• Tidak ada hasil yang ditemukan

Assessment On The Impact Of Distributed Generation (Dg) Penetration On Grid Protection System.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Assessment On The Impact Of Distributed Generation (Dg) Penetration On Grid Protection System."

Copied!
24
0
0

Teks penuh

(1)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ASSESSMENT ON THE IMPACT OF DISTRIBUTED

GENERATION (DG) PENETRATION ON GRID PROTECTION

SYSTEM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Electrical Engineering

Technology (Industrial Power) (Hons.)

by

FAZLIANA BINTI AHMAD BUDERI B071210145

911227-06-5018

(2)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Assessment on the Impact of Distributed Generation (DG) on Grid Protection System

SESI PENGAJIAN: 2014/15 Semester 2

Saya FAZLIANA BINTI AHMAD BUDERI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan

untuk tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. **Sila tandakan ( )

SULIT

TERHAD

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

_______________________

Alamat Tetap:

No. 34 Jalan Tj 9/2

Taman Temerloh Jaya

28000, Temerloh, Pahang DM.

Disahkan oleh:

_________________________

Cop Rasmi:

(3)

DECLARATION

I hereby, declared this report entitled “Assessment on the Impact of Distributed Generation (DG) on Grid Protection System” is the results of my own research

except as cited in references.

Signature :………

(4)

v

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) (Hons.). The member of the supervisory is as follow:

(5)

vi

ABSTRACT

(6)

vii

ABSTRAK

Penjanaan Teragih merupakan salah satu penjanaan elektrik yang dihasilkan daripada sumber tenaga boleh diperbaharui dan ditempatkan berhampiran dengan pengguna atau beban. Pada masa kini, pembangunan Penjanaan Teragih berada pada tahap yang tinggi memandangkan ia telah mendatangkan banyak kebaikan kepada sistem kuasa itu sendiri. Antaranya ialah dapat mengurangkan beban permintaan daripada pengguna selain dapat meningkatkan kecekapan talian penghantaran. Namun begitu, kehadiran Penjanaan Teragih telah mendatangkan pelbagai kesan teknikal terutamanya terhadap sistem perlindungan di dalam sistem kuasa. Ini kerana tenaga boleh diperbaharui menghasilkan tenaga yang tidak stabil di mana ia tidak sesuai digunakan untuk sistem perlindungan grid konvensional. Selain itu, Penjanaan Teragih juga telah menyebabkan perubahan tahap arus ketika kerosakan di dalam sistem perlindungan dan ia memberikan kesan terhadap penyelarasan alat perlindungan arus lebihan. Oleh yang demikian, melalui pembelajaran ini beberapa simulasi berdasarkan beberapa senario yang berbeza telah dilakukan di dalam perisian “Power System Computer Aided Design (PSCAD)”. Simulasi ini dilakukan berdasarkan talian pengagihan tanpa kehadiran Penjanaan Teragih dan juga dengan kehadiran Penjanaan Teragih seterusnya analisis akan dijalankan berdasarkan keputusan yang telah diperolehi melalui simulasi ini. Analisis ini akan menentukan beberapa kesan yang jelas terhadap sistem perlindungan apabila Penjanaan Teragih ini diletakkan di dalam sistem kuasa. Berdasarkan kepada keputusan simulasi tersebut, pemasangan Penjanaan Teragih di atas talian penghantaran telah menyebabkan arus ketika kerosakan meningkat dan telah membawa dua implikasi terhadap sistem perlindungan iaitu “Blinding of Protection” dan “Loss of Coordination/Sympathetic Tripping”.

(7)

viii

DEDICATIONS

To my beloved parents

Late Mother

Noriah Binti Hj Abd Rahman

Father

Ahmad Buderi Bin Hj Nipah

Siblings

Mohd Hafifi

Farahanim

Fahira

Mohd Hafizam

Muhammad Hafizul Helmi

Farahanum

Fathin Hanani

Farisyawati

For the love.

For the prayers, supports and encouragement.

