding sel.

2. Persentase komponen utama pembentuk dinding sel dan persentase zat ekstraktif.

3. Susunan dan orientasi fibril dalam sel atau jaringan termasuk jenis, ukuran, dan proporsinya.

Sifat fisis yang diuji meliputi kadar air, kerapatan dan berat jenis kayu.

2.3.1 Kadar Air

Menurut Haygreen et al. (2003), kadar air diartikan sebagai berat air dalam kayu yang dinyatakan dalam persen terhadap berat kering tanur (BKT).

Kadar air dalam kayu mempengaruhi kekuatan kayu. Semakin tinggi kadar air

kayu maka semakin rendah kekuatan kayu sedangkan jika terjadi penurunan

kadar air atau kayu tersebut mengering maka kekuatan kayu akan meningkat.

Pengaruh penurunan kadar air terhadap sifat kekuatan kayu tampak jelas apabila

kadar air berada dibawah titik jenuh serat. Air dalam kayu terdiri dari air bebas

(25)

Kadar air segar dalam satu jenis pohon juga berbeda-beda tergantung pada tempat

tumbuh dan umur pohon (Haygreen et al. 2003).

2.3.2 Kerapatan

Menurut Haygreen et al. (2003), kerapatan diartikan sebagai massa atau berat per satuan volume. Ini biasanya dinyatakan dalam pon per kaki kubik atau

kilogram per meter kubik. Kerapatan kayu juga bervariasi pada arah vertikal

maupun horizontal. Pada arah vertikal, bagian kayu yang posisinya lebih tinggi

memiliki kerapatan yang lebih rendah dikarenakan faktor mekanis dan faktor

biologis. Pada arah horizontal, kerapatan kayu dipengaruhi oleh umur. Kayu yang

umurnya lebih muda memiliki kerapatan yang lebih rendah (Tsoumis, 1991).

Kerapatan kayu dapat mempengaruhi sifat mekanis dan sifat-sifat kayu lainnya

seperti kembang susut dan higroskopisitas.

2.3.3 Berat Jenis

Menurut Haygreen et al. (2003), BJ diartikan sebagai perbandingan kerapatan bahan (kayu) dengan kerapatan air (1 g/cm3). BJ merupakan sifat fisis kayu yang sangat penting karena dapat mempengaruhi kekuatan kayu dan sifat

mekanis kayu lainnya. Semakin tinggi BJ-nya, maka kayu umumnya semakin

kuat dan semakin berat.

2.4 Sifat Mekanis

Menurut Tsoumis (1991), sifat mekanis kayu merupakan ukuran

ketahanan kayu terhadap gaya luar yang cenderung merubah bentuk benda.

Ketahanan kayu tersebut tergantung pada besarnya gaya dan cara pembebanan

(tarik, tekan, geser, pukul). Sifat mekanis kayu juga dipengaruhi oleh faktor luar

kayu (eksternal) seperti kelembaban lingkungan dan faktor dalam kayu (internal)

seperti BJ, cacat mata kayu, serat miring dan sebagainya. Sifat mekanis yang

diuji dalam penelitian ini meliputi kekuatan tekan maksimum sejajar serat dan

kekuatan sambungan baut double shear.

2.4.1 Kekuatan Tekan Maksimum Sejajar Serat

Menurut Tsoumis (1991), kekuatan tekan maksimum sejajar serat

merupakan kemampuan kayu untuk menahan beban atau tekanan yang berusaha

(26)

lebih tinggi daripada radial, sedangkan untuk hardwood kekuatan tekan radial

lebih tinggi dibandingkan tangensialnya. Kekuatan tekan pada arah aksial juga

lebih tinggi dari kekuatan tekan arah transversal (sampai 15 kali). Kekuatan tekan

kayu pada arah aksial lebih rendah dibandingkan dengan logam, tetapi jika

dibandingkan dengan bahan konstruksi lainnya kekuatan tekan kayu lebih tinggi.

2.4.2 Kekuatan Sambungan Baut Double Shear

Kekuatan sambungan baut double shear pada sambungan kayu merupakan kekuatan yang terjadi pada dua buah side member yang mengapit main member. Kekuatan sambungan baut yang dimaksud dalam penelitian ini adalah beban total. Pelat baja bertindak sebagai side member, sedangkan kayu sebagai main member. Selain plat baja, kayu juga dapat digunakan sebagai side member. Kekuatan sambungan baut double shear pada sambungan kayu dapat mengakibatkan kerusakan apabila didasarkan pada mekanisme sambungan

tersebut.

Ada 4 jenis kerusakan yang digambarkan oleh NDS yaitu pertama,

kerusakan yang semata-mata terjadi pada kayu yang disebut sebagai kerusakan

pada kayu tanpa rotasi dari alat sambung yang keluar dari shear plane sambungan (Balma 1999). Model kerusakan pertama digambarkan pada Gambar

4 beserta arah pembebanannya yang menyebabkan kerusakan terjadi pada main member, mode Im.

