• Tidak ada hasil yang ditemukan

Quantitative Analysis for Management Linear Programming Models:.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Quantitative Analysis for Management Linear Programming Models:."

Copied!
47
0
0

Teks penuh

(1)

Quantitative Analysis

for Management

(2)

Linear Programming

Problem

1. Tujuan adalah maximize or minimize

variabel dependen dari beberapa kuantitas

variabel independen (fungsi tujuan).

2. Batasan-batasan yang diperlukan guna

mencapai tujuan.

(3)

Basic Assumptions of Linear

Programming

Certainty

Proportionality

Additivity

Divisibility

(4)

Flair Furniture Company

Data -

Table 7.1

Hours Required to Produce One Unit

Department

X

1

Tables

X

2

Chairs

Available

Hours This

Week

Carpentry

Painting/Varnishing

4

2

3

1

240

100

(5)

Flair Furniture Company

Data -

Table 7.1

Constraints:

Maximize:

Objective:

)

varnishing

&

(painting

100

1

2

X

1

+

X

2

2

1

5

7

X

+

X

)

(carpentry

240

3

4

X

1

+

X

2

STEP 1:

(6)

Flair Furniture Company

Feasible Region

120

100

80

60

40

20

0

Number

of

Chai

rs

20

40

60

80

100

Number of Tables

Painting/Varnishing

Carpentry

Feasible

Region

(7)

Flair Furniture Company

Isoprofit Lines

Numb

er

of

Chai

rs

120

100

80

60

40

20

0

20

40

60

80

100

Number of Tables

Painting/Varnishing

Carpentry

7

X

1

+ 5

X

2

= 210

7

X

1

+ 5

X

2

= 420

(8)

Flair Furniture Company

Optimal Solution

Number

of

Chairs

120

100

80

60

40

20

0

20

40

60

80

100

Number of Tables

Painting/Varnishing

Carpentry

Solution

(

X

1

= 30,

X

2

= 40)

Corner Points

1

2

3

(9)

Test Corner Point Solutions

Point 1) (0,0) => 7(0) + 5(0) = $0

Point 2) (0,100) => 7(0) + 5(80) = $400

Point 3) (30,40) => 7(30) + 5(40) = $410

(10)

Solve Equations Simultaneously

4X1 + 3X2 <= 240

2X1 + 1X2 <= 100

X1 = 60 - 3/4 X2 X1 = 50 - 1/2 X2

60 - 3/4 X2 = 50 - 1/2 X2

60 - 50 = 3/4 X2 - 1/2 X2

10 = 1/4 X2

40 = X2;

so, 4X1 + 3(40) = 240

4X1 = 240 - 120

(11)

Special Cases in LP

Infeasibility

Unbounded Solutions

Redundancy

Degeneracy

(12)

A Problem with No Feasible

Solution

X

2

X

1

8

6

4

2

0

2

4

6

8

Region Satisfying

3rd Constraint

(13)

A Solution Region That is

Unbounded to the Right

X

2

X

1

15

10

5

0

5 10 15

Feasible Region

X

1

>

5

X

2

< 10

(14)

A Problem with a

Redundant Constraint

X

2

X

1

30

25

20

15

10

5

0

5

10

15

20

25

30

Feasible

Region

2

X

1

+

X

2

< 30

X

1

< 25

X

1

+

X

2

< 20

(15)

An Example of Alternate

Optimal Solutions

8

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

8

Optimal Solution Consists of All

Combinations of

X

1

and

X

2

Along

the

AB

Segment

Isoprofit Line for $12

Overlays Line Segment

Isoprofit Line for $8

A

B

(16)

Marketing Applications

Media Selection - Win Big Gambling Club

Medium

Audience

Reached

Per Ad

Cost

Per

Ad($)

Maximum

Ads Per

Week

TV spot (1 minute)

5,000

800

12

Daily newspaper

(full-page ad)

8,500

925

5

Radio spot (30

seconds, prime time)

2,400

290

25

Radio spot (1 minute,

afternoon)

(17)

Win Big Gambling Club

:

to

Subject

)

spots/week

TV

(max

12

X

1

expense)

radio

(max

1800

380X

290X

3

+

4

)

spots/week

radio

(min

+

4

5

3

X

X

ad

budget)

weekly

+

+

+

925

290

380

8000

800

X

1

X

2

X

3

X

4

(

)

spots/week

radio

min.