(8)

ix

ACKNOWLEDGMENTS

(9)

x

TABLE OF CONTENTS

DECLARATION ... iv

APPROVAL ... v

ABSTRACT ... vi

ABSTRAK ... vii

DEDICATIONS ... viii

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS ... x

LIST OF FIGURES ... xiv

LIST OF TABLE ... xvi

LIST OF SYMBOLS AND ABBREVIATIONS ... xvii

CHAPTER 1 ... 1

1.0 Background of Project ... 1

1.1 Problem Statement ... 2

1.2 Objectives of Project ... 3

1.3 Scope of Project ... 3

1.4 Organization of Report ... 4

1.5 Summary ... 4

CHAPTER 2 ... 5

2.0 Introduction ... 5

(10)

xi

2.1.2 Final Energy Demand by Sectors ... 7

2.2 Renewable Energy in Malaysia ... 9

2.2.1 Renewable Energy Policies and Action Plan ... 9

2.2.2 Feed-in-Tariff and Smart Grid Technologies ... 12

2.3 Introduction to Distributed Generation (DG) ... 14

2.3.1 Types of Distributed Generation (DG) ... 16

2.3.1.1 Photovoltaic Systems ... 16

2.3.1.2 Wind Turbine ... 18

2.3.1.3 Micro-Turbines ... 19

2.3.1.4 Fuel Cells ... 20

2.3.2 Impacts of Distributed Generation (DG) on Grid Protection System .. 22

2.3.2.1 Relay Under-Reach ... 22

2.3.2.2 Relay Over-Reach ... 24

2.3.2.3 Sympathetic or False Tripping ... 24

2.3.2.4 Fuse-saving Disruption ... 25

2.3.2.5 Protection Blinding ... 25

2.3.2.6 Unwanted Islanding ... 26

2.3.2.7 Unsynchronized Reclosing ... 26

2.4 Power System Protection ... 27

2.4.1 Performance Criteria of Protection System ... 28

2.4.2 Distribution Protection System ... 29

(11)

xii

2.4.4 Protection Coordination of Over-Current Relay ... 33

2.5 Summary ... 34

CHAPTER 3 ... 35

3.0 Introduction ... 35

3.1 Methods of Research ... 35

3.2 Process Flow Chart ... 37

3.3 Theoretical Modelling of an Over-Current Protection System ... 39

3.4 Simulation ... 42

3.4.1 Simulation of Distribution Network without DG ... 43

3.4.2 Simulation of Distribution Network with DG ... 43

3.5 Summary ... 44

CHAPTER 4 ... 45

4.0 Introduction ... 45

4.1 Simulation Results for Distribution Network without DG ... 45

4.2 Simulation Results for Distribution Network with DG ... 48

4.3 Analysis on the Simulation Results ... 50

4.3.1 Analysis on the Distribution Network with DG at bus B ... 50

4.3.2 Analysis on the Distribution Network with DG at bus C ... 53

4.4 Summary ... 55

CHAPTER 5 ... 56

5.0 Introduction ... 56

5.1 Summary of Research ... 56

(12)

xiii

5.4 Suggestion for Future Work ... 59

APPENDIX A ... 61

APPENDIX B ... 63

APPENDIX C ... 76

(13)

xiv

LIST OF FIGURES

Figure 2.1.1a Malaysia Installed Generation Capacity (in ktoe) 5 Figure 2..1.1b Malaysia Input Share of Generation (in %) 6 Figure 2.1.2 Graph of Final Energy Demand by Sectors (ktoe) 8 Figure 2.2.1a

RE Installed Capacity Target in MW towards 2030 Total RE Installed Capacity Target

Smart Grid Technologies On-Grid Distributed Generation Off-Grid Distributed Generation

Schematic diagram of the generation of carrier charges in the semiconductor layer of a photovoltaic cell

Major Photovoltaic System Components Main Parts of Utility-Scale Wind Turbine Schematic Diagram of Micro-Turbine Schematic Diagram of Fuel Cell Under-reach and Over-Reach Relay Sympathetic Tripping

Protection Blinding

Protective Device Coordination

Inverse Time Over-Current Relay Characteristics A Simple Radial Feeder with Over-Current Relay

11

Example of Application in PSCAD Flow Chart of Project Activities

37 38 Figure 3.3 Application of IDMT Over-Current Relay on a

Distribution Feeder without DG

39

Figure 3.4

Figure 3.4.1 Figure 3.4.2

Model of Radial Distribution Feeder Complete with IDMT Over-Current Relay without DG

