• Tidak ada hasil yang ditemukan

Desain dan Kinerja Roda Penggerak Metering Device Mesin Penanam Kedelai

N/A
N/A
Protected

Academic year: 2017

Membagikan "Desain dan Kinerja Roda Penggerak Metering Device Mesin Penanam Kedelai"

Copied!
60
0
0

Teks penuh

(1)

DESAIN DAN KINERJA

RODA PENGGERAK METERING DEVICE

MESIN PENANAM KEDELAI

ADHIKA ROZI AHMAD

DEPARTEMEN TEKNIK MESIN DAN BIOSISTEM FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR BOGOR

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

Dengan ini saya menyatakan bahwa skripsi berjudul Desain dan Kinerja Roda Penggerak Metering Device Mesin Penanam Kedelai adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skipsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

Bogor, Juli 2014

Adhika Rozi Ahmad

(4)

ABSTRAK

ADHIKA ROZI AHMAD. Desain dan Kinerja Roda Penggerak Metering Device

Mesin Penanam Kedelai. Dibimbing oleh WAWAN HERMAWAN.

Untuk merancang sebuah mesin penanam kedelai dua alur yang ditarik traktor tangan, diperlukan perancangan dan penentuan jenis roda penggerak untuk penjatah benihnya. Roda penggerak ini diharapkan mampu memutar dua piringan penjatah benih, memiliki tingkat luncuran roda yang rendah, dan jumlah tanah yang lengket sedikit. Untuk itu, telah dirancang roda penggerak yang dilengkapi poros fleksibel untuk mentransmisikan torsi putar ke kedua piringan penjatah. Untuk mendapatkan bentuk dan bahan roda yang terbaik, telah dibuat dan diuji lima jenis roda, yaitu: 1) roda karet bersirip karet, 2) roda baja bersirip karet, 3) roda baja bersirip baja, 4) roda baja tanpa sirip dan 5) roda karet tanpa sirip. Diameter roda 25 cm dan lebar roda 10 cm. Roda dipasangkan pada unit penanam kedelai, lalu diujicoba dalam penanaman di tanah kering (kadar air 31%) dan tanah basah (kadar air 53%). Kinerja roda yang diukur antara lain: tingkat luncuran roda dan banyaknya tanah yang lengket pada roda. Hasil pengujian menunjukkan bahwa roda mampu memutar kedua piringan penjatah benih kedelai. Roda karet bersirip karet memiliki tingkat luncuran yang paling rendah (21.33% pada tanah kering, dan 22.32% pada tanah basah). Roda karet tanpa sirip memiliki keunggulan dimana tanah yang lengket paling sedikit pada tanah basah.

Kata kunci: roda penggerak, penjatah benih, mesin penanam, roda karet, roda baja.

ABSTRACT

ADHIKA ROZI AHMAD. Design and performance of towed wheels for metering devices of soybean planting machine. Supervised by WAWAN HERMAWAN

In order to support the design of two rows soybean planting machine powered by a hand tractor, it is needed to design and determine the towed wheel for the metering device. The towed wheel is expected to be able to rotate two metering discs, has a low level of wheel sliding, and less soil sticking. For the purpose, the towed wheel was fitted by flexible shafts for transmitting torque to rotate the metering discs. To get the best wheel, five different types of wheels were made and tested, i,e. 1) rubber wheel with rubber lugs, 2) steel wheel with rubber lugs, 3) steel wheel with steel lugs, 4) steel wheel and 5) rubber wheel. Wheel diameter was 25 cm and wheel width was 10 cm. The wheels were tested using the planting machine operated on dry soil (31% of water content) and wet soil (53% of water content). Wheel performances were measured, using parameters: level of wheel sliding and soil sticking on wheel. The test result showed that the wheels could rotate the metering discs of the soybean planting machine. The rubber wheel with rubber lugs had the lowest level of wheel sliding (22% on dry soil, and 21% on wet soil). Rubber wheel without lugs had advantage where the amount of soil sticking was least, on the wet soil.

(5)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

pada

Departemen Teknik Mesin dan Biosistem

DESAIN DAN KINERJA

RODA PENGGERAK METERING DEVICE

MESIN PENANAM KEDELAI

ADHIKA ROZI AHMAD

DEPARTEMEN TEKNIK MESIN DAN BIOSISTEM FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR BOGOR

(6)
(7)

Judul Skripsi : Desain dan Kinerja Roda Penggerak Metering Device Mesin Penanam Kedelai

Nama : Adhika Rozi Ahmad NIM : F14100119

Disetujui oleh

Dr Ir Wawan Hermawan, MS Pembimbing

Diketahui oleh

Dr Ir Desrial, MEng Ketua Departemen

(8)

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga skripsi ini berhasil diselesaikan. Penelitian berjudul

“Desain dan Kinerja Roda Penggerak Metering Device Mesin Penanam Kedelai” ini telah dilaksanakan sejak bulan Februari 2014 dan selesai pada bulan Juni 2014. Terima kasih penulis ucapkan yang sebesar-besarnya kepada Bapak Dr. Ir. Wawan Hermawan, MS. selaku dosen pembimbing yang telah memberikan dukungan, arahan, dan bimbingan selama penelitian dan pembuatan skripsi. Rasa terima kasih penulis sampaikan kepada para dosen penguji yang juga memberikan saran-saran manfaat untuk sempurnanya tulisan ini, yaitu Dr. Lenny Saulia S.Tp M.Si dan Dr. Ir. Mohamad Solahudin M.Si. Ungkapan terima kasih juga disampaikan kepada orang tua, serta seluruh keluarga penulis atas segala doa dan kasih sayangnya. Selain itu, penulis sampaikan terima kasih kepada Ciptaningtyas Dyah Ayu I, Elgy Mohammad R, Yahya Al Mahdi, Fika Rahimah, Candra Viki A, Oldga Agusta D, Deny Saputro, Febri A. Sigiro, Husen, dan semua rekan-rekan Teknik Mesin dan Biosistem (TMB 47) yang namanya tidak bisa disebutkan satu-satu. Semoga karya ilmiah ini bermanfaat.

Bogor, Juli 2014

(9)

DAFTAR ISI

DAFTAR TABEL vi

DAFTAR GAMBAR vi

DAFTAR LAMPIRAN vi

ABSTRACT ii

PENDAHULUAN 1

Latar Belakang 1

Tujuan Penelitian 1

TINJAUAN PUSTAKA 2

Budi daya Kedelai 2

Mesin Penanam Benih 3

Penjatah Benih (Metering device) 6

Roda Penggerak pada Mesin Tanam dan Interaksinya dengan Tanah 6

Flexible Shaft 8

Pengolahan Tanah 9

Sifat Fisik dan Mekanik Tanah 9

Ketenggelaman Roda (Sinkage) 10

METODOLOGI 11

Waktu dan Tempat Pelaksanaan 11

Alat dan Bahan 11

Tahapan Penelitian 12

Pengukuran Kondisi Tanah 14

Metode Pengujian Kinerja 20

ANALISIS RANCANGAN 21

Kriteria Perancangan 21

Rancangan Fungsional 21

Analisis Rancangan Struktural 22

HASIL DAN PEMBAHASAN 26

Konstruksi Prototipe Roda Penggerak 26

(10)

DAFTAR ISI (Lanjutan..)

SIMPULAN DAN SARAN 33

Simpulan 33

Saran 33

DAFTAR PUSTAKA 33

LAMPIRAN 36

(11)

DAFTAR TABEL

1. Jarak dan populasi kedelai per hektar (Sumarno dan Harnoto 1983) 3 2. Nilai kohesi dan sudut gesek dalam tanah untuk roda bersirip 15 3. Nilai adhesi dan sudut gesek dalam tanah untuk roda polos 15

4. Hasil perhitungan torsi 19

5. Rancangan fungsional 22

6. Perbandingan ncdan dr 24

7. Luncuran pada masing-masing roda penggerak 30

8. Jumlah tanah lengket pada roda 30

9. Keamblasan tanah 32

DAFTAR GAMBAR

1. Mesin tanam sebar dan hasil penempatannya (Srivastava et al. 1996) 4 2. Mesin tanam acak dan hasil penempatannya (Srivastava et al. 1996) 4 3. Proses penempatan benih (Srivastava et al. 1996) 5

4. Bagian-bagian mesin penanam (Hermawan 2011) 5

5. Mesin tanam presisi (Pneumatic Planter) dan hasil penanamannya

(Agromaster 2014) 6

6. Konsep penjatah benih piringan bercelah miring (Srivastava et al.

1996) 6

7. Roda penggerak metering device pada mesin penanam dan pemupuk

jagung (Hermawan 2011) 7

8. Roda bantu pada alat penanam benih butiran (Srivastava et al. 1996) 7 9. a) free-body diagram dari roda yang ditarik, b) free-body dari diagram

roda yang digerakkan oleh mesin ( Liljedahl et al. 1989 ) 8

10. Konstruksi flexible shaft 9

11. Traktor tangan Yanmar tipe YZC-L dan mesin penanam kedelai 12

12. Diagram alir tahapan penelitian 13

13. Kurva hubungan tekanan normal ( ) dan tahanan geser () tanah 15 14. Benih kedelai yang berada di atas piringan penjatah 16 15. Benih kedelai yang berada pada celah benih di piringan penjatah 16

16. Roda sirip pada saat beroperasi 19

17. Cara pengukuran keamblasan tanah yang dilintasi roda penggerak 21 18. Pengukuran jarak vertikal dudukan rangka utama ke permukaan tanah 22

19. Rancangan rangka utama roda 23

20. Mekanisme perputaran metering device 23

21. Mekanisme perputaran metering device 24

22. Simulasi perhitungan sudut minimal sirip roda penggerak 25

23. Posisi penempatan sirip roda 25

24. Mekanisme penguncian flexible shaft 26

25. Rancangan roda penggerak piringan penjatah 26

26. Rancangan (kiri) dan prototipe (kanan) rangka utama 27 27. Rancangan (kiri) dan prototipe (kanan) lengan ayun 27

28. Rancangan (kiri) dan prototipe (kanan) roda 27

(12)

31. Rancangan (kiri) dan prototipe (kanan) roda karet bersirip karet 28 32. Rancangan (kiri) dan prototipe (kanan) roda baja bersirip karet 29 33. Rancangan (kiri) dan prototipe (kanan) roda baja bersirip baja 29 34. Rancangan (kiri) dan prototipe (kanan) dudukan pegas 29

35. Tanah yang melekat pada roda 31

36. Pegas A (kiri), pegas B (kanan) 31

37. Rata-rata pengukuran jarak tanam 32

DAFTAR LAMPIRAN

1. Spesifikasi traktor roda-2 yang digunakan 35

2. Karakteristik flexible shaft 36

3. Hasil Pengkuran Jarak Tanam Lima Jenis Roda Penggerak 36 4. Data Pengujian Luncuran Roda Penggerak pada Lahan Basah (Pegas B) 37 5. Data Pengujian Luncuran Roda Penggerak pada Lahan Kering (Pegas

B) 37

6. Data Pengujian Luncuran Roda Penggerak pada Lahan Basah (Pegas A) 38

7. Jumlah Tanah Melekat pada Roda 38

8. Hasil Pengukuran Kondisi Tanah pada Tanah Kering 39

9. Pengukuran Kondisi Tanah pada Tanah Basah 41

10. Gambar Kerja Roda Penggerak 42

(13)

PENDAHULUAN

Latar Belakang

Kedelai merupakan tanaman pangan yang penting, mengingat berbagai macam makanan yang berbahan baku kedelai seperti tempe, tahu, dan kecap merupakan makanan asli Indonesia dan menjadi komoditi ekspor. Kebutuhan kedelai di Indonesia setiap tahun selalu meningkat seiring dengan pertambahan penduduk dan perbaikan pendapatan perkapita. Oleh karena itu, diperlukan suplai kedelai tambahan yang harus diimpor karena produksi dalam negeri belum dapat mencukupi kebutuhan tersebut. Lahan budidaya kedelai pun diperluas dan produktivitasnya ditingkatkan.

Kegiatan penanaman dan pemupukan pada budidaya pertanian di Indonessia khususnya budidaya tanaman kedelai masih dilaksanakan secara manual. Penanaman dan pemupukan kedelai dilakukan dengan cara ditugal atau disebar. Penanaman dan pemupukan kedelai secara manual membutuhkan tenaga kerja yang banyak dan waktu yang lama.

Dalam rangka peningkatan kapasitas, kualitas kerja dan efesiensi biaya dari alat dan mesin untuk mendukung budidaya kedelai, saat ini telah banyak dikembangkan peralatan yang inovatif dan spesifik lokasi khususnya kondisi usaha tani di Indonesia, karena ternyata penggunaan tenaga traktor tangan, implement pengolahan tanah, alat tanam dan pemupuk terbukti mampu meningkatkan kapasitas kerja lima hingga enam kali lipat dibandingkan dengan cara manual (Virawan 1989; Sembiring, et al. 2000; Pitoyo, et al. 2006). Walau demikian, masih banyak hal yang perlu ditingkatkan dan diperbaiki pada alat penanam dan pemupuk, di antaranya: ketepatan penjatahan benih, pengurangan tingkat kerusakan benih oleh mekanisme penjatah benih, luncuran pada roda penggerak, dan sistem penggandengan traktor tangan untuk mempermudah saat pembelokan dan berbalik arah.

