• Tidak ada hasil yang ditemukan

Benda elastisis

N/A
N/A
Protected

Academic year: 2017

Membagikan "Benda elastisis"

Copied!
7
0
0

Teks penuh

(1)

Benda elastisis/elastisitas itu dikatakan apabila benda diberi gaya, maka akan merubah brntuk benda tersebut tetapi apabila gaya itu di lpeaskan maka benda itu akan kembali ke bentuk asalnya lagi.

Ke elastisitas benda itu batasnya adalah 0<benda<1 maka benda itu dikatakan elastis, tetapi apabila benda diberi gaya benda itu akan berubah , tetapi apabila gaya dilepaskan maka tidak akan kembali ke bentuk asal ini disebut benda plastin (tidak elastin)

Hukum-hukum yang terkait dengan elastisitas pada benda 1. Hukum Hooke

Rumusnya

Keterangan:

F = gaya yang diberikan pada pegas (N) k = tetapan gaya pegas (N/m)

delta x = pertambahan panjang pegas (m) 2. Energi Potensial Pegas

RUMUS:

Keterangan:

(2)

3. Modulus Young

Modulus Young adalah perbandingan antara tegangan dan regangan.

1.Tegangan(Stress)Tegangan adalah gaya per satuan luas penampang. Satuan tegangan adalah N/m2.

2. Regangan(Strain)

Regangan adalah perbandingan antara pertambahan panjang suatu batang terhadap panjang awal mulanya bila batang itu diberi gaya.

Dari kedua persamaan di atas dan pengertian modulus elastisitas, kita dapat mencari persamaan untuk menghitung besarnya modulus elastisitas. Satuannya adalah N/m2

RANGKAIAN PADA PEGAS

1. Rangkaian Seri

2. Rangkaian Paralel

Gerak Benda Dibawah Pengaruh Gaya Pegas

Bila suatu benda yang digantungkan pada pegas ditarik sejauh x meter dan kemudian dilepas, maka benda

akan bergetar. Percepatan getarnya itu dapat dihitung dengan persamaan: percepatan pegas. Dari persamaan

di atas, kita mengetahui bahwa besarnya percepatan getar (a) sebanding dan berlawanan arah dengan

(3)

ELASTISITAS

Gambar disamping ini adalah pegas yang digunakan sebagai peredam kejutan pada kendaraan sepeda motor. Istilah kerennya pegas digunakan pada sistem suspensi kendaraan bermotor. Tujuan adanya pegas ini adalah untuk meredam kejutan ketika sepeda motor yang dikendarai melewati permukaan jalan yang tidak rata. Ketika sepeda motor melewati jalan berlubang, gaya berat yang bekerja pada pengendara (dan gaya berat motor) akan menekan pegas sehingga pegas mengalami mampatan. Akibat sifat elastisitas yang dimilikinya, pegas meregang kembali setelah termapatkan. Perubahan panjang pegas ini menyebabkan

pengendara merasakan ayunan. Dalam kondisi ini, pengendara merasa sangat nyaman ketika sedang mengendarai sepeda motor. Pegas yang digunakan pada sepeda motor atau kendaraan lainnya telah dirancang untuk mampu menahan gaya berat sampai batas tertentu. Jika gaya berat yang menekan pegas melewati batas elastisitasnya, maka lama kelamaan sifat elastisitas pegas akan hilang.

Perancang sepeda motor telah memperhitungkan beban maksimum yang dapat diatasi oleh pegas (biasanya dua orang).

Pegas bukan hanya digunakan pada sistem suspensi sepeda motor tetapi juga pada kendaraan lainnya, seperti mobil, kereta api, dkk. (gambar kiri – per mobil)

Pada mobil, terdapat juga pegas pada setir kemudi. Untuk menghindari benturan antara pengemudi dengan gagang setir, maka pada kolom setir diberi pegas. Berdasarkan hukum I Newton (Hukum Inersia), ketika tabrakan terjadi, pengemudi (dan penumpang)cenderung untuk terus bergerak lurus. Nah, ketika pengemudi bergerak maju, kolom setir tertekan sehingga pegas memendek dan bergeser miring. Dengan demikian, benturan antara dada pengemudi dan setir dapat dihindari.

Karet Ketapel

Nah, contoh yang sangat sederhana dan mungkin sering anda temui adalah ketapel. Ketika hendakmenembak burung dengan ketapel misalnya, karet ketapel terlebih dahulu diregangkan (diberi gaya tarik). Akibat sifat elastisitasnya, panjang karet ketapelakan kembali seperti semula setelah gaya tarik dihilangkan.

Kasur Pegas

(4)

Dinamometer

Pernahkah dirimu melihat dinamometer ? mudah-mudahan di laboratorium fisika sekolah anda ada. Dinamometer, sebagaimana tampak pada gambar di samping adalah alat pengukur gaya. Biasanya digunakan untuk menghitung besar gaya pada percobaan di laboratorium. Di dalam dinamometer terdapat pegas. Pegas tersebut akan meregang ketika dikenai gaya luar. Misalnya anda melakukan percobaan mengukur besar gaya gesekan. Ujung pegas anda kaitkan dengan sebuah benda bermassa. Ketika benda ditarik, maka pegas meregang. Regangan pegas tersebut menunjukkan ukuran gaya, di mana besar gaya ditunjukkan oleh jarum pada skala yang terdapat pada samping pegas.