Fault location on Distribution Network without DG Fault location on Distribution Network with DG

42

(14)

xv

Over-current Relay Coordination without DG

Relay A Fault Current vs Fault Location (DG at bus B) Relay B Fault Current vs Fault Location at B1 and B2 (DG at bus B)

Relay A Fault Current vs Fault Location at B1 and B2 (DG at bus B)

Relay A and B Operating Time vs Fault Current (DG at bus B)

Relay A and B Operating Time vs Fault Current (DG at bus C)

Relay B Fault Current vs Fault Location at A1 and A2 (DG at bus C)

(15)

xvi

LIST OF TABLE

Table 2.1.2 Final Energy Demand by Sectors 7

Table 2.2.1 Table 2.3

Target of RE Installed Capacity Size of Distributed Generation

10 16

Table 3.3a Setting of IDMT Relays 40

Table 3.3b Parameter for Distribution Network without DG 40 Table 3.3c Parameter for Distribution Network with DG 41 Table 4.1

Table 4.2a

Table 4.2b

Simulation Results for Distribution Network without DG Simulation Results for Distribution Network with DGat bus B

Simulation Results for Distribution Network with DGat bus C

45 48

(16)

xvii AC = Alternating Current

CH4 = Methane

CO2 = Carbon Dioxide

DC = Direct Current

DG = Distributed Generation

EC = Energy Commission

GHG = Green House Gases

IDMT = Inverse Definite Minimum Time

kV = Kilo-volt

MVA = Mega Voltage-Ampere

N2O = Nitrous Oxide

PSCAD = Power System Computer Aided Design

RE = Renewable Energy

(17)

1

CHAPTER 1

INTRODUCTION

1.0 Background of Project

In the past hundred years, the fossil fuel was the only sources of energy that could hit the spot of user’s electricity and energy demand. However, the depletion of fuel reserve and towards maintaining electrical supply security for next generation has made certain countries changing their direction to Renewable Energy (RE). In Malaysia, the contribution of RE into the energy mix help to reduce the reliance on the imported fuels and this option also help to boost the energy security in our country. On the hand, the mitigation of climate change made the Malaysia Government to take several initiative towards the usage of clean generator based on the RE sources in order to reduce the greenhouse gases (GHG) such as Carbon Dioxide (CO2), Methane (CH4)

and Nitrous Oxide (N2O) on the nature.

(18)

2 1.1 Problem Statement

Yadav and Srivastava (2014) suggested that Distributed Generation (DG) is the generation of electricity from small scale of generation and is located closer to the user, or customer which is commonly at the distribution level. These days DG technology is developing rapidly because of the advantages it could bring into the system such as enhance the transmission efficiency energy as well as reduction of climate change. However, the penetration of a DG to the existing distribution system potentially may contribute too many impacts, with the power system protection being one of the major issues. According to the study response by Gevorkian (2011), renewable energy sources, such as solar or wind-power generating systems produce intermittent electrical energy that is not fully compatible with existing electrical grid protection systems. Moreover, the intermittent sources of DG also contributes to vary the value of source impedance on the network (George et al.(2013)).

According to Javadian (2010), the level of fault current in the system could change as the penetration of DG on the system eventually causes several impacts to the protection system, such as false tripping of protective devices, protection blinding, loss of coordination of the protective devices, undesirable network islanding and unsynchronized reclosing.

(19)

3 1.2 Objectives of Project

In the assessment of the impact of DG penetration on the grid protection system, the specific objectives could be:

 To calculate and simulate the magnitude of fault current without presence of DG on the grid system using Power System Computer Aided Design (PSCAD) software.

 To calculate and simulate the magnitude of fault current with presence of DG on the grid system using Power System Computer Aided Design (PSCAD) software.

 To investigate the potential problems that may occur on the grid protection system with the presence of the distributed generation.

1.3 Scope of Project

(20)

4

In this project report, the first chapter discussing about the background of a project, problem statement, objectives of project and scope of the project. In chapter two, the literature review which acts as the references of the project to be reviewed. The architecture and description of flow chart explained in the third chapter. However, in chapter four the results of the project are presented along with its discussion and analysis. Lastly in the chapter five, the assessment have come out with a conclusion and the recommendation are presented for the future planning.

