• Tidak ada hasil yang ditemukan

Efisiensi Energi dan Sebaran Kalor Pada Tungku Berbahan Bakar Cangkang Kemiri

N/A
N/A
Protected

Academic year: 2017

Membagikan "Efisiensi Energi dan Sebaran Kalor Pada Tungku Berbahan Bakar Cangkang Kemiri"

Copied!
49
0
0

Teks penuh

(1)

EFISIENSI ENERGI DAN SEBARAN KALOR

PADA TUNGKU BERBAHAN BAKAR CANGKANG KEMIRI

JALIMAS SABASTINI

DEPARTEMEN FISIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

INSTITUT PERTANIAN BOGOR BOGOR

(2)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

Dengan ini saya menyatakan bahwa skripsi berjudul Efisiensi Energi dan Sebaran Kalor pada Tungku Berbahan Bakar Cangkang Kemiri adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

Bogor, April 2013

Jalimas Sabastini

(3)

JALIMAS SABASTINI. Efisiensi Energi dan Sebaran Kalor pada Tungku Berbahan Bakar Cangkang Kemiri. Dibimbing oleh IRZAMAN dan AKHIRUDIN MADDU.

Efisiensi energi yang didapatkan pada proses pendidihan 1 liter air dengan bahan bakar cangkang kemiri adalah sekitar 3.95 %. Jika dibandingkan dengan sekam, bahan bakar sekam efisiensinya mencapai 7.6%. Percobaan dilakukan terhadap 3 variasi diameter dasar reservoir tungku yakni 6 cm, 9 cm dan 12 cm. Efisiensi yang didapat menunjukkan bahwa diameter 6 cm memiliki efisiensi tertinggi yakni 4.19%, kemudian pada diameter 9 cm adalah 3.92%, dan terendah pada diameter 12 cm yakni 3.72%. Percobaan pada bahan bakar cangkang kemiri juga dilakukan variasi ukurannya yaitu ukuran cangkang kecil (dihancurkan terlebih dahulu) dan ukuran cangkang besar (tidak dihancurkan terlebih dahulu). Efisiensi yang didapatkan menunjukkan bahwa ukuran cangkang besar memiliki efisiensi lebih tinggi daripada cangkang ukuran kecil. Telah dianalisis pula sebaran kalor pada reservoir tungku dengan menyelesaikan persamaan sebaran kalor satu dimensi melalui pendekatan metode beda hingga skema implisit.

Kata kunci: beda hingga, cangkang kemiri, efisiensi, sebaran kalor, skema implisit

ABSTRACT

JALIMAS SABASTINI. Energy Efficiency and Heat in a Stove Using a Candlenut Shell as Biofuel. Supervised by IRZAMAN dan AKHIRUDIN MADDU.

Energy efficiency to boil 1 liter of water by using a candlenut shell as fuel is about 3.95 %. When we compared, husk fuel efficiency reaches 7.6 %. The experiments are conducted on 3 variations based on stove reservoir buttom diameter, 6 cm, 9 cm and 12 cm. Experiments showed that the diameter of 6 cm has the highest efficiency that is 4.19%, then the diameter of 9 cm is 3.92%, and the lowest is 3.72% on the diameter of 12 cm. Experiments on candlenut shell fuel also be variation in size, is the small size (shells was crushed first) and size large shell (shells was not destroyed first). Its efficiency showed that the large size of shell has a higher efficiency than the small one. Have also analyzed the distribution of heat in a stove reservoir by solving the equations of one-dimensional heat distribution using finite difference method that approach implicit scheme.

(4)

EFISIENSI ENERGI DAN SEBARAN KALOR

PADA TUNGKU BERBAHAN BAKAR CANGKANG KEMIRI

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains

pada

Departemen Fisika

DEPARTEMEN FISIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

BOGOR 2013

(5)

Judul Skripsi : Efisiensi Energi dan Sebaran Kalor Pada Tungku Berbahan Bakar Cangkang Kemiri

Nama : Jalimas Sabastini

NIM : G74080064

Disetujui oleh

Dr Ir Irzaman, M.Si Pembimbing I

Dr. Akhiruddin Maddu, M.Si Pembimbing II

Diketahui oleh

Dr. Akhiruddin Maddu, M.Si Ketua Departemen Fisika

(6)

PRAKATA

Puji syukur ke hadirat Allah SWT yang Maha Sempurna yang telah memberi rahmat-Nya sehingga penulis dapat menyelesaikan penelitian yang berjudul Efisiensi Energi dan Sebaran Kalor pada Tungku Berbahan Bakar Cangkang Kemiri. Sebaran kalor pada reservoir (tandon) tungku dianalisis dengan menggunakan metode beda hingga. Penelitian ini diharapkan dapat menjadi sumber informasi adanya bahan bakar alternatif yang dapat dimanfaatkan dan diaplikasikan bagi kehidupan masyarakat.