Gambar 4 Model kerusakan Im pada sambungan kayu geser ganda. Sumber: Forest Products Laboratory (1999)

Kedua, kerusakan yang terjadi pada bagian side member saat beban berlawanan arah bekerja pada main member dan side member. Alat sambung pada mode kerusakan ini juga tidak mengalami kerusakan. Arah pembebanan dan

(27)

Gambar 5 Model kerusakan IIIs pada sambungan kayu geser ganda. Sumber: Forest Products Laboratory (1999)

Ketiga, kerusakan terjadi pada bagian kayu dan alat sambung yang leleh

permanen (Balma 1999). Pada Gambar 6 terlihat kerusakan terjadi pada bagian

alat sambung dan side member dimana alat sambung baut leleh terhadap lentur dengan satu sendi plastis. Sendi plastis terjadi di main member namun tidak terjadi kerusakan. Pada sambungan yang menggunakan baja sebagai side member kerusakan ini kecil sekali kemungkinan terjadinya.

Gambar 6 Model kerusakan IIIs pada sambungan kayu geser ganda. Sumber: Forest Products Laboratory (1999)

Keempat, kerusakan juga terjadi pada bagian kayu dan alat sambung yang

leleh permanen (Balma 1999). Pada Gambar 7 menunjukkan model kerusakan

yang terjadi pada alat sambung dimana baut leleh terhadap lentur dengan dua

titik sendi plastis per bidang geser dan dengan hancurnya kayu.

(28)

2.5 Gambaran Umum Jenis-Jenis Kayu yang Diuji 2.5.1 Kayu Sengon

Sengon yang dalam bahasa latin bernama Paraserianthes falcataria L. Nielsen termasuk famili Mimosaceae yaitu keluarga petai-petaian. Di Indonesia, sengon memiliki beberapa nama daerah seperti jeunjing, sengon laut dan kalbi

(Jawa), serta seja, sikat dan tawa (Maluku).

Bagian terpenting yang mempunyai nilai ekonomi dari tanaman sengon

adalah kayunya. Pohonnya dapat mencapai tinggi sekitar 30-45 meter dengan

diameter batang sekitar 70-80 cm. Bentuk batang bulat dan tidak berbanir. Kulit

luarnya berwarna putih atau kelabu, tidak beralur dan tidak mengelupas. Bagian

kayu terasnya berwarna hampir putih atau cokelat muda, sedangkan gubalnya

tidak berbeda dengan kayu teras. Kayu ini memiliki tekstur agak kasar dan

merata dengan arah serat lurus, bergelombang lebar atau berpadu. Dengan nilai

BJ kayu rata-rata 0,33 (0,24-0,49) dan termasuk kelas awet IV-V serta kelas kuat

IV-V, kayu digunakan untuk papan peti kemas, peti kas, perabotan rumah tangga,

pagar, tangkai dan kotak korek api, pulp, kertas dan lain-lainnya.

Tajuk tanaman sengon menyerupai payung rimbun dengan daun yang

tidak terlalu lebat. Daunnya tersusun majemuk menyirip ganda dengan anak daun

kecil-kecil dan mudah rontok. Warna daun hijau pupus, berfungsi untuk

memasak makanan dan sekaligus sebagai penyerap nitrogen dan karbon dioksida

dari udara bebas. Sengon memiliki akar tunggang yang cukup kuat menembus

kedalam tanah, akar rambutnya tidak terlalu besar, tidak rimbun dan tidak

menonjol kepermukaan tanah. Akar rambutnya berfungsi untuk menyimpan zat

nitrogen, oleh karena itu tanah disekitar pohon sengon menjadi subur. Dengan

sifat-sifat kelebihan yang dimiliki sengon, maka banyak pohon sengon ditanam

ditepi kawasan yang mudah terkena erosi.

2.5.2 Kayu Bintangur

Bintangur dalam bahasa latin memiliki nama Calophyllum inophyllum L. termasuk ke dalam famili Clusiaceae dengan memiliki BJ 0,78 (0,60-0,78). BJ minimum kondisi kering udara adalah 0,37 sedangkan maksimumnya 1,07

dengan rata-rata 0,78. Bintangur memiliki nama lain di daerah-daerah Indonesia

(29)

bataoh dan bentangur di Kalimantan; betau, bintula dan pude di Sulawesi;

gentangir dan mantau di Nusa Tenggara Timur.

Kayu termasuk kelas awet II-IV dan kelas kuat I-III, dengan sifat

pengerjaan yang tergolong mudah sampai dengan berat, sedangkan kembang

susutnya besar. Daya retak dan kekerasan kayu tergolong sedang. Tekstur kayu

agak kasar dan tidak merata, sedangkan arah seratnya berpadu. Kayu bintangur

digunakan untuk kayu bangunan, kayu perkakas, plywood, lantai, papan, bantalan, kayu perkapalan tiang, peti, chipboard dan papan loncat.

2.5.3 Kayu Kapur

Kapur yang dalam bahasa latinnya Dryobalanops camphora termasuk ke dalam famili Dipterocarpaceae. Nama lainnya di daerah Kalimantan adalah ampadu, ampalang, awang tanet, bayau, belakan, mohoi, sintok, tulai dan wahai,

sedangkan di Sumatera adalah haburuan, kaberun, kamfer dan kuras. Penyebaran

tumbuhan ini meliputi Aceh, Sumatera Utara, Sumatera Barat, Riau dan seluruh

Kalimantan.