1.5 Summary

This chapter is about the background of the project and the problem statement which encouraged this project to be conducted. The aims of this assessment also discussed in this chapter. In addition, the scope also discussed in order to ensure this assessment was conducted systematically according to its objectives.

(21)

5

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In this chapter, the purposes of literature review are to discuss about the renewable energy in Malaysia, different types of DG technologies and their application in power system. Besides that, this chapter discuss the property of scheme protection criteria in power system. The information obtained through the researches are used to conduct this assessment.

2.1 Generation and Demands Scenarios in Malaysia

2.1.1 Power Supply Generation Trends

(22)

6

Figure 2.1.1(a): Malaysia Installed Generation Capacity (in ktoe) (Source: National Energy Balance 2012)

(23)

7 2.1.2 Final Energy Demand by Sectors

According to Malaysia Energy Statistics Handbook (2014) and National Energy Balance (2012) provided by Energy Commission (EC), Table 2.1.2 below summarized the energy consumption by sectors in Malaysia for the period from 1990 to 2012.

Table 2.1.2: Final Energy Demand by Sectors (Source: National Energy Balance 2012)

Year Final Energy Demand by Sectors (ktoe)

Industrial Transport Agriculture Non-Energy Residential and

(24)

8

Figure 2.1.2: Graph of Final Energy Demand by Sectors (ktoe) (Source: National Energy Balance 2012)

Figure 2.1.2 above shows total final energy consumption recorded a higher growth of 7.5 percent in 2012. This was the highest growth experienced since 2007 when a growth of 7.9 percent was recorded. As the final results, the energy consumption growth was experienced by all sectors, especially the non-energy sector which increase by 17.5 percent and the industry sector by 15.0 percent. The sectors which resulted to the highest energy consumption was consumed by the transport for 36.8 percent and the industry for 29.8 percent (National Energy Balance, 2012).

In a nutshell, the statistics clearly illustrates that the demands of energy for every sector in our country was increasing year by year which encouraged Malaysia Government to take some initiatives in order to ensure the security of energy supplies. In order to surmount this challenge, in 9th Malaysia Plan (2006-2010) Malaysia has targeted the

Renewable Energy (RE) capacity to be connected to power utility for 300MW in Peninsular Malaysia and 50MW in Sabah. Unfortunately, the RE targeted set out under the 9th Malaysia Plan was not achieved and was continued to the 10th Malaysia Plan

Gambar

Figure 2.1.1(b): Malaysia Input Share of Generation (in %)
Table 2.1.2: Final Energy Demand by Sectors

Referensi

Dokumen terkait

Pengguna Anggaran Kantor Pelayanan Dan Perizinan Terpadu Kabupaten Aceh Barat rnengumumkan Rencana LJmum Pengadaan (R'!JP) Barang dan Jasa Tahun 2013 sesuai dengan Qamrn

Sehubungan dengan telah dilakukannya evaluasi administrasi, teknis dan kewajaran harga serta formulir isian Dokumen Kualifikasi untuk penawaran paket pekerjaan tersebut diatas,

Terumbu karang di Taka Tiaka memiliki karakteristik dan kondisi yang berbeda antara lokasi yang terbuka ke laut lepas Teluk Tolo (Timur-Tenggara) dengan lokasi yang relatif

Comparison of the keratometric corneal astimatic power phacoemulsification : clear temporal corneal incision versus superior scleral tunnel incision.. Effect on

Abstrak: Penelitian ini bertujuan untuk mendeskripsikan persepsi guru mengenai pembelajaran bahasa Indonesia dalam Kurikulum 2013 dan mendeskripsikan perencanaan,

Penelitian ini memberikan masukan bagi guru untuk dapat menggunakan model pembelajaran kooperatif serta lebih memanfaatkan sarana dan prasarana yang ada di sekolah

2004.. OPTMAS1 FORMULA MAKANAN PENDAMPING AS1 DENGAN mNGGUNAKGN. RESPONSE SURFACE METHODOLOGY

Hasil penelitian menunjukkan bahwa perbandingan sari bit dengan sari kuini memberikan pengaruh berbeda sangat nyata terhadap nilai warna, viskositas, total padatan, kadar air, kadar