Pada kesempatan ini, penulis juga ingin mengucapkan terimakasih kepada: 1. Kedua orang tua, Bapak Taslim dan Ibu Suli Sriati yang tak pernah berhenti

mengalir doa dan kasih sayangnya.

2. Adik (Mety Parmiati) yang selalu memberi canda tawa dan semangat.

3. Bapak Irzaman dan Bapak Akhirudiin Maddu selaku pembimbing skripsi yang telah banyak memberi bimbingan dan motivasi.

4. Bapak Kiagus Dahlan selaku penguji yang telah memberi masukan dan saran. 5. Bapak Indro yang senantiasa menyediakan waktunya untuk memberi arahan,

motivasi dan menjadi teman diskusi.

6. Bapak Prihantoro yang telah mengenalkan makna hidup sesungguhnya. 7. Kak Dewi Asri yang senantiasa mengayomi.

8. Keluarga Wanda yang senantiasa memotivasi dan mengajarkan makna banyak hal.

9. Mulyana, yang setia bersama saat sulit maupun senang. 10.Rifka Dina Putri, yang senantiasa menyemangati. 11.Rekan-rekan CI’ers terimakasih atas kebersamaannya.

12.Rekan-rekan staff dan pengajar BKB Nurul Fikri yang senantiasa memberi warna.

13.Kepada seluruh Dosen Pengajar, staf dan karyawan Departemen Fisika FMIPA IPB.

14.Teman-teman angkatan 45 terimakasih atas kebersamaannya.

15.Kakak-kakak kelas angkatan 43 dan 44 dan adik-adik angkatan 46 dan 47.

16.Semua pihak yang telah membantu yang tidak bisa penulis ucapkan satu persatu, terimakasih banyak atas dukungannya.

Akhir kata, dengan adanya tulisan ini diharapkan dapat memberikan manfaat yang besar. Kritik dan saran yang membangun sangat penulis harapkan untuk kemajuan penelitian ini. Semoga Allah SWT senantiasa melimpahkan rahmat dan karunia-Nya untuk kita semua. Amin.

(7)

DAFTAR TABEL vii

DAFTAR GAMBAR vii

DAFTAR LAMPIRAN viii

PENDAHULUAN 1

Latar Belakang 1

Perumusan Masalah 1

Tujuan Penelitian 1

Manfaat Penelitian 1

TINJAUAN PUSTAKA 2

Cangkang Kemiri 2

Tungku Sekam 2

Energi yang Terkandung dalam Bahan Bakar 2

Efisiensi Energi 2

Sebaran Kalor 3

Metode Beda Hingga Skema Implisit 3

BAHAN DAN METODE 4

Waktu Penelitian 4

Alat dan Bahan Penelitian 4

Metode Penelitian 4

Penyiapan Alat dan Bahan 4

Pengukuran Lama Pendidihan Air 5

Perhitungan Efisiensi Energi 5

Mengukur Suhu Reservoir Tungku 6

Menganalisis Sebaran Kalor pada Reservoir Tungku 7

HASIL DAN PEMBAHASAN 10

Efisiensi Bahan Bakar Cangkang Kemiri 10

Pengaruh Diameter dasar Reservoir dan Ukuran Cangkang Kemiri dengan

Efisiensi Energi 10

Sebaran Kalor pada Reservoir Tungku 12

SIMPULAN 15

DAFTAR PUSTAKA 16

(8)

DAFTAR GAMBAR

Gambar 1 Berbagai Macam Ukuran Diameter Dasar dan Panjang

Apotema pada Reservoir Tungku 4

Gambar 2 Titik-titik Pengambilan Suhu pada Kerucut 6

Gambar 3 Efisiensi Cangkang Kemiri dan Sekam 11

Gambar 4 Efisiensi energi tiap diameter tungku pada cangkang kemiri ukuran besar dan cangkang kemiri ukuran kecil 11