Mesin pengolah tanah, penanam, dan pemupuk terintegerasi dengan tenaga gerak traktor berroda-2 telah berhasil didesain dan diuji coba (Hermawan 2011). Mesin ini digerakkan oleh traktor berroda-2 dan mampu melakukan proses pengolahan tanah, pembentukan guludan tanam, penanam benih jagung dan pemupukan (Urea, TSP, dan KCl). Berdasarkan hasil pengujian tingkat luncuran roda penggerak metering device didapatkan sebesar 22.97% (Eriska 2012). Sehubungan dengan permasalahan di atas, maka perlu dirancang mesin tanam dan pemupuk kedelai dengan merujuk kepada masalah-masalah yang sudah ada dengan harapan waktu penanaman dan pemupukan dapat dipersingkat, ketepatan dan keseragaman jarak tanam, dan jumlah benih yang tepat, sehingga pada akhirnya produksi kedelai dapat ditingkatkan, minimal untuk memenuhi kebutuhan dalam negeri yang semakin meningkat.

Tujuan Penelitian

(14)

TINJAUAN PUSTAKA

Budi daya Kedelai

Kedelai (Glycine max (L.) Merr.) termasuk famili Leuminosae, sub famili

Papilionoidwae dan genus Glycine, merupakan tanaman semusim yang berupa semak rendah, berdaun lebat, dengan beragam morfologi. Tanaman kedelai mempunyai sistem perakaran tunggang. Kedelai dapat tumbuh baik pada berbagai jenis tanah dengan syarat drainase cukup baik serta ketersediaan air cukup selama pertumbuhan tanaman. Lahan sawah beririgasi, lahan sawah tadah hujan, lahan kering (tegalan) dapat digunakan untuk budi daya kedelai (Hidayat 1985).

Tanaman kedelai biasanya ditanam pada tanah kering (tegalan) atau persawahan. Pengolahan tanah bagi pertanaman kedelai di lahan kering sebaiknya dilakukan pada akhir musim kemarau, sedangkan pada lahan sawah, umumnya dilakukan pada musim kemarau.

Menurut Adisarwanto (1999) persiapan lahan penanaman kedelai di areal persawahan dapat dilakukan secara sederhana. Mula-mula jerami padi yang tersisa dibersihkan, kemudian dikumpulkan, dan dibiarkan mengering. Selanjutnya, dibuat petak-petak penanaman dengan lebar 3-10 m, yang panjangnya disesuaikan dengan kondisi lahan. Di antaranya petak penanaman dibuat saluran drainase selebar 25-30 cm, dengan kedalaman 30 cm. Setelah didiamkan selama 7-10 hari, tanah siap ditanami.

Jika areal penanaman kedelai yang digunakan berupa lahan kering atau tegalan, sebaiknya dilakukan pengolahan tanah terlebih dahulu. Tanah dicangkul atau dibajak sedalam 15–20 cm. Di sekeliling lahan dibuat parit selebar 40 cm dengan kedalaman 30 cm. Selanjutnya, dibuat petakan-petakan dengan panjang antara 10–15 cm, lebar antara 3–10 cm, dan tinggi 20–30 cm. Antara petakan yang satu dengan yang lain (kanan dan kiri) dibuat parit selebar dan sedalam 25 cm. Antara petakan satu dengan petakan di belakangnya dibuat parit selebar 30 cm dengan kedalaman 25 cm. Selanjutnya, lahan siap ditanami benih.

Apabila lahan yang digunakan termasuk tanah asam (memiliki pH <5), bersamaan dengan pengolahan tanah dilakukan pengapuran. Dosis pengapuran disesuaikan dengan pH lahan. Lahan sawah supra insus dianjurkan diberi kapur sebanyak 300 kg ha-1. Kapur disebarkan merata, kemudian tanah dibalik sedalam 20–30 cm dan disiram hingga cukup basah.

Sebelum dilakukan kegiatan penanaman, terlebih dulu diberi pupuk dasar. Pupuk yang digunakan berupa TSP sebanyak 75–200 kg ha-1, KCl 50–100 kg ha-1, dan Urea 50 kg ha-1. Dosis pupuk dapat pula disesuaikan dengan anjuran petugas Wilayah Kerja Penyuluh Pertanian (WKPP) setempat. Pupuk disebar secara merata di lahan atau dimasukkan ke dalam lubang di sisi kanan dan kiri lubang tanam sedalam 5 cm.

(15)

Tabel 1 Jarak dan populasi kedelai per hektar (Sumarno dan Harnoto 1983)

Lingkungan Jarak tanam

(cm x cm)

Populasi Tanaman/ha a. Tanah kurus kurang air

b. Kesuburan tanah sedang, pengairan cukup

c. Tanah subur, pengairan cukup

10 x 35 Keterangan : ditanam dua benih per lubang tanam

Mesin Penanam Benih

Mesin penanaman adalah peralatan tanam untuk mengatur dan menempatkan biji atau benih di dalam tanah pada kedalaman tertentu atau menyebarkan biji di atas permukaan tanah atau menanamkan tanaman di dalam tanah. Penanaman dimaksudkan untuk mendapatkan perkecambahan serta pertumbuhan biji yang baik. Perkecambahan dan pertumbuhan biji suatu tanaman dipengaruhi suatu faktor yaitu: jumlah biji yang ditanam, daya kecambah biji, perlakuan terhadap biji, keseragaman ukuran biji, kedalaman penanaman, jenis tanah, kelembaban tanah, mekanisme pengeluaran biji, keseragaman penyebaran, tipe pembuka dan penutup alur, waktu penanaman, tingkat pemadatan tanah sekitar biji, drainase yang ada, hama dan penyakit, dan keterampilan operator. Penanaman dapat dilakukan dengan menggunakan tangan saja, dengan bantuan alat-alat sederhana ataupun dengan bantuan mesin-mesin penanam.

(16)

Mesin Tanam Sebar (Broadcast Seeder)

Pada mesin ini penjatahan benih dari hopper masuk melalui satu lubang variabel (variable orifice). Suatu agitator ditempatkan di atas lubang variabel tersebut untuk mencegah kemacetan karena benih-benih saling mengunci (seed bridging), juga agar aliran benih dapat kontinyu. Centrifugal spreader merupakan alat yang cukup fleksibel karena dapat dipergunakan untuk menyebar benih, pupuk, pestisida, dan material lain yang berupa butiran. Setelah operasi tanam sebar kemudian dilakukan operasi pengolahan tanah kedua untuk menutup benih dengan tanah. Alat tanam sebar dan hasil penempatannya dapat dilihat pada Gambar 1 (Srivastava 1996).

Mesin Tanam Acak dalam Lajur (Drill Seeder)

Pada mesin ini setiap alur tanam, benih dijatah dari hopper oleh suatu silinder bercoak yang digerakkan dengan roda tanah (ground wheel). Jumlah benih per satuan waktu atau laju benih dikontrol melalui lebar bukaan yang dapat diatur. Benih tersebut melewati tabung penyalur benih jatuh secara gravitasi ke lubang tanam yang dibuat oleh pembuka alur, bisa berupa disk atau bentuk lain. Umumnya jarak antara benih berkisar antara 150-400 mm.

Metoda penutupan benih dapat dilakukan dengan rantai tarik, yang ditempatkan di belakang pembuka alur (furrrow opener). Setelah benih tertutup tanah maka tanah di atas dan di samping benih tersebut akan diperkeras menggunakan roda tekan.

Gambar 1 Mesin tanam sebar dan hasil penempatannya (Srivastava et al. 1996)

(17)

Mesin tanam acak dan hasil penempatannya dapat dilihat pada Gambar 2. Proses penempatan benih dan bagian-bagian mesin penanam dapat dilihat pada Gambar 3 dan 4.

Mesin Tanam Presisi (Precision Seeder)

Mesin tanam presisi memberikan penempatan yang tepat dari setiap benih pada interval yang sama dalam setiap alur tanam. Jarak antara alur tanam atau sering juga disebut jarak barisan, umumnya dibuat cukup lebar untuk keperluan penyiangan. Sumber tenaga yang digunakan untuk menarik mesin tanam presisi adalah traktor roda-4. Secara umum ada 4 bagian utama yang selalu ada dalam alat tanam presisi, yaitu: 1) pembuka alur (furrow opener) untuk mengontrol kedalaman tanam, 2) penjatah benih (metering seed) untuk menjaga interval jarak benih dalam alur dapat seragam, 3) penutup alur untuk menutup alur tanam, dan 4) roda tekan (pressing wheel) untuk memadatkan tanah di sekitar benih agar kontak antara benih dan tanah cukup baik (Srivastava et al. 1996). Mesin tanam presisi dan hasil penempatannya dapat dilihat pada Gambar 5.

Gambar 3 Proses penempatan benih (Srivastava et al. 1996)

(18)

Penjatah Benih (Metering device)

Alat penjatah benih merupakan unit alat penanam yang menentukan hasil dari penanaman. Konsep penjatah benih dapat menggunakan piringan bercelah miring (Gambar 6). Jumlah celah benih dianalisis dari transmisi putaran roda penggeraknya.

Roda Penggerak pada Mesin Tanam dan Interaksinya dengan Tanah

Mesin penanam dan pemupuk jagung bertenaga tarik traktor tangan dengan roda penggerak telah berhasil didesain pada tahun 2011 yang ditunjukkan pada Gambar 7 (Hermawan 2011)

Besarnya tingkat luncuran roda penggerak berkaitan dengan kebutuhan torsi putar roda penggerak. Semakin besar kebutuhan torsi putar roda penggerak maka gaya reaksi tanah yang dibutuhkan juga akan semakin besar. Hasil pengujian luncuran roda penggerak yang didapatkan sebesar 22.97 %. Menurut Srivastava,

et al (1996). Salah satu bentuk roda penggerak pada mesin tanam ditunjukkan pada Gambar 8.

Gambar 5 Mesin tanam presisi (Pneumatic Planter) dan hasil penanamannya (Agromaster 2014)

(19)

Roda penggerak untuk menggerakkan metering device mesin tanam, pada umumnya merupakan roda jenis towed wheel (roda yang ditarik). Roda tersebut menurut Liljedahl et al. (1989) memiliki bentuk gaya-gaya yang bekerja seperti diperlihatkan pada gambar 9 a) free-body diagram dari roda yang ditarik. Akibat gaya tarik TF dan reaksi tanah G pada roda maka dihasilkan reaksi tanah komponen horizontal sebesar gaya TF, gaya tersebut menghasilkan torsi untuk dapat memutar metering device.

Menurut Liljedahl et al. (1989) interaksi roda yang memiliki sirip dan masuk ke permukaan tanah menghasilkan gaya geser sebesar persamaan (1)

 tan W Ac

F  (1)

F : gaya geser (N)

A : luas bidang kontak roda dengan tanah (m2)

C : kohesi tanah (Pa)

W : beban vertikal (N)

 : sudut gesekan dalam tanah (o)

Gambar 7 Roda penggerak metering device pada mesin penanam dan pemupuk jagung (Hermawan 2011)

(20)

Menurut Mandang dan Nishimura (1991) kelengketan tanah dipengaruhi oleh beberapa faktor yaitu: (a) kecepatan maju, (b) luas kontak tanah, (c) tekanan per satuan luas, (d) tegangan permukaan dari lapisan air, (e) sifat permukaan, (f) kadar air, (g) tekstur, dan (h) bahan pembentuk alat. Besarnya kelengketan tanah biasanya dinyatakan dengan stickness index. Teori yang mendasari fenomena ini adalah sebagai berikut:

1

q1 = sudut gesekan antara partikel tanah

2

p2 = tekanan normal pada permukaan gesekan

q2 = sudut gesekan bahan dan tanah

Secara sederhana dapat disimpulkan bahwa kelengketan tanah pada suatu bahan akan terjadi bila F2> F1

Flexible Shaft

Flexlible shaft merupakan sebuah poros lentur yang mentransmisikan gerakan berputar seperti transmisi poros baja pejal. Tetapi flexible shaft dapat diatur melewati atas bawah maupun mengelilingi penghalang sehingga mempermudah dalam instalasinya. Flexible shaft terdiri dari poros berputar (inti) dengan bagian akhir baja untuk digabungkan pada bagian lain. Casing luar pelindung digunakan bila diperlukan. Casing ini memiliki perlengkapan sendiri disebut ferrules yang akan tetap diam saat digunakan. Susunan flexible shaft dapat dilihat pada Gambar 10.