Karakteristik kayu kapur adalah bagian kayu terasnya merah,

merah-cokelat atau merah kelabu, sedangkan kayu gubal hampir putih sampai merah-cokelat

kekuningan muda. Tekstur kayu agak kasar dan merata dengan arah serat lurus

atau berpadu. BJ kayu 0,81 (0,63-0,94) dan masuk pada kelas kuat I-II dengan

kelas awet II-III. Tinggi pohon berkisar antara 35-45 m dan dapat mencapai 60

m, panjang batang bebas cabang 30 m atau lebih, diameter 80-100 cm. Bentuk

batang sangat baik, lurus dan silindris dengan tajuk kecil, kadang-kadang

berbanir sampai 2 meter.

Dalam pengerjaannya, dalam kondisi kering dapat membuat mesin gergaji

cepat aus karena kayu banyak mengandung silika. Apabila dikerjakan dalam

keadaan basah, kayu lebih mudah. Kayu banyak digunakan untuk balok, tiang,

rusuk dan papan pada bangunan perumahan dan jembatan, serta dapat juga

(30)

BAB III

BAHAN DAN METODE

3.1 Waktu dan Tempat

Penelitian ini dilakukan selama kurang lebih tiga bulan yaitu mulai April

hingga Juni 2010. Persiapan bahan baku dan pembuatan contoh uji yang

membutuhkan waktu selama dua bulan dilakukan di Unit Pengeringan Kayu dan

Workshop Penggergajian Kayu Bagian Teknologi Peningkatan Mutu Kayu (TPMK), Departemen Hasil Hutan, Fakultas Kehutanan IPB.

Pengujian dilakukan di tiga tempat yang berbeda, yaitu di Laboratorium

Sifat Dasar Bagian TPMK, Departemen Hasil Hutan, Fakultas Kehutanan, IPB

untuk sifat fisis, di Bagian Rekayasa dan Desain Bangunan Kayu (RDBK),

Departemen Hasil Hutan, Fakultas Kehutanan, IPB untuk kekuatan tekan

maksimum sejajar serat dan di Laboratorium Sifat Fisis dan Mekanis, Pusat

Penelitian dan Pengembangan Hasil Hutan, Gunung Batu Bogor untuk kekuatan

sambungan baut double shear.

3.2 Alat dan Bahan 3.2.1 Alat

Alat yang digunakan untuk persiapan bahan baku dan pembuatan contoh

uji adalah kiln dry untuk mengeringkan kayu, mesin gergaji (table circular saw) untuk memotong kayu menjadi balok kayu yang lebih kecil, penggaris untuk

mengukur balok kayu, mesin serut (double planner) untuk meratakan kedua permukaan balok kayu, kaliper untuk mengukur ketebalan kayu dan mesin bor

untuk melubangi balok kayu agar kayu dapat disatukan dengan plat baja

menggunakan baut yang diperkuat dengan mur.

Alat yang digunakan untuk penyatuan contoh uji kayu dengan pelat baja

pada kedua permukaan kayu (pembuatan sambungan) adalah palu untuk

memasukan (penetrasi) baut sampai tembus ke permukaan pelat baja di sisi yang

berlawanan, kunci mur untuk melepaskan dan mengencangkan baut yang telah

terpasang, dan gergaji besi untuk memotong baut setelah pengujian agar pelat

(31)

Untuk pengujian sifat fisis digunakan kaliper untuk mengukur dimensi

contoh uji, oven untuk mengeringkan contoh uji hingga mencapai berat kering

tanur dan timbangan elektrik untuk menimbang berat awal dan berat kering

tanur contoh uji. Pengujian kekuatan tekan maksimum sejajar serat kayu

dilakukan dengan mesin Universal Testing Machine merk Instron series IX version 8.27.00 dan pengujian kekuatan sambungan baut double shear menggunakan Universal Testing Machine (UTM) merk Shimadzu berkapasitas 30 ton (Gambar 8).

Gambar 8 Universal Testing Machine (UTM) merk Shimadzu.

3.2.2 Bahan

Bahan yang digunakan adalah kayu sengon (Paraserianthes falcataria (L). Nielsen), bintangur (Calophyllum inophyllum L.) dan kapur (Dryobalanops sp.) diperoleh dari toko bangunan di daerah Bogor dalam bentuk sortimen

berukuran 6 cm x 12 cm x 400 cm tanpa memisahkan bagian kayu teras dari

gubalnya (Gambar 9). Sebelum kayu diuji lebih lanjut, semua sortimen kayu tadi

dikeringkan terlebih dahulu dalam kiln dry untuk memperoleh kadar air kondisi kering udara (KA-KU).

(32)

Bahan lainnya adalah baut dengan ukuran diameter 6,4 mm, 7,9 mm, dan

9,4 mm dengan panjang 10,16 cm, serta pelat baja (Gambar 10). Untuk satu

buah sambungan dibutuhkan dua lempeng pelat baja. Pelat terlebih dahulu

dilubangi berdasarkan ukuran diameter baut yang akan digunakan, sedangkan

jumlah lubang pada pelat baja ada yang 4 (empat), 6 (enam), 8 (delapan) dan 10

(sepuluh) buah. Antar lubang baut diberi jarak yang disesuaikan dengan ukuran

kayu dan pelat baja.