Timbangan

Pernahkah anda mengukur berat badan ? timbangan yang anda gunakan untuk mengukur berat badan (dalam fisika, berat yang dimaksudkan di sini adalah massa) juga memanfaatkan bantuan pegas. Pegas lagi, pegas lagi… hidup kita selalu ditemani oleh pegas. Neraca pegas yang digunakan untuk mengukur berat badan, terdapat juga neraca pegas yang lain (gambar kanan – neraca pegas buah)

Masih ada contoh lain yang berkaian dengan elastisitas pegas. Pernah fitness ? bagi pria-pria perkasa yang terlihat macho dengan otot lengan yang kuat dan dada bidang, pasti pernah menggunakan alat tersebut. wah, ayo tebak… alat apakah itu ? alat tersebut terbuat dari pegas.

Penerapan elastisitas benda padat pada konstruksi bangunan

Ada yang bercita-cita menjadi arsitek atau ahli bangunan ? pahami penjelasan ini secara baik ya, sebagai bekal di hari tua

Pada pembahasan mengenai tarikan, tekanan dan geseran, kita telah belajar mengenai perubahan bentuk pada setiap benda padat akibat adanya teganganyang dialami benda tersebut. Ketika sebuah benda diberikan gaya luar maka akan timbul gaya dalam alias gaya internal pada benda itu sendiri. Ini adalah gaya tegangan.

Salah satu pemanfaatan sifat elastisitas benda padat dalam konstruksi bangunan adalah berkaitan dengan teknik memperluas ruangan. Berikut ini beberapa cara yang digunakan ahli bangunan dalam memperluas ruang sebuah bangunan (rumah, dkk). Mari kita bahas satu persatu….

Tiang dan Balok penyanggah pada pintu

Setiap rumah atau bangunan lainnya pasti memiliki pintu atau penghubungruangan yang bentuknya seperti gambar di bawah. Kebanyakan bangunan menggunakan batu dan bata sebagai bahan dasar (disertai campuran semen dan pasir).

(5)

dan bata tidak mudah patah (bentuknya tetap seperti semula). Dalam hal ini batu dan bata sangat kuat terhadap tekanan. Tetapi jika batu dan bata mengalami tegangan tarik

dan tegangan geser, batu dan bata mudah patah. Oleh karena itu, digunakan balok untuk mengatasi masalah ini. Balok mampu mengatasi tegangan tarik, tegangan tekan, dan tegangan geser. Jika anda amati balok penyanggah pada pintu rumah, tampak bahwa balok tersebut tidak berubah bentuk. Sebenarnya terdapat perubahan bentuk balok (amati gambar di bawah), hanya perubahannya sangat kecil sehingga tidak tampak ketika dilihat dari jauh. Bagian atas balok mengalami mampatan akibat adanya tegangan tekan yang disebabkan beban di atasnya (batu dan bata dkk), sedangkan bagian bawah balok mengalami

pertambahan panjang (akibat tegangan tarik). Tegangan geser terjadi di dalam balok.

Lengkungan setengah lingkaran

Pernahkah dirimu melihat pintu atau penhubung ruang sebuah bangunan seperti tampak pada gambar di bawah ? lengkungan setengah lingkaran ini pertama kali diperkenalkan oleh orang romawi. Apabila dirancang dengan baik maka batu-batu yang disusun melengkung

mengalami tegangan tekan (batu-batu saling berdempetan) sehingga dapat menahan beban berat yang ada di atasnya. Ingat ya, batu sangat kuat terhadap tekanan.

HUKUM HOOKE

Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi

setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi

setimbang (gambar c).

(6)

Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah

berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.

Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda),yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan : Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban. Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.

Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L)suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi

(7)

tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L)dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k.Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula(Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu

bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.

Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …

Besar E bergantung pada benda (E merupakan sifat benda).

Referensi

Dokumen terkait

Form Assessments dan Database Kurikulum Kompetensi Teknis Primary Packaging ... Form Assessments dan Database Kurikulum Kompetensi Teknis Secondary

Setelah mengetahui proses bisnis yang sedang berjalan saat ini, maka selanjutnya yaitu bagaimana merancang desain proses berdasarkan sistem berjalan dan berdasarkan

Hasil pengamatan terhadap tolok ukur daya berkecambah, indeks vigor, kecepatan tumbuh, keserempakan tumbuh, waktu yang dibutuhkan untuk mencapai 50% dari total

Penelitian ini bertujuan untuk mengetahui tingkat rendemen dan mutu giling beras yang dihasilkan oleh beberapa unit penggilingan padi di Kabupaten Kotabaru, Provinsi

Output yang tidak memenuhi target yang telah ditetapkan dengan menggunakan teknologi yang ada saat ini, ataupun potensi mendapatkan output dan proses yang lebih

a) Bahwa keterangan terdakwa harus dinyatakan dalam persidangan. Keterangan tersebut dapat berisi penjelasan atau jawaban atas pertanyaan yang diajukan oleh Majelis

Hasil penelitian ekstrak etanol bulbus bawang dayak yang tumbuh liar asal Banjarbaru memiliki aktivitas antioksidan dengan nilai IC 50 sebesar 25,33 ppm dan berdasarkan

Penetapan biaya standar bahan baku, biaya standar tenaga kerja langsung, dan biaya standar overhead pabrik sebagai alat perencanaan dapat digunakan untuk