(a) (b)

(21)

Gambar 10 Konstruksi flexible shaft

Pengolahan Tanah

Setiap kegiatan budidaya pertanian di lahan pasti membutuhkan pengkondisian lahan terlebih dahulu, karena tanaman salah satunya akan tumbuh dengan baik pada kondisi fisik tanah yang kondusif bagi pertumbuhan tanaman. Secara umum tanaman membutuhkan kondisi lahan yang siap untuk ditanam, di antaranya memiliki tingkat kegemburan tanah yang cukup untuk pertumbuhan akarnya dan kandungan hara tanah yang cukup untuk pertumbuhan tanaman. Menurut Oisat (2001) dalam budi daya tanaman, pengolahan tanah diperlukan untuk menciptakan lingkungan fisik tanah yang kondusif bagi pertumbuhan tanaman.

Pengolahan tanah dapat dibagi menjadi pengolahan tanah pertama dan pengolahan tanah kedua (Daywin et al. 1993). Alat pengolahan tanah pertama adalah alat yang pertama sekali digunakan, yaitu untuk memotong, memecah dan membalik tanah. Pengolahan tanah kedua dilakukan setelah pembajakan. Pengolahan tanah kedua membuat tanah menjadi gembur dan rata, tata air diperbaiki, sisa-sisa tanaman dan tumbuhan pengganggu dihancurkan dan dicampur dengan lapisan tanah atas, kadang-kadang diberikan kepadatan tertentu pada permukaan tanah, dan mungkin juga dibuat guludan atau alur penanaman.

Sifat Fisik dan Mekanik Tanah

Menurut Hardjowigeno (1995), tanah adalah sekumpulan dari benda alam di permukaan bumi yang tersusun dalam horizon-horizon, terdiri dari campuran bahan mineral, bahan organik, dan merupakan media untuk tumbuhnya tanaman. Bahan-bahan penyusun tanah memiliki jumlah yang berbeda untuk setiap jenis tanah setiap lapisan tanah.

Tekstur Tanah

Hardjowigeno (1995) menyatakan bahwa tanah terdiri dari butir-butir tanah berbagai ukuran. Bagian tanah yang berukuran lebih dari 2 mm sampai lebih kecil dari pedon disebut fragmen batuan (rock fragment) atau bahan kasar (kerikil sampai batu). Bahan-bahan tanah yang lebih halus (< 2mm) disebut fraksi tanah halus (fine earth fraction). Fraksi tanah halus ini dapat dibedakan menjadi: pasir (2mm-50µ), debu (50-2µ), dan liat (< 2µ).

(22)

memiliki luas permukaan yang lebih besar sehingga kemampuan menahan air dan menyediakan unsur hara tinggi (Hardjowigeno, 1995).

Kadar Air Tanah

Kadar air tanah adalah perbandingan antara berat air dengan berat tanah pada suatu sampel tanah yang diambil. Kadar air tanah ini dapat dinyatakan dalam basis basah maupun basis kering. Kadar air tanah dapat ditentukan dengan persamaan (4) berikut (Budhu 2007) :

k

Bulk Density Tanah

Bulk density atau bobot isi merupakan perbandingan antara berat tanah kering dengan volume total tanah termasuk volume pori-pori tanah. Bulk density sangat dipengaruhi oleh tekstur tanah, kandungan bahan organik, struktur tanah dan cara pengolahan tanah.

Hillel (1980) menyatakan bahwa nilai bulk density tanah berkisar antara 1.1– 1.6 g cm-3, sedangkan Wesley (1973) menyatakan bulk density tanah berkisar dari 0.6 g cm-3 sampai 2.4 g cm-3. Semakin tinggi nilai, maka semakin kecil pori-porinya dan semakin tinggi derajat kepadatannya. Bulk density tanah ini dapat dihitung dengan menggunakan persamaan (5) berikut (Budhu 2007) :

v

Ketenggelaman Roda (Sinkage)

Menurut Mandang dan Nishimura (1991) terjadinya penurunan permukaan tanah akibat gaya dari luar khususnya karena lalu lintas, merupakan pertanda terjadinya pemadatan tanah pada daerah tersebut. Penurunan permukaan akan terjadi sampai pada keadaan di mana gaya penahanan dari tanah seimbang dengan beban yang diberikan.

Ketenggelaman roda yang besar akan menyebabkan tahanan gelinding (motion resistance) semakin besar pula. Menurut Sembiring et al. (1990), tahanan gelinding adalah besarnya tahanan yang harus diatasi traktor untuk dapat bergerak menarik melalui rodanya. Besarnya tahanan gelinding dipengaruhi oleh kondisi permukaan tanah dan ukuran roda. Bila roda masuk ke dalam tanah atau tenggelam maka akan menaikkan tahanan gelinding dan menurunkan gaya tarikan.

(23)

mengatasi beban tarik yang ditumpu oleh tanah yang ditekan sirip lebih besar pada saat pembebanan mendatar yang besar.

METODOLOGI

Waktu dan Tempat Pelaksanaan

Perancangan, pabrikasi serta pengujian kinerja roda penggerak metering device ini dilakukan mulai dari bulan Februari sampai dengan Juni 2014. Tahap perancangan dilakukan pada akhir Februari hingga pertengahan Maret, dilanjutkan tahap pabrikasi hingga akhir Mei. Pengujian kinerja roda penggerak dilakukan pada bulan Juni 2014. Seluruh kegiatan penelitian ini dilakukan di Laboratorium Lapangan Siswadhi Soepardjo, Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian, Institut Pertanian Bogor.

Alat dan Bahan

Alat dan bahan yang digunakan berdasarkan tahapan penelitian ini adalah sebagai berikut.

Alat dan Bahan Perancangan

Alat yang digunakan dalam perancangan, yaitu perangkat komputer,

software Computer Aided Design SolidWorks 2012 x32 Edition, software Microsoft Excel 2010, printer, kalkulator teknik, mistar, jangka sorong dan peralatan tulis. Alat tersebut digunakan pada tahap perancangan terutama gambar teknik serta analisis teknik roda penggerak.

Alat dan Bahan Pembuatan Prototipe

Alat yang digunakan pada proses pembuatan roda penggerak antara lain: alat-alat perbengkelan seperti, gerinda, bor duduk, las listrik, las argon, mesin bubut, mesin roll, ragum, gergaji baja, pemotong baja plat, tang, palu, obeng, kikir, siku, mistar, jangka sorong, dan peralatan pendukung lainnya. Bahan yang digunakan dalam pembuatan prototipe antara lain: baja plat (ketebalan 2, 3, dan 5 mm), baja silinder, roda ban sepeda, cat, mur dan baut.

Alat dan Bahan Pengujian Kinerja

(24)

Tahapan Penelitian

Pada penelitian ini dilakukan pendekatan perancangan mesin secara umum yaitu dengan pendekatan fungsional dan pendekatan struktural. Tahapan penelitian secara lengkap dapat dilihat pada Gambar 12.

Identifikasi Masalah

Pada tahap ini dicari permasalahan-permasalahan yang ada dan dilakukan pengumpulan berbagai informasi yang dibutuhkan dalam perancangan. Roda penggerak harus dapat menghasilkan torsi putaran untuk memutar piringan penjatah benih pada mesin penanam kedelai. Sementara ini untuk mentransmisikan putaran masih menggunakan sistem transmisi rantai – sprocket

dan pasangan bevel gear. Luncuran roda penggerak masih tinggi, sekitar 22%. Hal ini akan mempengaruhi kinerja penjatahan benih pada mesin tanam.

Penyempurnaan Ide dan Pemilihan Konsep

Setelah mengetahui permasalahan, analisis dilakukan untuk mencari solusi-solusi pemecahan masalah. Solusi pemecahan masalah yang dihasilkan berupa beberapa konsep rancangan fungsional maupun rancangan struktural dari roda penggerak metering device mesin penanam kedelai yang potensial untuk dikembangkan. Konsep-konsep tersebut berupa: lima jenis roda yang berbeda, daya ditansmisikan oleh poros lentur, roda penggerak bekerja pada posisi traktor mengolah dengan kedalaman 12 cm, dan roda bekerja pada tanah gembur.

(25)

Pemilihan Konsep Rancangan, Analisis dan Pembuatan Gambar Kerja

Dari beberapa konsep rancangan yang dihasilkan pada tahap sebelumnya, dilakukan analisis kelayakan baik dari segi teknis maupun segi ekonomisnya untuk menentukan suatu konsep rancangan yang akan diteruskan dalam pembuatan prototipenya. Berdasarkan konsep rancangan yang dipilih, dilakukan analisis teknik untuk menentukan: bahan, bentuk, ukuran dan cara pembuatan dari tiap-tiap bagian alat. Dari hasil analisis tersebut kemudian dibuat gambar kerjanya dengan bantuan software untuk mempermudah pembuatannya.

Pembuatan Prototipe

Pembuatan prototipe dilaksanakan dengan bantuan gambar kerja yang telah dibuat sebagai dasar. Proses fabrikasi prototipe diupayakan menghasilkan hasil nyata yang memiliki ukuran-ukuran yang sama persis dengan yang telah tertera pada perancangan gambar teknik.

(26)

Pengujian Mesin

Pada tahap ini dilakukan pengujian fungsional dan pengujian kinerja. Pengujian fungsional mencakup pengujian komponen unit penggerak metering device untuk memastikan setiap komponen dapat berfungsi dengan baik. Jika diperlukan, dilakukan beberapa modifikasi lanjutan agar komponen unit penggerak metering device dapat bekerja dengan baik. Pengujian kinerja meliputi: luncuran roda, keamblasan roda dan tanah yang lengket pada roda. Pengujian alat ini dilakukan di Laboratorium Lapangan Siswadhi Soepardjo Departemen Teknik Mesin dan Biosistem.

Pengukuran Kondisi Tanah

Pengukuran kondisi tanah bertujuan untuk mengetahui nilai kadar air tanah,

bulk density tanah, kohesi tanah, nilai adhesi antara tanah dan karet, nilai adhesi antara baja dan tanah serta sudut gesek dalam tanah.

Pengukuran densitas tanah dan kadar air tanah dilakukan tiga kali pengulangan dengan mengambil sampel tanah menggunakan ring sampel kemudian tanah dioven selama 24 jam. Kadar air tanah dapat dihitung menggunakan persamaan (4) dan bulk density tanah dihitung menggunakan persamaan (5).

Pengukuran nilai kohesi, nilai adhesi dan sudut gesekan dalam tanah dilakukan sebanyak tiga kali pengulangan. Penetrometer SR-2 dilengkapi ring gesek dan ring geser bersirip digunakan untuk mengukur kondisi tanah tersebut. Pengukuran dilakukan dengan dua kondisi tekanan normal ( ) yaitu sebesar 39017.05 Pa dan 78034.09 Pa serta pada dua kondisi tanah yang berbeda, yaitu tanah dengan kadar air 30.13% dan tanah dengan kadar air 52.38%. Persamaan (6) digunakan untuk menentukan tahanan geser tanah (Oida 1992).

ro = jari-jari luar cincin (0.05m)

ri = jari-jari dalam cincin (0.03m)

(27)

    

 

 

 1 c

tan (7)

Dimana:

 : sudut gesekan dalam tanah (o)  : tahanan geser tanah (Pa)

c : nilai kohesi (Pa) : tekanan normal (Pa)

Tabel 2 dan 3 menunjukkan hasil pengukuran nilai kohesi, adhesi dan sudut gesek dalam tanah.

Tabel 2 Nilai kohesi dan sudut gesek dalam tanah untuk roda bersirip Kadar air (%) Kohesi (Pa) (o)

30.13 3982.86 30.61

52.38 6373.23 29.20

Tabel 3 Nilai adhesi dan sudut gesek dalam tanah untuk roda polos

Jenis bahan Kadar air (%) Adhesi (Pa) δ (o) Karet 30.13 52.38 2788.66 3188.25 33.14 31.83

Baja 30.13 1994.05 32.28

52.38 3982.86 30.08

Perhitungan Kebutuhan Torsi Piringan Penjatah

Beban putaran roda penggerak berupa beban torsi putar piringan penjatah benih, yang bersumber dari: 1) gesekan benih kedelai yang berada di atas piringan penjatah (Gambar 14), 2) gesekan benih pada celah benih di piringan penjatah dengan dasar hoper (Gambar 15), dan 3) gesekan yang terjadi pada bearing dan kabel fleksible shaft. Perhitungan beban torsi total metering device dijelaskan sebagai berikut:

(28)

Asumsi lebar piringan penjatah (acrylic) yang menampung benih sama dengan sepertiga diameter lingkaran (jatuhan benih dari hopper) yaitu 40 mm. Maka didapatkan panjang tali busur adalah 113.14 mm dan besar sudut juring adalah 141°. Untuk menghitung volume benih yang berada di atas piringan penjatah dihitung terlebih dahulu luas lingkaran (LO) luas juring (Lj) luas

tembereng (Ltm), sebagai berikut: 2

Gambar 14 Benih kedelai yang berada di atas piringan penjatah

(29)

2

Volume tembereng (Vtm) dapat dihitung sebagai berikut:

(30)

N

Jumlah lubang pada piringan penjatah adalah lima lubang. Jika rancangan jari-jari lubang adalah 5 mm dan ketebalan piringan penjatah adalah 10 mm. Torsi pada celah benih di piringan penjatah dapat dihitung sebagai berikut:

t

maka, total beban torsi yang ada pada metering device (τtotal) adalah

2

(31)

2 Tabel 4 Hasil perhitungan torsi

Jenis bahan Kadar air (%) Fr(N) Ff (N) T(N.m)

Bersirip 30.13% 52.38% 151.43 168.12 - - 18.93 21.02 Karet polos 30.13% 52.38% - - 159.33 164.63 18.96 18.67

Baja tanpa sirip 30.13% - 139.99 17.50

52.38% - 141.42 18.63

(32)

Hasil perhitungan torsi roda penggerak diatas lebih besar dari kebutuhan torsi metering device yaitu sebesar 0.00673 Nm. Ini berarti roda penggerak mampu menggerakkan metering device.