(a) Pelat Baja (b) Baut Gambar 10 Pelat baja dan baut yang digunakan

3.3 Pembuatan Contoh Uji

3.3.1 Persiapan dan Pemotongan Contoh Uji

Sortimen kayu sengon (P. falcataria), bintangur (C. inophyllum) dan kapur (Dryobalanops sp.) yang telah mencapai KA-KU dipotong menjadi balok berukuran 40 cm x 12 cm x 5 cm (Gambar 11). Balok kecil selanjutnya dipotong

menjadi 2: bagian yang panjangnya 30 cm untuk pembuatan contoh uji

sambungan, sedangkan bagian sisa untuk pembuatan contoh uji sifat fisis dan

kekuatan tekan maksimum sejajar serat. Ukuran contoh uji sifat fisis adalah 5

cm x 5 cm x 5 cm (American Society for Testing and Materials, ASTM D143-94) dan contoh uji kekuatan tekan maksimum sejajar serat adalah 2 cm x 2 cm x

6 cm (BS-373 1957) (Gambar 12).

Gambar 11 Pola pemotongan sortimen kayu.

6 5 4 3 2 1

Sisa

400 cm

40 cm

(33)

Gambar 12 Pola pemotongan contoh uji.

Keterangan:

A = Contoh uji kekuatan sambungan baut double shear

B = Contoh uji kekuatan tekan maksimum sejajar serat C = Contoh uji kadar air, kerapatan, dan BJ

Sebelum dijadikan contoh uji pembuatan sambungan, potongan sepanjang

30 cm tadi terlebih dahulu diseleksi untuk menghindari adanya cacat-cacat yang

dapat mempengaruhi nilai kekuatan sambungan baut double shear. Gambar 13 menunjukkan contoh uji kekuatan sambungan baut double shear dengan jumlah baut 4, 6, 8 maupun 10, Gambar 14 menunjukkan contoh uji sifat fisis, dan

Gambar 15 memperlihatkan contoh uji tekan maksimum sejajar serat.

(a) (b)

(34)

Gambar 14 Contoh uji sifat fisis kayu

Gambar 15 Contoh uji tekan sejajar serat maksimum

3.3.2 Pembuatan Sambungan Balok Kayu dengan Pelat Baja dan Baut

Sambungan dibuat secara mekanis yaitu menyatukan (menempelkan)

pelat baja pada kedua permukaan balok kayu seperti Gambar 16-b. Baik balok

kayu maupun pelat baja terlebih dahulu telah dilubangi untuk mempermudah

masuknya baut ke dalam kayu dan pelat baja serta membatasi perlemahan tanpa

mengurangi daya ikat kayu dengan pelat baja. Pelubangan dilakukan mengikuti

NDS 2005.

Ke dalam lubang selanjutnya dimasukkan baut sampai tembus, baru

kemudian dilakukan pengencangan baut menggunakan mur agar sambungan

kuat dan rapat. Pengaturan komponen contoh uji kekuatan sambungan geser

disajikan pada Gambar 16-a, sedangkan Gambar 17 memperlihatkan contoh uji

(35)

(a)

(b)

Gambar 16 (a) Pengaturan komposisi dan (b) Proses pembuatan contoh uji kekuatan sambungan baut double shear.

(a) (b)

Gambar 17 Contoh uji kekuatan sambungan baut double shear (a) Tampak depan; (b) tampak samping

30 30

10

1.5 cm 12

5 cm

5 cm

5 cm

3.5 cm

(36)

3.4 Pengujian

3.4.1 Kadar Air, Kerapatan dan BJ Kayu

Contoh uji ditimbang (Gambar 18) untuk mengetahui berat awal kondisi

kering udara (BKU) dan diukur panjang, lebar dan tebalnya untuk menghitung

volume contoh uji (VKU). Selanjutnya, contoh uji dikeringkan dalam oven

(103±2)ºC hingga beratnya konstan dan ditimbang kembali (BKT). Nilai kadar

air kondisi kering udara (KA-KU), kerapatan dan BJ kayu dihitung dengan

rumus:

KA-KU = (BKU – BKT) / BKT x 100%

Kerapatan = BKU / VKU (g/cm3)

BJ = (BKT / VKU) / ρ air

Gambar 18 Penimbangan contoh uji saat pengujian sifat fisis kayu

3.4.2 Kekuatan Tekan Maksimum Sejajar Serat

Pengujian kekuatan tekan maksimum sejajar serat atau maximum crushing strength (MCS) untuk setiap jenis kayu dilakukan dengan cara memberikan beban vertikal secara perlahan-lahan sampai contoh uji mengalami

kerusakan (Gambar 19). Nilai keteguhan tekan maksimum sejajar serat kayu

dihitung dengan rumus:

(37)

Gambar 19 Pemberian beban vertikal saat pengujian tekan maksimum sejajar serat

3.4.3 Kekuatan Sambungan Baut Double Shear

Pengujian kekuatan sambungan baut double shear dilakukan berdasarkan ASTM D5652-95 yaitu memberikan beban tekan dengan arah tegak lurus

terhadap baut (sejajar sisi panjang contoh uji) secara perlahan-lahan hingga

maksimum pada masing-masing tingkat sesaran (0,8 mm, 1,5 mm, dan 5,0 mm).