-1

(max

20

4

X

)

spots/week

radio

sec.

-30

max

25

3

(

X

ads/week)

newspaper

max

5

2

(

X

:

(18)

Manufacturing Applications

Variety

of Tie

Selling

Price per

Tie ($)

Monthly

Contract

Minimum

Monthly

Demand

Material

Required

per Tie

(Yds)

Material

Require

ments

All silk

6.70

6000

7000

0.125 100%

silk

All

polyester

3.55

10000

14000

0.08 100%

polyester

Poly-cotton

blend 1

4.31

13000

16000

0.10 50%

poly/50%

cotton

Polycotton

-blend 2

4.81

6000

8500

0.10 30%

poly/70%

cotton

(19)

Fifth Avenue

4.00X

3.56X

3.07X

4.08X

:

Maximize

1

+

2

+

3

+

4

1)

blend

max,

(contract

X

3

16000

2)

blend

max,

(contract

8500

4

X

2)

blend

min,

(contract

6000

4

X

1)

blend

min,

(contract

13000

3

X

polyester)

all

max,

(contract

14000

2

X

polyester)

all

min,

(contract

1000

2

X

silk)

max,

(contract

7000

1

X

silk)

min,

(contract

6000

1

X

:

to

Subject

cotton)

(yards

1600

07

0

05

0

.

X

3

+

.

X

4

polyester)

(yards

3000

03

0

05

0

08

0

.

X

2

+

.

X

3

+

.

X

4

silk)

of

(yards

800

125

(20)

Manufacturing Applications

Truck Loading - Goodman Shipping

Item

Value ($)

Weight

(lbs)

1

22,500

7,500

2

24,000

7,500

3

8,000

3,000

4

9,500

3,500

5

11,500

4,000

(21)
(22)

Flair Furniture Company

Hours Required to Produce One Unit

Department

X

1

Tables

X

2

Chairs

Available

Hours This

Week

Carpentry

Painting/Varnishing

4

2

3

1

240

100

Profit/unit

Constraints:

$7

$5

Maximize:

Objective:

)

varnishing

&

(painting

100

1

2

X

1

+

X

2

2

1

5

7

X

+

X

)

(carpentry

240

3

(23)

Flair Furniture Company's

Feasible Region & Corner Points

Numb

er

of

Chairs

100

80

60

40

20

0

20

40

60

80

100

X

X

2

Number of Tables

B = (0,80)

C = (30,40)

D = (50,0)

Feasible

Region

240

3

4

X

1

+

X

2

100

1

(24)

Flair Furniture - Adding

Slack Variables

)

varnishing

&

(painting

100

1

2

X

1

+

X

2

)

(carpentry

240

3

4

X

1

+

X

2

Constraints:

Constraints with Slack Variables

)

varnishing

&

(painting

)

(carpentry

100

1

2

240

3

4

2

2

1

1

2

1

=

+

+

=

+

+

S

X

X

S

X

X

2

1

5

7

X

+

X

Objective Function

Objective Function with Slack Variables

2

1

2

1

5

1

1

(25)

Flair Furniture’s Initial Simplex

Tableau

Profit

per

Unit

Column

Production

Mix

Column

Real

Variables

Columns

Slack

Variables

Columns

Constant

Column

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

Profit per

unit row

2

1

1

0

4

3

0

1

$0

$0

$0

$0

$7

$5

$0

$0

$0

$0

S

1

S

2

Z

j

C

j

-

Z

j

(26)