Metode Pengujian Kinerja

Setelah setiap komponen dari unit penggerak dipastikan dapat bekerja dengan baik maka dilakukan pengujian kinerja unit penggerak metering device. Uji kinerja unit penggerak metering device yang dilakukan antara lain: 1) mengukur tingkat luncuran dari roda penggerak dengan lima macam tipe roda yang berbeda, 2) mengukur tingkat pemadatan tanah dengan cara membandingkan nilai bulk density tanah sebelum dilewati oleh roda dan setelah dilewati oleh roda penggerak metering device, 3) pengukuran keamblasan tanah setelah dilewati oleh roda penggerak metering device, 4) serta menguji kemudahan pengaturan dan pengendalian traktor dalam pengoperasiannya

Luncuran Roda

Luncuran semua pengujian dilakukan pada saat menggerakkan mesin penanam. Pengukuran luncuran roda dilakukan dengan cara mengukur jarak tempuh dalam tiga putaran roda penggerak penjatah benih saat mengoprasikan mesin tanam. Pengukuran luncuran roda dilakukan sebanyak tiga kali pengulangan di setiap tipe roda. Luncuran roda dihitung menggunakan rumus:

%

Sld : luncuran roda penggerak (%)

Srp : jarak tempuh roda penggerak dalam tiga putaran (m)

Krp : keliling roda penggerak (m)

Perubahan Bulk Density

Pengukuran bulk density tanah dilakukan dengan cara mengambil contoh tanah menggunakan ring sample pada lintasan yang akan dilewati oleh roda penggerak dan mengambil kembali sampel tanah menggunakan ring sample pada tanah yang telah dilewati oleh roda penggerak. Bulk density tanah ditentukan dengan menggunakan persamaan (7):

Keamblasan Tanah

(33)

pengukuran kedalaman tanah dapat dilihat pada Gambar 17.

Kelengketan Tanah pada Roda Penggerak

Pengukuran kelengketan tanah pada masing masing roda dilakukan setelah roda penggerak berjalan dengan jarak 10 m. Tanah yang lengket pada roda dikumpulkan pada lembaran kertas penampung (yang telah ditimbang) ditaruh di bawah roda kemudian membersihkan tanah yang melekat pada roda secara perlahan dan menimbang berat tanah pada kertas koran tersebut.

ANALISIS RANCANGAN

Kriteria Perancangan

Roda penggerak metering device ini merupakan tenaga penggerak dari piringan penjatah. Kriteria perancangan dijelaskan pada beberapa poin berikut:

1. Roda penggerak harus dapat dipasangkan pada traktor roda dua dengan mesin tanam.

2. Roda penggerak memiliki tingkat luncuran yang rendah dan mampu memutar metering device.

3. Putaran roda penggerak dapat ditransmisikan oleh poros lentur (flexible shaft)

Rancangan Fungsional

Berdasarkan fungsinya, roda penggerak metering device berfungsi untuk memutar piringan penjatah dengan menggunakan transmisi daya poros lentur (flexible shaft). Rancangan fungsional disajikan pada Tabel 5:

Roda penggerak akan berputar akibat majunya mesin oleh tenaga tarik traktor tangan. Putaran roda disalurkan dengan sistem transmisi flexible shaft

untuk memutar piringan penjatah benih serta jumlah putaran roda sama dengan jumlah putaran piringan penjatah benih.

(34)

Tabel 5 Rancangan fungsional

Fungsi Utama Sub fungsi Komponen

Memutar piringan penjatah dengan menggunakan transmisi daya poros lentur

Menghasilkan tenaga putar Roda Menyalurkan tenaga putar dari

roda ke piringan penjatah

Poros lentur (flexible shaft)

Menahan roda Garpu roda

Memberikan gaya tekan ke roda

Pegas Menahan garpu roda dan

memasangkan pada bagian rangka rotari traktor

Rangka utama roda penggerak

Analisis Rancangan Struktural

Struktur roda penggerak yang dirancang adalah: rangka utama, pegas, roda dan flexible shaft.

Rangka Utama

Dalam perancangan rangka utama perlu dilakukan pengukuran jarak bebas antara spakboard dengan permukaan tanah (y) dan jarak yang tersedia untuk dudukan bawah rangka utama (x). Pengukuran ini disimulasikan dengan cara garu rotari turun (lebih rendah) posisinya dari roda traktor ±12 cm dari permukaan tanah (Gambar 18).

Hasil pengukuran di atas didapatkan x sebesar 140 mm yaitu jarak yang tersedia untuk batang pengunci rangka utama, serta y sebesar 255 mm yaitu jarak yang tersedia untuk komponen komponen roda penggerak lainnya. Rancangan rangka utama roda dapat dilihat pada Gambar 19.

(35)

Perancangan Roda Penggerak

Roda penggerak dirancang untuk menggerakkan piringan penjatah bibit kedelai yang ditransmisikan oleh flexible shaft. Roda penggerak berputar dengan memanfaatkan gaya gesekan dan gaya geseran dari tanah yang dilaluinya. Putaran tersebut akan menggerakkan sistem transmisi flexible shaft yang akan memutar poros pada piringan penjatah. Adapun gambar mekanisme perputaran piringan penjatah dapat dilihat pada Gambar 20.

Berdasarkan dari gambar 21 jarak 1 putaran roda adalah jumlah dari keliling roda dan luncuran roda penggerak (Persamaan 31) serta jarak tanam per baris kedelai yaitu 20 cm. Lebar dari roda penggerak dibuat 10 cm untuk menjaga agar tidak terjadi pemadatan tanah pada daerah tanam. Diameter dari roda penggerak dipengaruhi oleh jarak tanam bibit tanaman kedelai, luncuran pada roda

Gambar 19 Rancangan rangka utama roda

(36)

penggerak, serta jumlah lubang pada piringan penjatah. Luncuran pada roda penggerak diasumsikan sebesar 25%. Untuk menentukan diameter roda penggerak digunakan persamaan 32:

nc : jumlah lubang pada piringan penjatah

Jt : jarak tanam bibit kedelai (cm)

Jp : jarak satu putaran roda(cm)

ln : luncuran yang terjadi pada roda penggerak (diasumsikan 25%)

Dari perhitungan menggunakan rumus di atas maka diperoleh perbandingan antara jumlah lubang pada piringan penjatah dan diameter roda dalam Tabel 6

Berdasarkan hasil perhitungan di atas maka digunakan lima lubang pada piringan penjatah dan diameter roda penggerak sebesar 25.55 cm.

Dalam penelitian ini digunakan lima jenis roda yang berbeda, yaitu roda baja tanpa sirip, roda karet tanpa sirip, roda karet dengan sirip karet, roda baja dengan sirip karet, dan roda baja dengan sirip baja. Tinggi sirip (ts) yang

digunakan pada roda ini sebesar 1 cm, jari jari roda (r) 12.5 cm. Dengan menggunakan persamaan (33) maka didapatkan sudut (α) minimal dari sirip tersebut sebesar 44.38o. Simulasi perhitungan dari sudut maksimal sirip dapat dilihat pada Gambar 22.

(37)

 Setelah didapatkan sudut maksimal antar sirip maka dapat ditentukan jumlah sirip (Js) minimal yang digunakan pada roda. Jumlah sirip minimal yang

digunakan pada roda adalah: 11

Berdasarkan perhitungan di atas maka jumlah sirip harus lebih dari 8 buah. Dalam desain ini digunakan sirip pada setiap sisi roda sebanyak 10 sirip. Jadi total sirip yang digunakan pada roda adalah 20 sirip. Gambar 23 menunjukkan posisi penempatan sirip roda.

Transmisi Daya

Flexible shaft yang digunakan harus mampu menahan semua beban yang diterima. Perhitungan beban torsi tersebut belum termasuk beban yang ada pada

bearing dan flexible shaft, maka beban torsi minimal yang harus dapat ditahan oleh flexible shaft adalah 0.00673 Nm. Proses perancangan menggunakan bahan yang mudah ditemukan di pasaran, sehingga digunakan flexible shaft berdiameter 3.2 mm yang mampu menahan beban 1.3 Nm (Lampiran 2).

Gambar 22 Simulasi perhitungan sudut minimal sirip roda penggerak

(38)

Mekanisme penguncian yang digunakan pada sistem transmisi flexible shaft

adalah dengan cara menekan poros flexible shaft dengan baut pada poros roda. Mekanisme penguncian tersebut digambarkan pada Gambar 24.

Gambar 24 Mekanisme penguncian flexible shaft

HASIL DAN PEMBAHASAN

Konstruksi Prototipe Roda Penggerak

Roda penggerak piringan penjatah terdiri dari rangka utama (1), pegas (2), garpu roda (3) dan roda (4). Hasil perancangan roda penggerak piringan penjatah dapat dilihat pada gambar 25.

Rangka utama dari roda penggerak ini terbuat dari baja silinder dengan diameter 40 mm, serta plat baja dengan ketebalan 5 mm. Kemudian plat dilubangi sebesar 12 mm untuk menempatkan poros pengunci. Rangka utama ini kemudian dipasangkan pada tempat roda penggerak yang terdapat pada spakboard traktor roda utama. Gambar dari rancangan rangka utama dapat dilihat pada Gambar 26.

Desain lengan ayun dapat dilihat pada Gambar 27. Lengan ayun dibuat dari plat baja dengan ketebalan 5 mm yang disambungkan dengan las pada pipa baja berdiameter 20 mm dengan diameter dalam 12 mm kemudian dipasangkan pada rangka utama dan dikunci menggunakan baut as ukuran M14. Pada plat baja dibuat lubang 10 mm untuk poros pengunci dudukan pegas

(39)

Desain dari roda dapat dilihat pada Gambar 28. Untuk mempermudah pembuatan, bagian poros dan velg roda digunakan roda ban sepeda yang banyak dijual di pasaran kemudian disesuaikan ukuran velg dengan diameter roda yang akan dirancang, sedangkan bagian luar roda dibuat dari plat baja dengan ketebalan 3 mm yang dilingkarkan. Pelengkungan plat roda menggunakan mesin roll. Roda dibuat dengan diameter 250 mm dan lebar 100 mm. Dibuat lima jenis roda dengan sirip yang berbeda yaitu: roda karet bersirip karet, roda besi bersirip karet, roda besi bersirip besi, roda karet tanpa sirip, roda besi tanpa sirip.

Roda baja tanpa sirip dirancang dengan cara melingkarkan plat besi 3 mm menggunakan mesin rol. Roda karet tanpa sirip dirancang dengan menambahkan lapisan karet yang di buat melingkar dan dimasukkan pada roda baja tanpa sirip. Gambar roda baja tanpa sirip dan roda karet tanpa sirip dapat dilihat pada Gambar 29 dan 30.

Gambar 26 Rancangan (kiri) dan prototipe (kanan) rangka utama

Gambar 27 Rancangan (kiri) dan prototipe (kanan) lengan ayun

(40)

Roda karet bersirip karet dirancang dengan menambahkan sirip karet pada roda karet tanpa sirip. Sirip karet yang dipasang memiliki tebal 10 mm panjang 70 mm dan lebar 20 mm dan dipasangkan dengan kemiringan 450. Gambar roda karet bersirip karet dapat dilihat pada Gambar 31.

Roda baja bersirip karet dirancang dengan menambahkan sirip karet pada roda baja tanpa sirip dengan dimensi dan peletakan sirip sama dengan roda karet bersirip karet. Gambar dari roda baja bersirip karet dapat dilihat pada Gambar 32.

Gambar 29 Rancangan (kiri) dan prototipe (kanan) roda baja tanpa sirip

Gambar 30 Rancangan (kiri) dan prototipe (kanan) roda karet tanpa sirip

(41)

Terakhir yaitu roda baja bersirip baja yaitu dengan memasangkan sirip baja pada roda baja tanpa sirip dengan dimensi panjang sirip 50 mm, tebal 2 mm, dan tinggi 10 mm yang dipasangkan dengan sudut 900. Gambar dari roda baja bersirip baja dapat dilihat pada Gambar 33.

Bagian terakhir dari komponen roda penggerak yaitu dudukan pegas yang dibuat dari pipa baja dengan diameter luar 20 mm, diameter dalam 12 mm dan panjang 130 mm yang kemudian dilaskan dengan batang baja dengan diameter 10 mm, untuk mempermudah agar dudukan pegas ini bergerak bebas dibuat poros dengan diameter 12 mm, serta masing-masing ujung poros dilubangi sebesar baut M12. Desain dari dudukan pegas dapat dilihat pada Gambar 34.