Pengujian dengan cara menekan ini diasumsikan sama dengan pengujian tarik

sebagaimana standar (Gambar 20).

Gambar 20 Pengujian kekuatan sambungan baut double shear.

Beban maksimum yang ditunjukkan oleh alat saat pengujian berlangsung

(beban total) dinyatakan sebagai nilai kekuatan sambungan double shear, sedangkan nilai beban per baut (P) nya dihitung dengan rumus:

P = Beban total pada tingkat sesaran tertentu / Jumlah baut

Analisis ragam dilakukan pada beban total sambungan baut double shear dan beban per baut sambungan double shear tiap sesaran agar diketahui pengaruh interaksi dari faktor tunggal atau hasil interaksi antara diameter

(38)

ragam maka dilanjutkan dengan uji lanjut Duncan agar dapat diketahui pengaruh

setiap perlakuan terhadap nilai beban per baut sambungan double shear dan beban total kekuatan sambungan baut double shear batang kayu dengan pelat baja pada masing-masing tingkat sesaran.

3.5 Rancangan Percobaan

Rancangan percobaan yang digunakan adalah Rancangan Berblok dengan

Faktorial. Faktor pertama (A) adalah diameter baut yang terdiri atas tiga taraf

yaitu 6,4 mm (A1), 7,9 mm (A2), 9,5 mm (A3), faktor kedua (B) adalah jumlah baut yang terdiri atas empat taraf yaitu 4 buah (B1), 6 buah (B2), 8 buah (B3) dan 10 buah (B4), dan faktor ketiga (C) adalah jenis kayu yang terdiri atas tiga taraf yaitu kayu sengon, bintangur, dan kapur. Model matematika yang digunakan

untuk rancangan ini adalah:

Y

ijk

= µ + A

i

+ B

j

+ C

k

+ AB

ij

+

ε

ijk

Dimana:

Yijk = Beban pada diameter baut (faktor A) ke-i, jumlah baut (faktor B) ke-j pada ulangan ke-k

Data hasil penelitian diolah dengan menggunakan program Microsoft Office Excel 2007 dan program SPSS 16.0. Apabila dari hasil pengolahan data menunjukkan adanya perbedaan yang nyata, maka dilanjutkan dengan uji lanjut

Duncan dengan selang kepercayaan 95%. Pengujian ini dilakukan untuk melihat perbedaan pengaruh tiap faktor maupun kombinasi antara perlakuan pada tingkat

(39)

Diagram alir penelitian kekuatan sambungan baut double shear kayu dengan pelat baja pada kayu sengon, bintangur dan kapur dengan berbagai

sesaran, diameter baut dan jumlah baut disajikan pada Gambar 21.

Gambar 21 Diagram Alir Penelitian Persiapan Bahan

Kayu Sengon, Bintangur dan

Kapur

Baut (6,4 mm, 7,9 mm

dan 9,5 mm)

Pelat Baja

Pengujian Sifat Fisis dan

Kekuatan Tekan Sejajar

Serat

Pengujian Kekuatan Sambungan Baut

Double Shear

Sesaran 0,8 mm, 1,5 mm,

5,0 mm

(40)

BAB IV

HASIL DAN PEMBAHASAN

4.1 Sifat Fisis Kayu

Kadar air, kerapatan dan BJ kayu merupakan sifat fisis kayu yang yang

sangat penting karena dapat mempengaruhi sifat mekanis kayu dan kekuatan kayu

(Haygreen et al. 2003). Fluktuasi kadar air kayu akan mempengaruhi sifat fisis dan mekanis kayu tersebut (Haygreen dan Bowyer 1996). Hasil pengujian kadar

air, kerapatan dan BJ kayu disajikan dalam Tabel 1. Rekapitulasi data

perhitungan kadar air, kerapatan dan BJ dari tiga jenis kayu yang diteliti yaitu

kayu sengon, bintangur dan kapur disajikan secara lengkap pada Lampiran 1, 2

dan 3.

Tabel 1 Hasil pengukuran sifat fisis tiga jenis kayu.

Sifat Fisis Jenis Kayu

Sengon Bintangur Kapur

Kadar Air (%) 14,27 12,40 14,44

Kerapatan (g/cm3) 0,26 0,54 0,82

Berat Jenis 0,23 0,48 0,72

Dari Tabel 1 dapat diketahui bahwa rata-rata kadar air, kerapatan dan BJ

kayu ke tiga jenis yang diteliti bervariasi. Variasi atau keragaman nilai kadar air

tergolong rendah, tetapi tidak demikian hal nya dengan keragaman nilai kerapatan

dan atau BJ kayu. Kadar air kayu hasil penelitian ini berkisar antara 12,40%

hingga 14,44%, sedangkan kerapatan dan BJ kayu berturut-turut berkisar antara

0,26 g/cm3 hingga 0,82 g/cm3 dan 0,23 hingga 0,72. Gambar 22 menyajikan

(41)

kayu menjadi bertambah karena pada umumnya semakin berkurang nilai kadar air

dibawah kadar air titik jenuh serat maka kayu semakin kuat, dan sebaliknya

apabila kadar air mendekati kadar air titik jenuh serat maka kekuatan kayu akan

semakin berkurang. Titik jenuh serat merupakan suatu titik dimana semua air cair

di dalam rongga sel telah keluar namun dinding sel masih dalam keadaan jenuh

(Haygreen dan Bowyer 1996). Dengan demikian, maka kondisi kayu saat

dijadikan sambungan dan saat diuji telah berada dalam kondisi keseimbangan

dengan kelembaban relatif udara.