Gambar 5 Nilai Suhu T(x,t) pada Diameter 6 cm 13

Gambar 6 Nilai Suhu T(x,t) pada Diameter 9 cm 13

Gambar 7 Nilai Suhu T(x,t) pada Diameter 12 cm 13

Gambar 8 Kontur Nilai Suhu T(x,t) pada Diameter 6 cm 14 Gambar 9 Kontur Nilai Suhu T(x,t) pada Diameter 9 cm 14

Gambar 10 Nilai Suhu T(x,t) pada Diameter 12 cm 14

Gambar 11 Cangkang Kemiri 21

Gambar 12 Desain Tungku Sekam 21

Gambar 13 Skema Implisit pada Persamaan Perambatan Kalor 21

DAFTAR TABEL

Tabel 1 Efisiensi Pemakaian Bahan Bakar Cangkang Kemiri pada Berbagai Ukuran Diameter Dasar Reservoir dan Ukuran Cangkang Kemiri 11

Tabel 2 Nilai Pemanasan pada Berbagai Bahan Bakar 19

DAFTAR LAMPIRAN

LAMPIRAN 1 Alur Kerja Penelitian 19

LAMPIRAN 2 Tabel Nilai Pemanasan Berbagai Bahan Bakar 20

LAMPIRAN 3 Gambar 11, Gambar 12, Gambar 13 21

LAMPIRAN 4 Data dan Pengolahan Data pada Diameter Reservoir 6cm 22 LAMPIRAN 5 Data dan Pengolahan Data pada Diameter Reservoir 9cm 24 LAMPIRAN 6 Data dan Pengolahan Data pada Diameter Reservoir 12cm 26 LAMPIRAN 7 Sistem Persamaan(12) dan Bentuk Matriksnya 27

(9)

Latar Belakang

Krisis energi mendorong beberapa negara untuk mencari energi alternatif. Selain sekam padi, pemanfaatan cangkang (kulit) kemiri sebagai energi alternatif terbarukan juga sangat potensial sebab kemiri tersebar luas hampir di seluruh wilayah Nusantara dan yang terbanyak adalah di Sulawesi Selatan, Jawa, Maluku dan Sumatera Utara.1,2 Tanaman ini sebagian besar (95%) penanamannya diusahakan oleh rakyat dengan pengelolaan yang sederhana.3 Berdasarkan data dari Departemen Pertanian produksi kemiri Nasional terus meningkat dari 74.317 ton pada tahun 2000 menjadi 89.155 ton pada tahun 2003.4 Selain itu, cangkang kemiri juga masih mengandung minyak yang tinggi dan bisa diekstraksi,5 sehingga sangat potensial dimanfaatkan sebagai energi alternatif.

Dalam pemanfaatan cangkang kemiri dan sekam padi sebagai bahan bakar, dibutuhkan media yaitu tungku untuk proses pembakaran cangkang kemiri maupun sekam padi tersebut. Tungku yang digunakan peneliti adalah tungku yang telah dirancang dan dikembangkan di Departemen Fisika IPB. Dengan tungku ini peneliti mencoba mengkaji efisiensi energi pada bahan bakar cangkang kemiri dan sebaran kalor pada reservoir (kerucut) tungkunya.

Perumusan Masalah

Yang menjadi perumusan masalah dalam penelitian ini adalah: 1. Berapakah efisiensi energi pada bahan bakar cangkang kemiri?

2. Berapakah efisiensi energi yang lebih baik antara bahan bakar sekam dan cangkang kemiri?

3. Berapakah ukuran diameter reservoir (kerucut) yang paling optimal (yang nilai efisiensinya tertinggi)?

4. Bagaimana sebaran kalor pada tiap diameter reservoir (kerucut) tungku yang menggunakan bahan bakar cangkang kemiri?

Tujuan Penelitian

1. Mempelajari efisiensi energi pada bahan bakar cangkang kemiri 2. Mendapatkan ukuran diameter dasar reservoir (kerucut) tungku paling optimum

yang memiliki efisiensi tertinggi

3. Mempelajari sebaran kalor pada reservoir (kerucut) tungku

Manfaat Penelitian

(10)