Pivot Row, Pivot Number Identified

in the Initial Simplex Tableau

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

2

1

1

0

4

3

0

1

$0

$0

$0

$0

$7

$5

$0

$0

$0

$0

S

1

S

2

Z

j

C

j

-

Z

j

100

240

$0

$0

Pivot row

Pivot number

(27)

Completed Second Simplex Tableau

for Flair Furniture

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

1

1/2

1/2

0

0

1

-2

1

$7

$7/2

$7/2

$0

$0

$3/2

-$7/2

$0

$7

$0

X

1

S

2

Z

j

C

j

-

Z

j

50

40

(28)

Pivot Row, Column, and Number

Identified in Second Simplex Tableau

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

1

1/2

1/2

0

0

1

-2

1

$7

$7/2

$7/2

$0

$0

$3/2

-$7/2

$0

$7

$0

X

1

S

2

Z

j

C

j

-

Z

j

50

40

$350

(Total

Profit)

Pivot row

Pivot number

(29)

Calculating the New

X

1

Row

for Flair’s Third Tableau

(

Number

in new

X

1

row

)

Number

in old

X

1

row

(

)

above pivot

Number

number

(

)

Corresponding

number in

new

X

2

row

(

)

=

-

x

=

-

x

1

0

3/2

-1/2

30

1

1/2

1/2

0

50

(1/2)

(1/2)

(1/2)

(1/2)

(1/2)

(0)

(1)

(-2)

(1)

(40)

=

-

x

=

-

x

=

-

x

(30)

Final Simplex Tableau for

the Flair Furniture Problem

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

1

0

3/2

-1/2

0

1

-2

1

$7

5

$1/2

$3/2

$0

$0

-$1/2 -$3/2

$7

$5

X

1

X

2

Z

j

C

j

-

Z

j

30

40

(31)

Simplex Steps for

Maximization

1. Choose the variable with the greatest positive

C

j

- Z

j

to enter the solution.

2. Determine the row to be replaced by selecting that

one with the smallest (non-negative)

quantity-to-pivot-column ratio.

3. Calculate the new values for the pivot row.

4. Calculate the new values for the other row(s).

5. Calculate the C

j

and C

j

- Z

j

values for this tableau.

If there are any C

j

- Z

j

values greater than zero,

(32)

Surplus & Artificial Variables

Constraints

900

30

25

210

8

10

5

2

1

3

2

1

=

+

+

+

X

X

X

X

X

900

30

25

210

8

10

5

2

2

1

1

1

3

2

1

=

+

+

=

+

-+

+

A

X

X

A

S

X

X

X

Constraints-Surplus & Artificial Variables

Objective Function

3

2

1

9

7

5

X

+

X

+

X

:

Min

2

1

1

3

2

1

9

7

0

5

X

+

X

+

X

+

S

+

MA

+

MA

:

Min

(33)

Simplex Steps for

Minimization

1. Choose the variable with the greatest negative

C

j

- Z

j

to enter the solution.

2. Determine the row to be replaced by selecting that

one with the smallest (non-negative)

quantity-to-pivot-column ratio.

3. Calculate the new values for the pivot row.

4. Calculate the new values for the other row(s).

(34)

Special Cases

Infeasibility

C

j

5

8

0

0

M

M

Solution

Mix

X

1

X

2

S

1

S

2

A

1

A

2

Qty

5

X

1

1

0 -2

3

-1

0

200

8

X

2

0

1

1

2

-2

0

100

M

A

2

0

0

0

-1

-1

1

20

Z

j

5

8 -2 31-M -21-M

M 1800+20M

(35)

Special Cases

Unboundedness

C

j

6

9

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

9

X

2

-1

1

2

0

30

0

S

2

-2

0

-1

1

10

Z

j

-9

9

18

0

270

C

j

-Z

j

15

0

-18

0

(36)