Gambar 22 Diagram rata-rata kadar air tiga jenis kayu.

Diantara tiga jenis kayu yang diteliti, sengon merupakan kayu dengan

nilai kerapatan dan BJ yang paling rendah berturut-turur sebesar 0,26 g/cm3 dan 0,23, kemudian diikuti oleh kayu bintangur (0,54 g/cm3 dan 0,48), sedangkan yang paling tinggi adalah kayu kapur (0,82 g/cm3 dan 0,23). Keragaman nilai kerapatan kayu disajikan pada Gambar 23, sedangkan Gambar 24 memuat

keragaman nilai BJ kayu.

(42)

Gambar 24 Diagram rata-rata berat jenis tiga jenis kayu.

Keragaman nilai BJ dan kerapatan menurut Kasmujo (2001) tergantung

dari jumlah zat kayu yang tersusun di dalam kayu, rongga-rongga sel atau jumlah

pori-pori, kadar air yang dikandung dan zat ekstraktif di dalamnya. Menurut Oey

Djoen Seng (1964), kerapatan dan BJ kayu pada umumnya berbanding lurus

dengan kekuatan kayu. Semakin tinggi nilai kerapatan dan BJ kayu, maka

semakin tinggi pula kekuatan kayu. Sebaliknya, semakin rendah nilai kerapatan

dan BJ kayu maka semakin rendah pula kekuatan kayu tersebut. Dengan

demikian ketiga jenis kayu yang diteliti dalam penelitian ini telah sesuai dengan

harapan karena dapat mewakili perbedaan kelas kuat kayu terhadap nilai kekuatan

sambungan baut double shear yang akan dievaluasi. Pada penelitian ini, sengon mewakili kayu dengan kelas kuat rendah, bintangur mewakili kayu kelas kuat

sedang, dan kayu kapur mewakili kayu kelas kuat tinggi.

4.2 Sifat Mekanis Kayu

Sifat mekanis kayu sangat berkaitan dengan ketahanan kayu terhadap

gaya luar yang cenderung merubah bentuk kayu. Ketahanan kayu tersebut

tergantung pada besarnya gaya dan cara pembebanan (tarik, tekan, geser, pukul).

Sifat mekanis yang diuji dalam penelitian ini meliputi kekuatan tekan maksimum

sejajar serat dan kekuatan sambungan baut double shear.

4.2.1 Kekuatan Tekan Maksimum Sejajar Serat

(43)

berusaha memperkecil ukurannya sampai kayu mengalami kerusakan (Tsoumis

1991). Kekuatan tekan maksimum sejajar serat diperoleh dengan cara membagi

gaya maksimum yang bekerja dengan luas permukaan kayu yang terkena gaya.

Hasil pengujian tentang kekuatan tekan maksimum sejajar serat sangat bervariasi

(Gambar 25). Hasil lengkap rekapitulasi pengujian kekuatan tekan maksimum

sejajar serat dapat dilihat pada Lampiran 4, 5 dan 6.

Gambar 25 Diagram rata-rata nilai kekuatan tekan maksimum sejajar serat.

Pada Gambar 25 terlihat bahwa nilai kekuatan tekan maksimum sejajar

serat paling rendah terdapat pada kayu sengon (231 kg/cm2), sedangkan nilai yang paling tinggi pada kayu kapur (489 kg/cm2). Kayu bintangur memiliki nilai kekuatan tekan sejajar serat sebesar 404 kg/cm2. Berdasarkan hasil pengujian kekuatan tekan maksimum sejajar serat maka nilai kekuatan tekan maksimum

sejajar serat tersebut berbanding lurus dengan nilai kerapatan dan atau nilai BJ

kayu. Semakin tinggi nilai kerapatan dan atau BJ kayu (kayu kapur dengan nilai

kerapatan 0,82 gr/cm3 dan BJ 0,72), maka semakin tinggi juga nilai kekuatan tekan maksimum sejajar seratnya. Sebaliknya semakin rendah nilai kerapatan dan

atau BJ kayu maka semakin rendah juga nilai kekuatan tekan maksimum sejajar

serat.