TINJAUAN PUSTAKA

Cangkang Kemiri

Tanaman kemiri (Aleurites mollucana) hidup di daerah tropis dan subtropis sehingga dapat ditanam di tanah rendah dan pegunungan, baik yang subur maupun tanah yang kurang subur.1 Jika ditelusuri dari luar ke dalam, bagian buah kemiri berturut-turut adalah kulit luar, lapisan kayu, kulit biji, endosperm, dan kotiledon.6 Diameter biji kemiri mencapai 1,5 hingga 2 cm yang di dalamnya terdapat daging biji berwarna putih yang kaku (merupakan bagian endosperm yang digunakan sebagai bumbu masak).7 Biji kemiri mempunyai kulit biji yang dikenal sebagai tempurung atau cangkang yang sangat keras. Tebal tempurung adalah 3-5 mm berwarna cokelat atau kehitaman.4 Kulit biji inilah yang merupakan bagian buah yang paling keras, permukaan luarnya kasar dan berlekuk.4

Energi yang Terkandung dalam Bahan Bakar

Setiap bahan bakar memiliki nilai pemanasan atau heat value fuel (HVF) yaitu energi yang terkandung dalam bahan bakar.8 Cangkang kemiri memiliki nilai HVF sebesar 5200 kkal/gram. pada berbagai jenis bahan bakar. Nilai HVF pada berbagai bahan bakar selengkapnya dapat dilihat pada Tabel 2 yang terlampir dalam lampiran.

Efisiensi Energi

Efisiensi energi adalah perbandingan antara energi yang dapat dimanfaatkan terhadap energi yang dibutuhkan. Semakin tinggi tingkat efisiensi energi maka penggunaan energi akan semakin sedikit untuk hasil yang sama.9 Untuk menghitung laju energi yang dibutuhkan untuk memasak yaitu dengan menggunakan Persamaan (1) dan Persamaan (2) yang akan diuraikan pada bab berikutnya.

Sebaran Kalor

Sebaran (distribusi) kalor didefinisikan sebagai berpindahnya energi dari satu tempat ke tempat lainnya yang disebabkan perbedaan temperatur antara tempat-tempat tersebut.10 Umumnya kondisi berlangsungnya proses perpindahan kalor ada dua macam yaitu: kondisi Steady (Tunak) dan kondisi Unsteady (Tidak tunak).11 Bila keadaan suhu sebuah benda berubah terhadap waktu, maka proses perpindahan panas yang berlangsung di dalam benda tersebut dikatakan sebagai proses yang berlangsung dalam keadaan tak ajeg/tak tunak (transient /unsteady state).12

(11)

Nilai α dapat ditentukan dengan rumus:

menyelesaikan persamaan diferensial parsial.15 Ada beberapa macam metode hingga yaitu metode beda hingga skema Eksplisit, skema Implisit, skema Crank-Nicholson dan sebagainya.15 Penggunaan metode beda hingga dilakukan dengan cara mengganti koefesien persamaan diffrensial dengan koefesien beda (diffrence).16 Skema beda (diffrence scheme) merupakan suatu pendekatan dari suatu derivatif pada suatu titik menggunakan nilai kolektif dari titik sekitarnya yang dibagi atas tiga skema yaitu : skema sentral (center scheme), skema beda maju (forward diffrence scheme) dan skema beda mundur (backward diffrence scheme).16

Pengertian penyelesaian dengan metode beda hingga dapat dijelaskan dengan meninjau suatu luasan yang merupakan hasil dari persamaan diferensial parsial, 11 yang dalam Persamaan (1) mempunyai satu variable tak bebas T dan dua variable bebas x dan t. Setiap persamaan diferensial yang berlaku pada luasan tersebut menyatakan keadaan suatu titik atau pias yang cukup kecil pada luasan tersebut.11

Untuk menyelesaikan sistem persamaan di atas dengan metode beda hingga akan dihitung nilai pendekatan T (temperatur) pada jaringan titik xi (x ke i)dan titik

(12)

BAHAN DAN METODE

Waktu dan Tempat Penelitian

Penelitian dilaksanakan pada bulan September 2012 – November 2012 di Bengkel Mekanik, Departemen Fisika IPB, Bogor.

Alat dan Bahan

Bahan yang digunakan dalam penelitian ini adalah sekam padi, air, cangkang kemiri. Peralatan yang digunakan adalah tungku sekam, meteran, termometer laser, timbangan, panci, ember, stop watch, korek api, dan peralatan tulis.