Kinerja Prototipe Roda Penggerak

Pengukuran kinerja roda penggerak dilakukan pada tanah basah dengan kadar air rata-rata 53.3 % dan tanah kering dengan kadar air rata-rata 31.05 %

Gambar 32 Rancangan (kiri) dan prototipe (kanan) roda baja bersirip karet

Gambar 33 Rancangan (kiri) dan prototipe (kanan) roda baja bersirip baja

(42)

untuk data kadar air lengkap terlampir pada Lampiran 8 dan 9. Tingkat luncuran roda penggerak merupakan salah satu faktor yang mempengaruhi kinerja alat penanam. Kemacetan atau luncuran roda penggerak mengakibatkan jarak tanam yang dihasilkan akan bertambah besar (Khaerudin 2009). Tabel 7 menunjukkan data setelah dilakukan pengujian. Data lengkap pengukuran luncuran roda terlampir pada Lampiran 4 dan 5.

Tabel 7 Luncuran pada masing-masing roda penggerak

Kadar mempunyai luncuran paling kecil dibandingkan dengan tanpa sirip dikarenakan pada perhitungan torsi yang dihasilkan roda (Tabel 4) roda bersirip menghasilkan torsi lebih besar dibandingkan dengan roda tanpa sirip.

Tanah yang melekat pada roda penggerak akan mempengaruhi kinerja roda penggerak, khususnya pada roda yang bersirip semakin banyak tanah yang melekat pada roda bersirip akan semakin besar pula luncuran yang dihasilkan. Hal ini terbukti pada data hasil pengukuran. Foto dari tanah yang melekat pada roda dapat dilihat pada Gambar 35. Pengukuran tanah yang lengket pada roda tersaji pada Tabel 8.

Tabel 8 Jumlah tanah lengket pada roda

Kadar air (%)

Tanah yang lengket pada roda (gram) Roda karet

(43)

Selain tanah yang melekat pada roda penggerak, gaya tekan roda ke tanah pun akan mempengaruhi kinerja pada roda penggerak. Semakin kecil gaya tekan roda pada tanah maka semakin besar luncuran yang dihasilkan. Pengujian gaya tekan pada tanah dilakukan dengan menggunakan dua pegas yang berbeda (Gambar 36). Pegas A dengan perubahan 10 mm dapat menghasilkan gaya sebesar 46.107 N sehingga nilai konstanta pegasnya 46107 Nm-1, sedangkan pegas B dengan perubahan panjang 10 mm dapat menghasilkan gaya sebesar 212.88 N dengan konstanta pegas 212877 Nm-1. Pengukuran gaya yang dihasilkan dari pegas tersebut adalah dengan cara menarik pegas sampai suatu jarak tertentu dengan mengguunakan timbangan tarik digital. Kedua pegas tersebut diuji pada lahan kering dengan menggunakan roda karet bersirip karet untuk mengetahui luncuran yang terjadi pada masing-masing pegas, luncuran yang dihasilkan dari pegas A adalah sebesar 36.59 %, sedangkan pegas B sebesar 21.33%. Hal ini dikarenakan semakin besar dorongan gaya yang diberikan pegas pada roda, maka roda akan lebih menekan pada tanah dan akan menaikkan nilai beban vertikal (W). Berdasarkan persamaan 35, nilai beban vertikal sejajar dengan nilai gaya gesek (Ff) antara roda dengan tanah. Jika nilai beban vertikal naik, maka nilai gaya

gesek akan meningkat dan torsi dari roda penggerak pun akan naik. Gambar 35 Tanah yang melekat pada roda

(44)

) tan(  W Ac Ff  

R F

Tf  (35)

Pengukuran rata-rata jarak tanam pada tanah kering masing-masing roda dapat dilihat pada Gambar 37 serta pengukuran lengkap jarak tanam terlampir pada Lampiran 3. Berdasarkan Gambar 37 jarak tanam yang sesuai dengan yang direncanakan yaitu sebesar 20.1 cm dengan menggunakan roda besi tanpa sirip.

Bersamaan dengan naiknya gaya gesek antara roda dengan tanah, maka luncuran roda pun akan semakin berkurang. Data luncuran hasil percobaan terlampir pada Lampiran 3 dan 4. Untuk membuktikan pegas tersebut bekerja, maka dilakukan pengukuran keamblasan tanah yang telah dilewati oleh roda tersebut. Hasil pengukuran keamblasan tanah untuk dua kondisi tanah yang berbeda dapat dilihat pada Tabel 10. Kerapatan isi tanah sebelum roda melintas sebesar 0.91 g/cm3 lebih kecil dari pada kerapatan isi tanah setelah roda melintas yaitu sebesar 0.94 g/cm3. Hal ini menunjukkan bahwa terjadi pemadatan tanah setelah lahan dilintasi oleh roda penggerak. Data kerapatan isi tanah telampir pada Lampiran 8 dan 9.

Tabel 9 Keamblasan tanah

Kadar air (%) Keamblasan (cm)

31.05 4.2

53.30 4.5

Berdasarkan hasil pengujian kinerja roda penggerak roda karet bersirip karet mempunyai data terbaik daripada roda tipe lainnya. Hasil pengujian roda karet bersirip karet mempunyai luncuran sebesar 21.33% pada tanah kering dan 22.32% pada tanah basah. Berat tanah lengket pada roda karet bersirip karet sebesar 12 g pada tanah kering dan 2373 g pada tanah basah. Pegas yang digunakan adalah pegas dengan konstanta pegasnya sebesar 212877 Nm-1 karena pegas tersebut mampu menghasilkan gaya yang lebih besar, sehingga akan menaikkan torsi yang dihasilkan oleh roda.

(45)

SIMPULAN DAN SARAN

Simpulan

Hasil pengujian menunjukkan bahwa roda mampu memutar kedua piringan penjatah benih kedelai. Pegas dengan konstanta 212877 N/m mampu bekerja dengan baik dan mengurangi luncuran pada roda. Roda karet bersirip karet memiliki tingkat luncuran yang paling rendah (21.33% pada tanah kering, dan 22.32% pada tanah basah). Roda karet tanpa sirip memiliki keunggulan dimana jumlah tanah yang lengket paling sedikit pada tanah basah.

Saran

Roda karet bersirip karet digunakan untuk memutar kedua piringan penjatah pada mesin penanam kedelai. Pada hasil pengujian didapatkan berat tanah yang lengket pada roda masih besar. Untuk mengatasi hal tersebut dapat digunakan bahan sirip dengan nilai adhesi rendah dan sirip lentur.

DAFTAR PUSTAKA

Adisarwanto T dan Wudianto. 1999. Meningkatkan Hasil Panen Kedelai di Lahan Sawah-Kering-Pasang Surut. Penebar Swadaya. Bogor

Agromaster. 2014. Pneumatic Precision Planter. [terhubung berkala] http://www.astepar.com.tr [18 oktober 2014]

Budhu M. 2007. Soil Mechanics and Foundation. New Jersey: John Wiley, INC Daywin FJ, Sitompul RG, Hidayat I. 1993. Mesin-mesin Budidaya Pertanian.

Academic Development of the Graduate Program, the Faculty of Agricultural Engineering and Technology, Bogor Agricultural University. Bogor.

Durney Construction Machinary [DCM]. 2014. DURNEY Universal Speedometer /Tachometer Inner Wire. [terhubung berkala] http://www.durney.net/.

Eriska A. 2012. Skripsi. Peningkatan Kinerja Unit Pemupuk Pada Mesin Penanam dan Pemupuk Jagung Terintegrasi. Bogor: IPB Press.p-

Hardjowigeno.1995. Ilmu Tanah I. Granesia Pustaka, Jakarta

Hermawan W. 2011. Perbaikan desain mesin penanam dan pemupuk jagung bertenaga traktor tangan. Jurnal Keteknikan Pertanian (JTEP). ISSN: 0216-3365.

Hidayat OD. 1985. Morfologi Tanaman Kedelai. Hal 73 - 86. Dalam S.Somaatmadja et al (Eds.). Griffin, Georgia. 325-541 p.

Hillel D. 1980. Fundamentals of Soil Physics. Academic Press, New York, 413 pp. Liljedahl JB, Turnquist PK, Smith DW, Hoki Makoto. 1989. Tractors and Their

Power Units. New York: Van Nostrand Reinhold

Mandang T, Isao Nishimura. 1991. Hubungan Tanah dan Alat Pertanian. JICA-DGHE/IPB PROJECT/ADAET: JTA-9a (132). Proyek Peningkatan Perguruan Tinggi. Institut Pertanian Bogor.

(46)

Oisat.2001. Soil Tillage (www.oisat.org/control_methods).p.1-2

Pitoyo J, dan Sulistyosari N. 2006. Mesin Penanam Jagung dan Kedelai (Seeder) untuk permukaan bergelombang. Prosiding Seminar Mekanisasi Pertanian. Balai Besar Pengembangan Mekanisasi Pertanian, Bogor. P. 75-81.

Sembiring EN, Hermawan W, Suastawa IN, Radite PAS. 2000. Rancang Bangun Mesin Penanam dan Pemupuk Kedelai. Laboratorium Teknik Mesin Budidaya Pertanian, Departemen Teknik Pertanian, IPB.

Sembiring EN, Suastawa I, Desrial. 1990. Sumber Tenaga Tarik di Bidang Pertanian. JICA/DGHE/IPB PROJECT/ADAET : JTA-9a(132). Proyek Peningkatan Perguruan Tinggi, IPB.

Srivastava AK, Goering CE, Rohrbach RP. 1996. Engineering Principles of Agricultural Machines. Michigan: ASAE

Sudianto D. 2000. Perancangan dan Pengukuran Kemampuan Traksi Roda baja Bersirip Gerak dengan Mekanisme Sirip Berpegas dan Sirip Karet pada Tanah Basah. Skripsi. Jurusan Mekanisasi Pertanian, IPB, Bogor.

Sumarno dan Harnoto. 1983. Kedelai dan cara bercocok tanamnya. Pusat Penelitian dan Pengembangan Tanaman Pangan. Buletin Teknik 6:53 hal.

Virawan G. 1989. Skripsi. Disain dan Uji Mesin Penanam dan Pemupuk Dengan Tenaga Tarik Traktor Tangan. Fakultas Teknologi Pertanian, IPB. Bogor.

Wesley LD. 1973. Some Basic Engineering Properties of Halloysite and Allophane Clays in Java, Indonesia. Geotechnique Vol 23, No. 4, pp. 471- 494. Yanmar Diesel Indonesia [YDI]. 2014. Spesifikasi - YZC Seri. [terhubung berkala]

(47)

Lampiran 1 Spesifikasi traktor roda-2 yang digunakan

Sumber: YDI 2014

Model YZC-L

Dimensi Panjang – mm 2414

Lebar – mm 800

Tinggi – mm 1130

Berat Berat, kg 352

Motor Penggerak Model TF 105 ML-di

Sistem pembakaran Injeksi langsung

Volume langkah (cc) 583

Daya keluaran , KW (PS)/rpm 10,5/2400

Bahan Bakar solar

Kapasitas Tangki Bahan Bakar, L 11

Metode penyalaan Manual (engkol)

Transmisi Tipe transmisi Roda gigi - rantai

Transmisi mundur Roda gigi - rantai

Transmisi utama Roda gigi - rantai

Jumlah gigi F3/R1

Jalur penggerak Roda depan 5-12

Kopeling Cakram majemuk kering

Rem bantalan rem

Kemudi Kopling belok

PTO Gigi PTO F2

Kopeling Cakram majemuk kering

Penggandengan Stay hitch

Traktor yang sesuai Traktor rotary

Metode penyambungan Traktor rotary

Metode pembajakan Stay hitch

Lebar pembajakan, mm Rotary

Kedalaman bajak 660

(48)

Lampiran 2 Karakteristik flexible shaft sampel dengan panjang 500 mm)

Lampiran 3 Hasil Pengkuran Jarak Tanam Lima Jenis Roda Penggerak

(49)

Lampiran 4 Data Pengujian Luncuran Roda Penggerak pada Lahan Basah (Pegas

Lampiran 5 Data Pengujian Luncuran Roda Penggerak pada Lahan Kering (Pegas B)

Jenis Roda Ulangan

(50)

Lampiran 6 Data Pengujian Luncuran Roda Penggerak pada Lahan Basah (Pegas A)

Jenis Roda Ulangan Jarak tiga putaran (cm)

rata-rata (cm)

Keliling aktual tiga putaran roda

(cm)

Luncuran (%) Roda karet

bersirip karet

1 375

323.33 236.71 36.59

2 315

3 280

Lampiran 7 Jumlah Tanah Melekat pada Roda

Jenis Lahan Jenis Roda Berat Tanah (gram)

Basah

Karet tanpa sirip 987

Baja tanpa sirip 1274

Baja bersirip karet 2798 Baja bersirip baja 2608 Karet bersirip karet 2373

Kering

Karet tanpa sirip 2

Baja tanpa sirip 3

Baja bersirip karet 4

Baja bersirip baja 28

(51)

39 Lampiran 8 Hasil Pengukuran Kondisi Tanah pada Tanah Kering

1. Roda Karet Bersirip Karet

Sampel No.