Jika dihubungkan dengan nilai kadar air maka kadar air tidak terlalu

berpengaruh dengan kekuatan tekan maksimum sejajar serat. Secara teori,

semakin bertambahnya kadar air dibawah kadar air TJS maka nilai kekuatan

tekan maksimum sejajar serat semakin rendah. Namun demikian, pada penelitian

(44)

maksimum sejajar serat paling tinggi juga. Selain kadar air, nilai kekuatan tekan

maksimum sejajar serat juga sangat dipengaruhi oleh BJ dan atau kerapatan kayu

sehingga kadar air bukan faktor penting yang mempengaruhi nilai kekuatan tekan

maksimum sejajar serat tiga jenis kayu. Nilai kekuatan tekan maksimum sejajar

serat dan BJ kayu dapat digunakan untuk menduga kekuatan atau kemampuan

baut sebagai alat sambung untuk melekat pada kayu. Pada proses pengujian

kekuatan tekan maksimum sejajar serat kayu, kayu diuji hingga mengalami

kerusakan. Kerusakan pada kayu terjadi beberapa tahap. Tahap awal kayu akan

mengalami patahan pada dinding selnya yang kemudian semakin besar dan

membentuk garis yang lebih nyata pada permukaan kayu saat beban meningkat

dan pada tahap akhir pengujian, serabut atau serat-serat kayu akan mengalami

pelipatan (buckling) dan pengkerutan (cringkling) sehingga kayu mengalami kerusakan.

4.2.2 Kekuatan Sambungan Baut Double Shear

Kekuatan sambungan baut double shear pada kayu merupakan kekuatan yang terjadi pada dua buah side member yang mengapit main member. Pelat baja bertindak sebagai dua buah side member yang mengapit kayu (main member). Pengujian kekuatan sambungan double shear dilakukan dengan melihat pengaruh diameter baut dan jumlah baut terhadap beban total atau beban ijin per baut

kekuatan sambungan baut double shear pada tingkat sesaran tertentu yaitu 0,8 mm, 1,5 mm dan 5,0 mm.

Hasil lengkap kekuatan sambungan baut double shear disajikan secara rinci pada Lampiran 7, 8 dan 9.

4.2.2.1 Beban Total Kekuatan Sambungan Baut Double Shear Tiga Jenis Kayu Pada Berbagai Sesaran

Beban total kekuatan sambungan baut double shear merupakan total beban yang diterima sambungan double shear pada tiap sesaran, diameter baut, jumlah baut dan tiga jenis kayu berbeda. Hasil rangkuman rata-rata beban total

(45)

Tabel 2 Rata-rata beban total kekuatan sambungan baut double shear tiga jenis kayu

Tiga Jenis Kayu (C) pada Berbagai Sesaran

0.80 mm 1.50 mm 5.00 mm

Tabel 3 Analisis ragam beban total sambungan baut double shear tiap sesaran.

(46)

sesaran, sedangkan jumlah baut hanya memiliki pengaruh nyata terhadap beban

total sambungan baut double shear pada sesaran 5,0 mm. Interaksi antara jumlah baut dan diameter baut tidak memiliki pengaruh nyata terhadap beban total

sambungan baut double shear. Faktor yang memiliki pengaruh nyata terhadap beban total sambungan baut double shear kemudian diuji lanjut dengan menggunakan uji lanjut Duncan.

Gambar 26 Diagram pengaruh jenis kayu terhadap beban total kekuatan sambungan baut double shear pada berbagai sesaran.

Berdasarkan Tabel 3 dan Gambar 26, untuk sesaran 0,8 mm nilai rata-rata

beban total sambungan baut double shear tertinggi terdapat pada kayu kapur (1893 kg), dan yang terendah pada kayu sengon (573 kg). Pada kayu bintangur

sebesar 1435 kg. Untuk sesaran 1,5 mm, ketiga jenis kayu yang diuji memiliki

nilai rata-rata beban total sambungan baut double shear yang lebih tinggi daripada sesaran 0,8 mm. Nilai rata-rata beban total sambungan baut double shear pada kayu kapur sebesar 2855 kg yang juga merupakan nilai rata-rata beban total sambungan baut double shear tertinggi untuk sesaran 1,5 mm. Nilai rata-rata beban total kekuatan sambungan baut double shear pada kayu bintangur dan kayu sengon berturut-turut sebesar 2397 kg dan 1291 kg. Sebagaimana

halnya pada sesaraan 1,5 mm, pada tingkat sesaran 5,0 mm, kayu kapur juga

memiliki nilai rata-rata beban total sambungan baut double shear tertinggi yaitu sebesar 6158 kg, sedangkan kayu sengon paling rendah (2853 kg). Nilai yang

(47)

Sesuai Gambar 26 dapat dikatakan bahwa kayu kapur memiliki rata-rata

nilai beban total sambungan baut double shear paling tinggi pada tiap sesaran dibandingkan sengon dan bintangur sedangkan kayu sengon memiliki rata-rata

beban total sambungan baut double shear paling rendah dibanding dua jenis kayu lainnya sehingga dapat diartikan semakin tinggi BJ kayu maka semakin tinggi

juga nilai rata-rata beban total kekuatan sambungan baut double shear jenis kayu tersebut. Sebaliknya jika BJ kayu semakin rendah maka semakin rendah pula

rata-rata beban total kekuatan sambungan baut double shear jenis kayu tersebut.

Tabel 4 Uji Duncan jenis kayu terhadap beban total sambungan baut double

Berdasarkan wilayah uji lanjut Duncan sebagaimana yang ditunjukkan

pada Tabel 4 diketahui bahwa kayu sengon memiliki nilai desain lateral yang

tidak sama dengan kayu bintangur dan kayu kapur (berbeda nyata), tetapi kayu

kapur dan kayu bintangur memiliki nilai desain lateral yang sama (tidak berbeda

nyata) atau dapat dikatakan penggunaan kayu bintangur maupun kapur sama saja

pada konstruksi bangunan secara statistik walaupun nilai beban total sambungan

baut double shear berbeda.