Metode Penelitian

Penyiapan Alat dan Bahan

Bahan bakar cangkang kemiri yang digunakan pada penelitian ini adalah cangkang kemiri ukuran besar dan cangkang kemiri ukuran kecil. Untuk mendapatkan cangkang kemiri ukuran kecil, cangkang kemiri ukuran besar dihancurkan terlebih dahulu hingga ukurannya menjadi lebih kecil. Kemudian cangkang kemiri dijemur di bawah sinar matahari untuk mengurangi kadar airnya. Setelah dijemur, cangkang kemiri ditimbang sebelum dilakukan percobaan pendidihan air. Massa kemiri yang ditimbang adalah 1 kg sebagai massa awal bahan bakar yang digunakan.

Dalam Penelitian ini digunakan beberapa model reservoir tungku yang berbeda berdasarkan ukuran diameter dasar reservoirnya, yaitu diameter 6 cm, 9 cm, dan 12 cm. Dengan masing- masing ukuran digunakan untuk dua kali pengulangan percobaan pada variasi ukuran cangkang kemiri (cangkang kemiri ukuran besar dan cangkang kemiri ukuran kecil). Gambar 1 adalah gambar beberapa model reservoir

tungku yang berbeda berdasarkan ukuran diameter dasar reservoirnya, sedangkan Gambar 12 (pada lampiran) adalah gambar desain tungku yang merupakan alat utama pada penelitian ini.

(13)

Keterangan :

d = Diameter dasar reservoir (kerucut) tungku

A= Tinggi atau apotema (sisi miring) pada reservoir tungku

Pengukuran Lama Pendidihan Air pada Berbagai Ukuran Diameter Dasar Reservoir Tungku

Air yang dididihkan adalah sebanyak 1 liter. Pengukuran lama pendidihan dilakukan dengan menggunakan stopwatch , diukur saat air mulai dipanaskan hingga air mulai terlihat gelembung saat mendidih.

Pengukuran lama pendidihan air ini dilakukan pada ketiga ukuran diameter dasar reservoir tungku yaitu diameter 6 cm, 9 cm dan 12 cm. Masing-masing percobaan dilakukan sebanyak dua kali ulangan dengan variasi ukuran cangkang kemiri kecil (cangkang kemiri yang dihancurkan) dengan cangkang kemiri besar (cangkang kemiri tidak dihancurkan).

Perhitungan Efisiensi Energi

Untuk menghitung laju energi yang dibutuhkan selama pendidihan air yaitu dengan menggunakan persamaan: 8

Sedangkan efisiensi bahan bakar dapat dihitung menggunakan persamaan:9

(14)

6

pembakaran bahan bakar (massa bahan bakar yang dibutuhkan untuk setiap kali pendidihan air per satuan waktu) dan besar Qn atau laju energi pada bahan bakar

(banyaknya energi yang dibutuhkan untuk setiap kali pendidihan air per satuan waktu).

Pada perhitungan laju pembakaran bahan bakar diperlukan penimbangan banyaknya cangkang kemiri yang dibutuhkan selama pendidihan air. Sedangkan sesuai dengan Persamaan (3), perhitungan laju energi pada bahan bakar diperlukan pengukuran massa air yang didihkan dan lamanya waktu pendidihan air.

Setelah didapatkan hasil perhitungan laju pembakaran bahan bakar dan laju energi bahan bakarnya, dapat dilakukan perhitungan efisiensi energi bahan bakar cangkang kemiri pada ukuran cangkang kemiri besar (cangkang tidak dihancurkan) dan pada ukuran cangkang kemiri kecil (cangkang dihancurkan) serta pada tiap ukuran diameter reservoir tungku (6 cm, 9 cm, dan 12 cm). Sehingga dapat dibandingkan mana yang lebih baik efisiensinya.

Mengukur Suhu Reservoir Tungku

Untuk mengukur suhu reservoir (kerucut) tungku digunakan termometer laser. Untuk menganalisis persebaran kalor pada reservoir tungku terlebih dahulu dilakukan pengukuran suhunya guna mengetahui nilai awal dan nilai batas suhunya. Suhu diukur pada titik bawah reservoir (x = 0) dan titik atas reservoir (x = L).