2. Roda Besi Bersirip Karet

Sampel No.

(52)

40

4. Roda Besi Tanpa Sirip

(53)

41 5. Roda Karet Tanpa Sirip

Sampel No.

Lampiran 9 Pengukuran Kondisi Tanah pada Tanah Basah 1. Roda Karet Bersirip Karet

(54)

42

2. Roda Besi Bersirip Karet

Sampel No.

3. Roda Besi Bersirip Besi

(55)

43 4. Roda Besi Tanpa Sirip

Sampel No.

5. Roda Karet Tanpa Sirip

(56)

44

(57)
(58)
(59)
(60)

RIWAYAT HIDUP

Gambar

Tabel 1 Jarak dan populasi kedelai per hektar (Sumarno dan Harnoto  1983)
Gambar 2 Mesin tanam acak dan hasil penempatannya (Srivastava et al. 1996)
Gambar 3 dan 4.
Gambar 5  Mesin tanam presisi (Pneumatic Planter) dan  hasil penanamannya
+7

Referensi

Dokumen terkait

perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user86.Sawi Monumen Sawi monumen tubuhnya amat tegak dan berdaun kompak. Penampilan sawi jenis ini sekilas mirip dengan petsai. Tangkai daun berwarna putih berukuran agak lebar dengan tulang daun yang juga berwarna putih. Daunnya sendiri berwarna hijau segar. Jenis sawi ini tegolong terbesar dan terberat di antara jenis sawi lainnya. D.Syarat Tumbuh Tanaman Sawi Syarat tumbuh tanaman sawi dalam budidaya tanaman sawi adalah sebagai berikut : 1.Iklim Tanaman sawi tidak cocok dengan hawa panas, yang dikehendaki ialah hawa yang dingin dengan suhu antara 150 C - 200 C. Pada suhu di bawah 150 C cepat berbunga, sedangkan pada suhu di atas 200 C tidak akan berbunga. 2.Ketinggian Tempat Di daerah pegunungan yang tingginya lebih dari 1000 m dpl tanaman sawi bisa bertelur, tetapi di daerah rendah tak bisa bertelur. 3.Tanah Tanaman sawi tumbuh dengan baik pada tanah lempung yang subur dan cukup menahan air. (AAK, 1992). Syarat-syarat penting untuk bertanam sawi ialah tanahnya gembur, banyak mengandung humus (subur), dan keadaan pembuangan airnya (drainase) baik. Derajat keasaman tanah (pH) antara 6–7 (Sunaryono dan Rismunandar, 1984). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user9E.Teknik Budidaya Tanaman Sawi 1.Pengadaan benih Benih merupakan salah satu faktor penentu keberhasilan usaha tani. Kebutuhan benih sawi untuk setiap hektar lahan tanam sebesar 750 gram. Benih sawi berbentuk bulat, kecil-kecil. Permukaannya licin mengkilap dan agak keras. Warna kulit benih coklat kehitaman. Benih yang akan kita gunakan harus mempunyai kualitas yang baik, seandainya beli harus kita perhatikan lama penyimpanan, varietas, kadar air, suhu dan tempat menyimpannya. Selain itu juga harus memperhatikan kemasan benih harus utuh. kemasan yang baik adalah dengan alumunium foil. Apabila benih yang kita gunakan dari hasil pananaman kita harus memperhatikan kualitas benih itu, misalnya tanaman yang akan diambil sebagai benih harus berumur lebih dari 70 hari. Penanaman sawi memperhatikan proses yang akan dilakukan misalnya dengan dianginkan, disimpan di tempat penyimpanan dan diharapkan lama penyimpanan benih tidak lebih dari 3 tahun.( Eko Margiyanto, 2007) Pengadaan benih dapat dilakukan dengan cara membuat sendiri atau membeli benih yang telah siap tanam. Pengadaan benih dengan cara membeli akan lebih praktis, petani tinggal menggunakan tanpa jerih payah. Sedangkan pengadaan benih dengan cara membuat sendiri cukup rumit. Di samping itu, mutunya belum tentu terjamin baik (Cahyono, 2003). Sawi diperbanyak dengan benih. Benih yang akan diusahakan harus dipilih yang berdaya tumbuh baik. Benih sawi sudah banyak dijual di toko-toko pertanian. Sebelum ditanam di lapang, sebaiknya benih sawi disemaikan terlebih dahulu. Persemaian dapat dilakukan di bedengan atau di kotak persemaian (Anonim, 2007). 2.Pengolahan tanah Sebelum menanam sawi hendaknya tanah digarap lebih dahulu, supaya tanah-tanah yang padat bisa menjadi longgar, sehingga pertukaran perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user10udara di dalam tanah menjadi baik, gas-gas oksigen dapat masuk ke dalam tanah, gas-gas yang meracuni akar tanaman dapat teroksidasi, dan asam-asam dapat keluar dari tanah. Selain itu, dengan longgarnya tanah maka akar tanaman dapat bergerak dengan bebas meyerap zat-zat makanan di dalamnya (AAK, 1992). Untuk tanaman sayuran dibutuhkan tanah yang mempunyai syarat-syarat di bawah ini : a.Tanah harus gembur sampai cukup dalam. b.Di dalam tanah tidak boleh banyak batu. c.Air dalam tanah mudah meresap ke bawah. Ini berarti tanah tersebut tidak boleh mudah menjadi padat. d.Dalam musim hujan, air harus mudah meresap ke dalam tanah. Ini berarti pembuangan air harus cukup baik. Tujuan pembuatan bedengan dalam budidaya tanaman sayuran adalah : a.Memudahkan pembuangan air hujan, melalui selokan. b.Memudahkan meresapnya air hujan maupun air penyiraman ke dalam tanah. c.Memudahkan pemeliharaan, karena kita dapat berjalan antar bedengan dengan bedengan. d.Menghindarkan terinjak-injaknya tanah antara tanaman hingga menjadi padat. ( Rismunandar, 1983 ). 3.Penanaman Pada penanaman yang benihnya langsung disebarkan di tempat penanaman, yang perlu dijalankan adalah : a.Supaya keadaan tanah tetap lembab dan untuk mempercepat berkecambahnya benih, sehari sebelum tanam, tanah harus diairi terlebih dahulu. perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user11b.Tanah diaduk (dihaluskan), rumput-rumput dihilangkan, kemudian benih disebarkan menurut deretan secara merata. c.Setelah disebarkan, benih tersebut ditutup dengan tanah, pasir, atau pupuk kandang yang halus. d.Kemudian disiram sampai merata, dan waktu yang baik dalam meyebarkan benih adalah pagi atau sore hari. (AAK, 1992). Penanaman dapat dilakukan setelah tanaman sawi berumur 3 - 4 Minggu sejak benih disemaikan. Jarak tanam yang digunakan umumnya 20 x 20 cm. Kegiatan penanaman ini sebaiknya dilakukan pada sore hari agar air siraman tidak menguap dan tanah menjadi lembab (Anonim, 2007). Waktu bertanam yang baik adalah pada akhir musim hujan (Maret). Walaupun demikian dapat pula ditanam pada musim kemarau, asalkan diberi air secukupnya (Sunaryono dan Rismunandar, 1984). 4.Pemeliharaan tanaman Pemeliharaan dalam budidaya tanaman sawi meliputi tahapan penjarangan tanaman, penyiangan dan pembumbunan, serta pemupukan susulan. a.Penjarangan tanaman Penanaman sawi tanpa melalui tahap pembibitan biasanya tumbuh kurang teratur. Di sana-sini sering terlihat tanaman-tanaman yang terlalu pendek/dekat. Jika hal ini dibiarkan akan menyebabkan pertumbuhan tanaman tersebut kurang begitu baik. Jarak yang terlalu rapat menyebabkan adanya persaingan dalam menyerap unsur-unsur hara di dalam tanah. Dalam hal ini penjarangan dilakukan untuk mendapatkan kualitas hasil yang baik. Penjarangan umumnya dilakukan 2 minggu setelah penanaman. Caranya dengan mencabut tanaman yang tumbuh terlalu rapat. Sisakan tanaman yang tumbuh baik dengan jarak antar tanaman yang teratur (Haryanto et al., 1995). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user12b.Penyiangan dan pembumbunan Biasanya setelah turun hujan, tanah di sekitar tanaman menjadi padat sehingga perlu digemburkan. Sambil menggemburkan tanah, kita juga dapat melakukan pencabutan rumput-rumput liar yang tumbuh. Penggemburan tanah ini jangan sampai merusak perakaran tanaman. Kegiatan ini biasanya dilakukan 2 minggu sekali (Anonim, 2007). Untuk membersihkan tanaman liar berupa rerumputan seperti alang-alang hampir sama dengan tanaman perdu, mula-mula rumput dicabut kemudian tanah dikorek dengan gancu. Akar-akar yang terangkat diambil, dikumpulkan, lalu dikeringkan di bawah sinar matahari, setelah kering, rumput kemudian dibakar (Duljapar dan Khoirudin, 2000). Ketika tanaman berumur satu bulan perlu dilakukan penyiangan dan pembumbunan. Tujuannya agar tanaman tidak terganggu oleh gulma dan menjaga agar akar tanaman tidak terkena sinar matahari secara langsung (Tim Penulis PS, 1995 ). c.Pemupukan Setelah tanaman tumbuh baik, kira-kira 10 hari setelah tanam, pemupukan perlu dilakukan. Oleh karena yang akan dikonsumsi adalah daunnya yang tentunya diinginkan penampilan daun yang baik, maka pupuk yang diberikan sebaiknya mengandung Nitrogen (Anonim, 2007). Pemberian Urea sebagai pupuk tambahan bisa dilakukan dengan cara penaburan dalam larikan yang lantas ditutupi tanah kembali. Dapat juga dengan melarutkan dalam air, lalu disiramkan pada bedeng penanaman. Satu sendok urea, sekitar 25 g, dilarutkan dalam 25 l air dapat disiramkan untuk 5 m bedengan. Pada saat penyiraman, tanah dalam bedengan sebaiknya tidak dalam keadaan kering. Waktu penyiraman pupuk tambahan dapat dilakukan pagi atau sore hari (Haryanto et al., 1995). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user13Jenis-jenis unsur yag diperlukan tanaman sudah kita ketahui bersama. Kini kita beralih membicarakan pupuk atau rabuk, yang merupakan kunci dari kesuburan tanah kita. Karena pupuk tak lain dari zat yang berisisi satu unsur atau lebih yang dimaksudkan untuk menggantikan unsur yang habis diserap tanaman dari tanah. Jadi kalau kita memupuk berarti menambah unsur hara bagi tanah (pupuk akar) dan tanaman (pupuk daun). Sama dengan unsur hara tanah yang mengenal unsur hara makro dan mikro, pupuk juga demikian. Jadi meskipun jumlah pupuk belakangan cenderung makin beragam dengan merek yang bermacam-macam, kita tidak akan terkecoh. Sebab pupuk apapun namanya, entah itu buatan manca negara, dari segi unsur yang dikandungnya ia tak lain dari pupuk makro atau pupuk mikro. Jadi patokan kita dalam membeli pupuk adalah unsur yang dikandungnya (Lingga, 1997). Pemupukan membantu tanaman memperoleh hara yang dibutuhkanya. Unsur hara yang pokok dibutuhkan tanaman adalah unsur Nitrogen (N), Fosfor (P), dan Kalium (K). Itulah sebabnya ketiga unsur ini (NPK) merupakan pupuk utama yang dibutuhkan oleh tanaman. Pupuk organik juga dibutuhkan oleh tanaman, memang kandungan haranya jauh dibawah pupuk kimia, tetapi pupuk organik memiliki kelebihan membantu menggemburkan tanah dan menyatu secara alami menambah unsur hara dan memperbaiki struktur tanah (Nazarudin, 1998). 5.Pengendalian hama dan penyakit Hama yang sering menyerang tanaman sawi adalah ulat daun. Apabila tanaman telah diserangnya, maka tanaman perlu disemprot dengan insektisida. Yang perlu diperhatikan adalah waktu penyemprotannya. Untuk tanaman sayur-sayuran, penyemprotan dilakukan minimal 20 hari sebelum dipanen agar keracunan pada konsumen dapat terhindar (Anonim, 2007). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user14OPT yang menyerang pada tanaman sawi yaitu kumbang daun (Phyllotreta vitata), ulat daun (Plutella xylostella), ulat titik tumbuh (Crocidolomia binotalis), dan lalat pengerek daun (Lyriomiza sp.). Berdasarkan tingkat populasi dan kerusakan tanaman yang ditimbulkan, maka peringkat OPT yang menyerang tanaman sawi berturut-turut adalah P. vitata, Lyriomiza sp., P. xylostella, dan C. binotalis. Hama P. vitatamerupakan hama utama, dan hama P. xylostella serta Lyriomiza sp. merupakan hama potensial pada tanaman sawi, sedangkan hamaC. binotalis perlu diwaspadai keberadaanya (Mukasan et al., 2005). Beberapa jenis penyakit yang diketahui menyerang tanaman sawi antara lain: penyakit akar pekuk/akar gada, bercak daun altermaria, busuk basah, embun tepung, rebah semai, busuk daun, busuk Rhizoctonia, bercak daun, dan virus mosaik (Haryanto et al., 1995). 6.Pemanenan Tanaman sawi dapat dipetik hasilnya setelah berumur 2 bulan. Banyak cara yang dilakukan untuk memanen sawi, yaitu: ada yang mencabut seluruh tanaman, ada yang memotong bagian batangnya tepat di atas permukaan tanah, dan ada juga yang memetik daunnya satu per satu. Cara yang terakhir ini dimaksudkan agar tanaman bisa tahan lama (Edy margiyanto,

perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user86.Sawi Monumen Sawi monumen tubuhnya amat tegak dan berdaun kompak. Penampilan sawi jenis ini sekilas mirip dengan petsai. Tangkai daun berwarna putih berukuran agak lebar dengan tulang daun yang juga berwarna putih. Daunnya sendiri berwarna hijau segar. Jenis sawi ini tegolong terbesar dan terberat di antara jenis sawi lainnya. D.Syarat Tumbuh Tanaman Sawi Syarat tumbuh tanaman sawi dalam budidaya tanaman sawi adalah sebagai berikut : 1.Iklim Tanaman sawi tidak cocok dengan hawa panas, yang dikehendaki ialah hawa yang dingin dengan suhu antara 150 C - 200 C. Pada suhu di bawah 150 C cepat berbunga, sedangkan pada suhu di atas 200 C tidak akan berbunga. 2.Ketinggian Tempat Di daerah pegunungan yang tingginya lebih dari 1000 m dpl tanaman sawi bisa bertelur, tetapi di daerah rendah tak bisa bertelur. 3.Tanah Tanaman sawi tumbuh dengan baik pada tanah lempung yang subur dan cukup menahan air. (AAK, 1992). Syarat-syarat penting untuk bertanam sawi ialah tanahnya gembur, banyak mengandung humus (subur), dan keadaan pembuangan airnya (drainase) baik. Derajat keasaman tanah (pH) antara 6–7 (Sunaryono dan Rismunandar, 1984). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user9E.Teknik Budidaya Tanaman Sawi 1.Pengadaan benih Benih merupakan salah satu faktor penentu keberhasilan usaha tani. Kebutuhan benih sawi untuk setiap hektar lahan tanam sebesar 750 gram. Benih sawi berbentuk bulat, kecil-kecil. Permukaannya licin mengkilap dan agak keras. Warna kulit benih coklat kehitaman. Benih yang akan kita gunakan harus mempunyai kualitas yang baik, seandainya beli harus kita perhatikan lama penyimpanan, varietas, kadar air, suhu dan tempat menyimpannya. Selain itu juga harus memperhatikan kemasan benih harus utuh. kemasan yang baik adalah dengan alumunium foil. Apabila benih yang kita gunakan dari hasil pananaman kita harus memperhatikan kualitas benih itu, misalnya tanaman yang akan diambil sebagai benih harus berumur lebih dari 70 hari. Penanaman sawi memperhatikan proses yang akan dilakukan misalnya dengan dianginkan, disimpan di tempat penyimpanan dan diharapkan lama penyimpanan benih tidak lebih dari 3 tahun.( Eko Margiyanto, 2007) Pengadaan benih dapat dilakukan dengan cara membuat sendiri atau membeli benih yang telah siap tanam. Pengadaan benih dengan cara membeli akan lebih praktis, petani tinggal menggunakan tanpa jerih payah. Sedangkan pengadaan benih dengan cara membuat sendiri cukup rumit. Di samping itu, mutunya belum tentu terjamin baik (Cahyono, 2003). Sawi diperbanyak dengan benih. Benih yang akan diusahakan harus dipilih yang berdaya tumbuh baik. Benih sawi sudah banyak dijual di toko-toko pertanian. Sebelum ditanam di lapang, sebaiknya benih sawi disemaikan terlebih dahulu. Persemaian dapat dilakukan di bedengan atau di kotak persemaian (Anonim, 2007). 2.Pengolahan tanah Sebelum menanam sawi hendaknya tanah digarap lebih dahulu, supaya tanah-tanah yang padat bisa menjadi longgar, sehingga pertukaran perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user10udara di dalam tanah menjadi baik, gas-gas oksigen dapat masuk ke dalam tanah, gas-gas yang meracuni akar tanaman dapat teroksidasi, dan asam-asam dapat keluar dari tanah. Selain itu, dengan longgarnya tanah maka akar tanaman dapat bergerak dengan bebas meyerap zat-zat makanan di dalamnya (AAK, 1992). Untuk tanaman sayuran dibutuhkan tanah yang mempunyai syarat-syarat di bawah ini : a.Tanah harus gembur sampai cukup dalam. b.Di dalam tanah tidak boleh banyak batu. c.Air dalam tanah mudah meresap ke bawah. Ini berarti tanah tersebut tidak boleh mudah menjadi padat. d.Dalam musim hujan, air harus mudah meresap ke dalam tanah. Ini berarti pembuangan air harus cukup baik. Tujuan pembuatan bedengan dalam budidaya tanaman sayuran adalah : a.Memudahkan pembuangan air hujan, melalui selokan. b.Memudahkan meresapnya air hujan maupun air penyiraman ke dalam tanah. c.Memudahkan pemeliharaan, karena kita dapat berjalan antar bedengan dengan bedengan. d.Menghindarkan terinjak-injaknya tanah antara tanaman hingga menjadi padat. ( Rismunandar, 1983 ). 3.Penanaman Pada penanaman yang benihnya langsung disebarkan di tempat penanaman, yang perlu dijalankan adalah : a.Supaya keadaan tanah tetap lembab dan untuk mempercepat berkecambahnya benih, sehari sebelum tanam, tanah harus diairi terlebih dahulu. perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user11b.Tanah diaduk (dihaluskan), rumput-rumput dihilangkan, kemudian benih disebarkan menurut deretan secara merata. c.Setelah disebarkan, benih tersebut ditutup dengan tanah, pasir, atau pupuk kandang yang halus. d.Kemudian disiram sampai merata, dan waktu yang baik dalam meyebarkan benih adalah pagi atau sore hari. (AAK, 1992). Penanaman dapat dilakukan setelah tanaman sawi berumur 3 - 4 Minggu sejak benih disemaikan. Jarak tanam yang digunakan umumnya 20 x 20 cm. Kegiatan penanaman ini sebaiknya dilakukan pada sore hari agar air siraman tidak menguap dan tanah menjadi lembab (Anonim, 2007). Waktu bertanam yang baik adalah pada akhir musim hujan (Maret). Walaupun demikian dapat pula ditanam pada musim kemarau, asalkan diberi air secukupnya (Sunaryono dan Rismunandar, 1984). 4.Pemeliharaan tanaman Pemeliharaan dalam budidaya tanaman sawi meliputi tahapan penjarangan tanaman, penyiangan dan pembumbunan, serta pemupukan susulan. a.Penjarangan tanaman Penanaman sawi tanpa melalui tahap pembibitan biasanya tumbuh kurang teratur. Di sana-sini sering terlihat tanaman-tanaman yang terlalu pendek/dekat. Jika hal ini dibiarkan akan menyebabkan pertumbuhan tanaman tersebut kurang begitu baik. Jarak yang terlalu rapat menyebabkan adanya persaingan dalam menyerap unsur-unsur hara di dalam tanah. Dalam hal ini penjarangan dilakukan untuk mendapatkan kualitas hasil yang baik. Penjarangan umumnya dilakukan 2 minggu setelah penanaman. Caranya dengan mencabut tanaman yang tumbuh terlalu rapat. Sisakan tanaman yang tumbuh baik dengan jarak antar tanaman yang teratur (Haryanto et al., 1995). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user12b.Penyiangan dan pembumbunan Biasanya setelah turun hujan, tanah di sekitar tanaman menjadi padat sehingga perlu digemburkan. Sambil menggemburkan tanah, kita juga dapat melakukan pencabutan rumput-rumput liar yang tumbuh. Penggemburan tanah ini jangan sampai merusak perakaran tanaman. Kegiatan ini biasanya dilakukan 2 minggu sekali (Anonim, 2007). Untuk membersihkan tanaman liar berupa rerumputan seperti alang-alang hampir sama dengan tanaman perdu, mula-mula rumput dicabut kemudian tanah dikorek dengan gancu. Akar-akar yang terangkat diambil, dikumpulkan, lalu dikeringkan di bawah sinar matahari, setelah kering, rumput kemudian dibakar (Duljapar dan Khoirudin, 2000). Ketika tanaman berumur satu bulan perlu dilakukan penyiangan dan pembumbunan. Tujuannya agar tanaman tidak terganggu oleh gulma dan menjaga agar akar tanaman tidak terkena sinar matahari secara langsung (Tim Penulis PS, 1995 ). c.Pemupukan Setelah tanaman tumbuh baik, kira-kira 10 hari setelah tanam, pemupukan perlu dilakukan. Oleh karena yang akan dikonsumsi adalah daunnya yang tentunya diinginkan penampilan daun yang baik, maka pupuk yang diberikan sebaiknya mengandung Nitrogen (Anonim, 2007). Pemberian Urea sebagai pupuk tambahan bisa dilakukan dengan cara penaburan dalam larikan yang lantas ditutupi tanah kembali. Dapat juga dengan melarutkan dalam air, lalu disiramkan pada bedeng penanaman. Satu sendok urea, sekitar 25 g, dilarutkan dalam 25 l air dapat disiramkan untuk 5 m bedengan. Pada saat penyiraman, tanah dalam bedengan sebaiknya tidak dalam keadaan kering. Waktu penyiraman pupuk tambahan dapat dilakukan pagi atau sore hari (Haryanto et al., 1995). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user13Jenis-jenis unsur yag diperlukan tanaman sudah kita ketahui bersama. Kini kita beralih membicarakan pupuk atau rabuk, yang merupakan kunci dari kesuburan tanah kita. Karena pupuk tak lain dari zat yang berisisi satu unsur atau lebih yang dimaksudkan untuk menggantikan unsur yang habis diserap tanaman dari tanah. Jadi kalau kita memupuk berarti menambah unsur hara bagi tanah (pupuk akar) dan tanaman (pupuk daun). Sama dengan unsur hara tanah yang mengenal unsur hara makro dan mikro, pupuk juga demikian. Jadi meskipun jumlah pupuk belakangan cenderung makin beragam dengan merek yang bermacam-macam, kita tidak akan terkecoh. Sebab pupuk apapun namanya, entah itu buatan manca negara, dari segi unsur yang dikandungnya ia tak lain dari pupuk makro atau pupuk mikro. Jadi patokan kita dalam membeli pupuk adalah unsur yang dikandungnya (Lingga, 1997). Pemupukan membantu tanaman memperoleh hara yang dibutuhkanya. Unsur hara yang pokok dibutuhkan tanaman adalah unsur Nitrogen (N), Fosfor (P), dan Kalium (K). Itulah sebabnya ketiga unsur ini (NPK) merupakan pupuk utama yang dibutuhkan oleh tanaman. Pupuk organik juga dibutuhkan oleh tanaman, memang kandungan haranya jauh dibawah pupuk kimia, tetapi pupuk organik memiliki kelebihan membantu menggemburkan tanah dan menyatu secara alami menambah unsur hara dan memperbaiki struktur tanah (Nazarudin, 1998). 5.Pengendalian hama dan penyakit Hama yang sering menyerang tanaman sawi adalah ulat daun. Apabila tanaman telah diserangnya, maka tanaman perlu disemprot dengan insektisida. Yang perlu diperhatikan adalah waktu penyemprotannya. Untuk tanaman sayur-sayuran, penyemprotan dilakukan minimal 20 hari sebelum dipanen agar keracunan pada konsumen dapat terhindar (Anonim, 2007). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user14OPT yang menyerang pada tanaman sawi yaitu kumbang daun (Phyllotreta vitata), ulat daun (Plutella xylostella), ulat titik tumbuh (Crocidolomia binotalis), dan lalat pengerek daun (Lyriomiza sp.). Berdasarkan tingkat populasi dan kerusakan tanaman yang ditimbulkan, maka peringkat OPT yang menyerang tanaman sawi berturut-turut adalah P. vitata, Lyriomiza sp., P. xylostella, dan C. binotalis. Hama P. vitatamerupakan hama utama, dan hama P. xylostella serta Lyriomiza sp. merupakan hama potensial pada tanaman sawi, sedangkan hamaC. binotalis perlu diwaspadai keberadaanya (Mukasan et al., 2005). Beberapa jenis penyakit yang diketahui menyerang tanaman sawi antara lain: penyakit akar pekuk/akar gada, bercak daun altermaria, busuk basah, embun tepung, rebah semai, busuk daun, busuk Rhizoctonia, bercak daun, dan virus mosaik (Haryanto et al., 1995). 6.Pemanenan Tanaman sawi dapat dipetik hasilnya setelah berumur 2 bulan. Banyak cara yang dilakukan untuk memanen sawi, yaitu: ada yang mencabut seluruh tanaman, ada yang memotong bagian batangnya tepat di atas permukaan tanah, dan ada juga yang memetik daunnya satu per satu. Cara yang terakhir ini dimaksudkan agar tanaman bisa tahan lama (Edy margiyanto,

perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user86.Sawi Monumen Sawi monumen tubuhnya amat tegak dan berdaun kompak. Penampilan sawi jenis ini sekilas mirip dengan petsai. Tangkai daun berwarna putih berukuran agak lebar dengan tulang daun yang juga berwarna putih. Daunnya sendiri berwarna hijau segar. Jenis sawi ini tegolong terbesar dan terberat di antara jenis sawi lainnya. D.Syarat Tumbuh Tanaman Sawi Syarat tumbuh tanaman sawi dalam budidaya tanaman sawi adalah sebagai berikut : 1.Iklim Tanaman sawi tidak cocok dengan hawa panas, yang dikehendaki ialah hawa yang dingin dengan suhu antara 150 C - 200 C. Pada suhu di bawah 150 C cepat berbunga, sedangkan pada suhu di atas 200 C tidak akan berbunga. 2.Ketinggian Tempat Di daerah pegunungan yang tingginya lebih dari 1000 m dpl tanaman sawi bisa bertelur, tetapi di daerah rendah tak bisa bertelur. 3.Tanah Tanaman sawi tumbuh dengan baik pada tanah lempung yang subur dan cukup menahan air. (AAK, 1992). Syarat-syarat penting untuk bertanam sawi ialah tanahnya gembur, banyak mengandung humus (subur), dan keadaan pembuangan airnya (drainase) baik. Derajat keasaman tanah (pH) antara 6–7 (Sunaryono dan Rismunandar, 1984). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user9E.Teknik Budidaya Tanaman Sawi 1.Pengadaan benih Benih merupakan salah satu faktor penentu keberhasilan usaha tani. Kebutuhan benih sawi untuk setiap hektar lahan tanam sebesar 750 gram. Benih sawi berbentuk bulat, kecil-kecil. Permukaannya licin mengkilap dan agak keras. Warna kulit benih coklat kehitaman. Benih yang akan kita gunakan harus mempunyai kualitas yang baik, seandainya beli harus kita perhatikan lama penyimpanan, varietas, kadar air, suhu dan tempat menyimpannya. Selain itu juga harus memperhatikan kemasan benih harus utuh. kemasan yang baik adalah dengan alumunium foil. Apabila benih yang kita gunakan dari hasil pananaman kita harus memperhatikan kualitas benih itu, misalnya tanaman yang akan diambil sebagai benih harus berumur lebih dari 70 hari. Penanaman sawi memperhatikan proses yang akan dilakukan misalnya dengan dianginkan, disimpan di tempat penyimpanan dan diharapkan lama penyimpanan benih tidak lebih dari 3 tahun.( Eko Margiyanto, 2007) Pengadaan benih dapat dilakukan dengan cara membuat sendiri atau membeli benih yang telah siap tanam. Pengadaan benih dengan cara membeli akan lebih praktis, petani tinggal menggunakan tanpa jerih payah. Sedangkan pengadaan benih dengan cara membuat sendiri cukup rumit. Di samping itu, mutunya belum tentu terjamin baik (Cahyono, 2003). Sawi diperbanyak dengan benih. Benih yang akan diusahakan harus dipilih yang berdaya tumbuh baik. Benih sawi sudah banyak dijual di toko-toko pertanian. Sebelum ditanam di lapang, sebaiknya benih sawi disemaikan terlebih dahulu. Persemaian dapat dilakukan di bedengan atau di kotak persemaian (Anonim, 2007). 2.Pengolahan tanah Sebelum menanam sawi hendaknya tanah digarap lebih dahulu, supaya tanah-tanah yang padat bisa menjadi longgar, sehingga pertukaran perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user10udara di dalam tanah menjadi baik, gas-gas oksigen dapat masuk ke dalam tanah, gas-gas yang meracuni akar tanaman dapat teroksidasi, dan asam-asam dapat keluar dari tanah. Selain itu, dengan longgarnya tanah maka akar tanaman dapat bergerak dengan bebas meyerap zat-zat makanan di dalamnya (AAK, 1992). Untuk tanaman sayuran dibutuhkan tanah yang mempunyai syarat-syarat di bawah ini : a.Tanah harus gembur sampai cukup dalam. b.Di dalam tanah tidak boleh banyak batu. c.Air dalam tanah mudah meresap ke bawah. Ini berarti tanah tersebut tidak boleh mudah menjadi padat. d.Dalam musim hujan, air harus mudah meresap ke dalam tanah. Ini berarti pembuangan air harus cukup baik. Tujuan pembuatan bedengan dalam budidaya tanaman sayuran adalah : a.Memudahkan pembuangan air hujan, melalui selokan. b.Memudahkan meresapnya air hujan maupun air penyiraman ke dalam tanah. c.Memudahkan pemeliharaan, karena kita dapat berjalan antar bedengan dengan bedengan. d.Menghindarkan terinjak-injaknya tanah antara tanaman hingga menjadi padat. ( Rismunandar, 1983 ). 3.Penanaman Pada penanaman yang benihnya langsung disebarkan di tempat penanaman, yang perlu dijalankan adalah : a.Supaya keadaan tanah tetap lembab dan untuk mempercepat berkecambahnya benih, sehari sebelum tanam, tanah harus diairi terlebih dahulu. perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user11b.Tanah diaduk (dihaluskan), rumput-rumput dihilangkan, kemudian benih disebarkan menurut deretan secara merata. c.Setelah disebarkan, benih tersebut ditutup dengan tanah, pasir, atau pupuk kandang yang halus. d.Kemudian disiram sampai merata, dan waktu yang baik dalam meyebarkan benih adalah pagi atau sore hari. (AAK, 1992). Penanaman dapat dilakukan setelah tanaman sawi berumur 3 - 4 Minggu sejak benih disemaikan. Jarak tanam yang digunakan umumnya 20 x 20 cm. Kegiatan penanaman ini sebaiknya dilakukan pada sore hari agar air siraman tidak menguap dan tanah menjadi lembab (Anonim, 2007). Waktu bertanam yang baik adalah pada akhir musim hujan (Maret). Walaupun demikian dapat pula ditanam pada musim kemarau, asalkan diberi air secukupnya (Sunaryono dan Rismunandar, 1984). 4.Pemeliharaan tanaman Pemeliharaan dalam budidaya tanaman sawi meliputi tahapan penjarangan tanaman, penyiangan dan pembumbunan, serta pemupukan susulan. a.Penjarangan tanaman Penanaman sawi tanpa melalui tahap pembibitan biasanya tumbuh kurang teratur. Di sana-sini sering terlihat tanaman-tanaman yang terlalu pendek/dekat. Jika hal ini dibiarkan akan menyebabkan pertumbuhan tanaman tersebut kurang begitu baik. Jarak yang terlalu rapat menyebabkan adanya persaingan dalam menyerap unsur-unsur hara di dalam tanah. Dalam hal ini penjarangan dilakukan untuk mendapatkan kualitas hasil yang baik. Penjarangan umumnya dilakukan 2 minggu setelah penanaman. Caranya dengan mencabut tanaman yang tumbuh terlalu rapat. Sisakan tanaman yang tumbuh baik dengan jarak antar tanaman yang teratur (Haryanto et al., 1995). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user12b.Penyiangan dan pembumbunan Biasanya setelah turun hujan, tanah di sekitar tanaman menjadi padat sehingga perlu digemburkan. Sambil menggemburkan tanah, kita juga dapat melakukan pencabutan rumput-rumput liar yang tumbuh. Penggemburan tanah ini jangan sampai merusak perakaran tanaman. Kegiatan ini biasanya dilakukan 2 minggu sekali (Anonim, 2007). Untuk membersihkan tanaman liar berupa rerumputan seperti alang-alang hampir sama dengan tanaman perdu, mula-mula rumput dicabut kemudian tanah dikorek dengan gancu. Akar-akar yang terangkat diambil, dikumpulkan, lalu dikeringkan di bawah sinar matahari, setelah kering, rumput kemudian dibakar (Duljapar dan Khoirudin, 2000). Ketika tanaman berumur satu bulan perlu dilakukan penyiangan dan pembumbunan. Tujuannya agar tanaman tidak terganggu oleh gulma dan menjaga agar akar tanaman tidak terkena sinar matahari secara langsung (Tim Penulis PS, 1995 ). c.Pemupukan Setelah tanaman tumbuh baik, kira-kira 10 hari setelah tanam, pemupukan perlu dilakukan. Oleh karena yang akan dikonsumsi adalah daunnya yang tentunya diinginkan penampilan daun yang baik, maka pupuk yang diberikan sebaiknya mengandung Nitrogen (Anonim, 2007). Pemberian Urea sebagai pupuk tambahan bisa dilakukan dengan cara penaburan dalam larikan yang lantas ditutupi tanah kembali. Dapat juga dengan melarutkan dalam air, lalu disiramkan pada bedeng penanaman. Satu sendok urea, sekitar 25 g, dilarutkan dalam 25 l air dapat disiramkan untuk 5 m bedengan. Pada saat penyiraman, tanah dalam bedengan sebaiknya tidak dalam keadaan kering. Waktu penyiraman pupuk tambahan dapat dilakukan pagi atau sore hari (Haryanto et al., 1995). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user13Jenis-jenis unsur yag diperlukan tanaman sudah kita ketahui bersama. Kini kita beralih membicarakan pupuk atau rabuk, yang merupakan kunci dari kesuburan tanah kita. Karena pupuk tak lain dari zat yang berisisi satu unsur atau lebih yang dimaksudkan untuk menggantikan unsur yang habis diserap tanaman dari tanah. Jadi kalau kita memupuk berarti menambah unsur hara bagi tanah (pupuk akar) dan tanaman (pupuk daun). Sama dengan unsur hara tanah yang mengenal unsur hara makro dan mikro, pupuk juga demikian. Jadi meskipun jumlah pupuk belakangan cenderung makin beragam dengan merek yang bermacam-macam, kita tidak akan terkecoh. Sebab pupuk apapun namanya, entah itu buatan manca negara, dari segi unsur yang dikandungnya ia tak lain dari pupuk makro atau pupuk mikro. Jadi patokan kita dalam membeli pupuk adalah unsur yang dikandungnya (Lingga, 1997). Pemupukan membantu tanaman memperoleh hara yang dibutuhkanya. Unsur hara yang pokok dibutuhkan tanaman adalah unsur Nitrogen (N), Fosfor (P), dan Kalium (K). Itulah sebabnya ketiga unsur ini (NPK) merupakan pupuk utama yang dibutuhkan oleh tanaman. Pupuk organik juga dibutuhkan oleh tanaman, memang kandungan haranya jauh dibawah pupuk kimia, tetapi pupuk organik memiliki kelebihan membantu menggemburkan tanah dan menyatu secara alami menambah unsur hara dan memperbaiki struktur tanah (Nazarudin, 1998). 5.Pengendalian hama dan penyakit Hama yang sering menyerang tanaman sawi adalah ulat daun. Apabila tanaman telah diserangnya, maka tanaman perlu disemprot dengan insektisida. Yang perlu diperhatikan adalah waktu penyemprotannya. Untuk tanaman sayur-sayuran, penyemprotan dilakukan minimal 20 hari sebelum dipanen agar keracunan pada konsumen dapat terhindar (Anonim, 2007). perpustakaan.uns.ac.iddigilib.uns.ac.idcommit to user14OPT yang menyerang pada tanaman sawi yaitu kumbang daun (Phyllotreta vitata), ulat daun (Plutella xylostella), ulat titik tumbuh (Crocidolomia binotalis), dan lalat pengerek daun (Lyriomiza sp.). Berdasarkan tingkat populasi dan kerusakan tanaman yang ditimbulkan, maka peringkat OPT yang menyerang tanaman sawi berturut-turut adalah P. vitata, Lyriomiza sp., P. xylostella, dan C. binotalis. Hama P. vitatamerupakan hama utama, dan hama P. xylostella serta Lyriomiza sp. merupakan hama potensial pada tanaman sawi, sedangkan hamaC. binotalis perlu diwaspadai keberadaanya (Mukasan et al., 2005). Beberapa jenis penyakit yang diketahui menyerang tanaman sawi antara lain: penyakit akar pekuk/akar gada, bercak daun altermaria, busuk basah, embun tepung, rebah semai, busuk daun, busuk Rhizoctonia, bercak daun, dan virus mosaik (Haryanto et al., 1995). 6.Pemanenan Tanaman sawi dapat dipetik hasilnya setelah berumur 2 bulan. Banyak cara yang dilakukan untuk memanen sawi, yaitu: ada yang mencabut seluruh tanaman, ada yang memotong bagian batangnya tepat di atas permukaan tanah, dan ada juga yang memetik daunnya satu per satu. Cara yang terakhir ini dimaksudkan agar tanaman bisa tahan lama (Edy margiyanto,