Pengaruh diameter baut terhadap beban total sambungan baut double shear disajikan pada Gambar 27. Berdasarkan Gambar 27 diketahui bahwa pada sesaran 0,8 mm nilai rata-rata beban total sambungan baut double shear tertinggi dimiliki oleh baut yang berdiameter 7,9 mm sebesar 1659 kg dan yang terendah

yaitu baut berdiameter 6,4 mm sebesar 901 kg sedangkan baut berdiameter 9,4

mm memiliki nilai rata-rata beban total 1341 kg. Untuk sesaran 1,5 mm, baut

berdiameter 7,9 mm memiliki nilai rata-rata beban total sambungan baut double shear tertinggi yaitu 2698 kg dan terendah dimiliki baut berdiameter 6,4 mm sebesar 1356 kg sedangkan baut berdiameter 9,4 mm memiliki nilai rata-rata

(48)

nilai rata-rata beban total sambungan baut double shear tertinggi yaitu sebesar 5706 kg dijumpai pada baut berdiameter 7,9 mm. Baut berdiameter 6,4 mm

memiliki nilai rata-rata beban total terendah yaitu sebesar 3629 kg sedangkan

baut berdiameter 9,4 mm memiliki nilai beban total sebesar 5539 kg.

Gambar 27 Diagram pengaruh diameter baut terhadap beban total kekuatan sambungan baut double shear pada berbagai sesaran.

Secara umum berdasarkan Gambar 27 dapat dikatakan bahwa baut

berdiameter 7,9 mm memiliki nilai rata-rata beban total sambungan baut double shear tertinggi pada tiap sesaran dibandingkan dengan baut berdiameter 6,4 mm dan 9,4 mm sehingga meningkatnya nilai rata-rata beban total sambungan baut

double shear ada hubungannya dengan bertambahnya diameter baut tidak terbukti dalam penelitian ini. Hal ini diduga karena dengan pemakaian diameter

baut yang besar akan menyebabkan tingginya perlemahan yang terjadi pada

sambungan, akibat lebih banyaknya luasan permukaan kayu yang rusak dan

menyebabkan terjadinya pemadatan kayu, sehingga baut berdiameter 7,9 mm

menghasilkan nilai beban total sambungan baut double shear yang lebih tinggi daripada baut berdiameter 9,5 mm. Namun diduga pula bahwa dengan pemakaian

diameter baut yang kecil pada sambungan kurang mampu untuk menahan beban

dengan baik, sehingga baut berdiameter 6,4 mm lebih rendah dalam

menghasilkan nilai beban total sambungan baut double shear dibandingkan dengan baut berdiameter 7,9 mm. Jika dibandingkan dengan pengaruh jenis kayu,

Gambar

Gambar 2.  Sambungan baut yang menerima beban tegak lurus arah serat.
Gambar 5  Model kerusakan IIIs pada sambungan kayu geser ganda.
Gambar 9 Tumpukan sortimen kayu.
Gambar 10 Pelat baja dan baut yang digunakan
+7

Referensi

Dokumen terkait

PENGARUH KEDALAMAN PIN ( DEPTH PLUNGE ) TERHADAP KEKUATAN SAMBUNGAN LAS PADA PENGELASAN ADUKAN GESEK SISI GANDA ( DOUBLE SIDED FRICTION STIR WELDING ) ALUMINIUM SERI 50834.

Meneliti pengaruh berat jenis (SG), jarak ujung (e d ), rasio kelangsingan baut (λ) dan sudut antara sisi tegak dan arah tangensial serat pada penampang (α) pada kekuatan,

Pada sambungan kayu meranti merah, penggunaan paku diameter 5,2 mm dengan jumlah 10 batang paku memberikan nilai tertinggi untuk nilai beban total sambungan tarik dan

Berdasarkan uraian diatas, maka dilakukan penelitian untuk mengetahui kekuatan desain sambungan geser ganda balok kayu dengan pelat baja dari pengaruh jumlah dan

Selanjutnya penelitian juga terkait dengan nilai kekuatan sambungan kayu seperti perilaku sambungan kayu dengan baut tunggal berpelat sisi baja menggunakan kayu akasia, meranti

PERILAKU KEKUATAN SAMBUNGAN MOMEN KOMPOSIT BAMBU LAMINASI-KAYU TERHADAP KONFIGURASI ALAT SAMBUNG BAUT DENGAN SISTEM PELAT BAJA SISIP SKRIPSI Disusun untuk memenuhi sebagian

Untuk perhitungan analisis kekuatan batas ultimit metode pendekatan plastis diperoleh nilai Pn sebesar 1 kN dengan r0 sejauh 27,6 untuk konfigurasi 4 baut baik yang mendekati ataupun

Untuk perhitungan analisis kekuatan batas ultimit metode pendekatan plastis diperoleh nilai Pn sebesar 1 kN dengan r0 sejauh 27,6 untuk konfigurasi 4 baut baik yang mendekati ataupun