Special Cases

Degeneracy

C

j

5

8

2

0

0

0

Solution

Mix

X

1

X

2

X

3

S

1

S

2

S

3

Qty

8

X

2

1/4

1

1

-2

0

0

10

0

S

2

4

0

1/3

-1

1

0

20

0

S

3

2

0

2

2/5

0

1

10

Z

j

2

8

8

16

0

0

80

C

j

-Z

j

3

0

6

16

0

0

(37)

Special Cases

Multiple Optima

C

j

3

2

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

2

X

2

3/2

1

1

0

6

0

S

2

1

0

1/2

1

3

Z

j

3

2

2

0

12

(38)

Sensitivity Analysis

High Note Sound Company

60

1

3

80

4

2

120

50

2

1

2

1

2

1

+

+

+

X

X

X

X

X

X

:

to

Subject

(39)

Sensitivity Analysis

(40)

Simplex Solution

High Note Sound Company

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

(41)

Simplex Solution

High Note Sound Company

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400

(42)

Nonbasic Objective Function

Coefficients

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400

(43)

Basic Objective Function

Coefficients

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120+

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60+1/2

120+

30+1/4

0

2400+20

(44)

Simplex Solution

High Note Sound Company

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400

C

j

-Z

j

0

0

-30

0

(45)

Steps to Form the Dual

To form the Dual:

If the primal is max., the dual is min., and vice

versa.

The right-hand-side values of the primal constraints

become the objective coefficients of the dual.

The primal objective function coefficients become

the right-hand-side of the dual constraints.

The transpose of the primal constraint coefficients

become the dual constraint coefficients.

(46)
(47)

Comparison of the Primal and

Dual Optimal Tableaus

Du

al’

s Op

tima

l So

lut

ion

C

j

Solution

Mix

Quantity

$7

$5

X

2

S

2

Z

j

C

j

-

Z

j

20

40

$2,400

X

1

X

2

S

1

S

2

$50

$120

$0

$0

1/2

1

1/4

0

5/2

0

-1/4

1

60

120

30

0

-10

0

-30

0

Primal’

s Op

tima

l So

lut

ion

C

j

Solution

Mix

Quantity

$7

$5

U

1

S

1

Z

j

C

-

Z

30

10

$2,400

X

1

X

2

S

1

S

2

80

60

$0

$0

1

1/4

0

-1/4

0

-5/2

1

-1/2

80

20

0

-20

$0

40

0

20

A

1

A

2

M

M

0

1/2

-1

1/2

0

40

Referensi

Dokumen terkait

Suatu tabel dalam basis data dapat dihubungkan (direlasikan) dengan tabel yang lain. Misalkan tabel pegawai yang telah kita buat sebelumnya akan direlasikan dengan tabel

[r]

10 Apakah anda mengetahui dampak terhadap kesehatan apabila limbah Pertambangan Tradisional tidak diolah dengan berwawasan lingkungan.. ( ) Ya (

Hasil regresi linear berganda dengan SPSS diperlihatkan nilai Beta Standardi- zed Coefficients dari masing-masing va- riabel yang menghasilkan nilai Beta Stan- dardized

37 Tahun 2004 pasal 26 ayat 1 Tuntutan mengenai hak atau kewajiban yang menyangkut harta pailit harus diajukan oleh atau terhadap Kurator, ayat 2 Dalam hal tuntutan sebagaimana

Karena menurut saya kebijakan pemerintah tidak seharusnya kita lihat dari siapa yang memimpin, namun tujuan besar apa yang ingin dicapai dari kebijakan tersebut.. Dan menurut

Setelah melakukan penelitian diperoleh hasil, bahwa kegiatan pendaftaran tanah pertama kali sudah dilaksanakan sesuai dengan ketentuan peraturan perundang - undangan yang

The development of a nation is always accompanied by development in the field of education. Based on the National Education Act aims to &#34;develop the potential