Nilai suhu awal diukur pada titik bawah apotema (x = 0) dan titik atas

reservoir (x = L) saat api baru mulai menyala. Nilai batas suhu juga diukur pada kedua titik tersebut setelah ∆t detik (600 detik atau 10 menit) dari pengukuran suhu awal. Nilai ∆t ini berdasarkan hasil perhitungan yang didapat dengan menggunakan Persamaan (9) dan (10).

Nilai suhu awal pada titik bawah reservoir (x = 0) dan titik atas reservoir

(x = L) adalah sama sebab api baru mulai menyala sehingga belum ada kalor yang merambat. Oleh sebab itu, suhu awal di titik bawah maupun titik atas reservoir

dilambangkan dengan satu lambang saja T(x,0) dengan x bernilai 0 < x < L. Sedangkan nilai batas suhu pada titik bawah reservoir dilambangkan dengan T(0,t) dan nilai batas suhu pada titik atas reservoir dilambangkan dengan T(L,t).

(15)

Menganalisis Sebaran Kalor pada Reservoir Tungku Menggunakan Metode Beda Hingga Skema Implisit

Sebaran (distribusi) kalor pada reservoir tungku dapat dianalisis secara numerik dengan menyesesaikan persamaan sebaran kalor satu dimensi (Persamaan (1)) melalui metode beda hingga skema implisit. Langkah-langkah menyelesaikan Persamaan (1) dengan metode beda hingga skema implisit adalah sebagai berikut. 1. Menentukan persamaan yang akan diselesaikan (Persamaan (1)).

2. Mengukur nilai suhu awal (T(x,0)) dan nilai suhu batas (T(0,t) dan T(L,t)) (didapatkan dari pengukuran).

3. Mengubah Persamaan (1) ke dalam bentuk skema Implisit yaitu Persamaan (7). Untuk menyelesaikan sistem Persamaan (1) dengan metode beda hingga akan dihitung nilai pendekatan T (temperatur) pada jaringan titik xi (x ke i)dan titik tj (t ke j). Pada skema Implisit, variabel T(xi,tj) dihitung berdasarkan

variabel T(xi+tj+1)yang tidak diketahui nilainya.

Dengan menggunakan skema diferensial maju untuk turunan pertama terhadap t (Persamaan (5)), serta diferensial terpusat untuk turunan kedua

(16)

8

∆x = L/n (9) dengan L adalah panjang apotema reservoir tungku (satu dimensi) dan n adalah banyaknya pias yang diambil.17

Karena dimensi reservoir ditinjau dari satu dimensi, maka panjang

reservoir yang dimaksud adalah tinggi apotema reservoir . Reservoir

berdiameter dasar 6 cm mempunyai tinggi apotema 19.5 cm, reservoir

berdiameter dasar 9 cm mempunyai tinggi apotema 18 cm, sedangkan reservoir

berdiameter dasar 12 cm mempunyai tinggi apotema 15 cm. Apabila n

(banyaknya pias) yang diambil untuk reservoir yang panjang apotemanya (tinggi apotemanya) 19.5 cm adalah 39 pias, dan pada reservoir yang panjangnya 18 cm adalah 36 pias, serta pada reservoir yang panjangnya 15 cm adalah 30 pias, maka ∆x pada masing-masing reservoir adalah 0.5 cm.

Nilai ∆t yang akan digunakan dapat ditentukan dengan persamaan Persamaan (2), maka nilai ∆t yang digunakan adalah 600 sekon atau 10 menit. 5. Menghitung koefisien A, B dan C dengan Persamaan (8) sehingga Persamaan (7)

(17)

7. Memasukkan nilai awal dan nilai batas suhu hasil pengukuran pada sistem Persamaan (12).

8. Mengubah sistem Persamaan (12) yang sudah dimasukkan nilai awal dan nilai batas suhunya ke dalam bentuk matriks seperti Persamaan(13).15

=

(13) Atau

9. Menyelesaikan matriks tersebut dengan operasi pada Persamaan (14). Dengan menggunakan operasi invers matriks, solusinya adalah:

(14)

dari sini diperoleh nilai untuk i = 1, 2, 3,... ,n -1. 14

(18)

HASIL DAN PEMBAHASAN

Efisiensi Energi Bahan Bakar Cangkang Kemiri

Nilai rata-rata efisiensi bahan bakar cangkang kemiri yang digunakan untuk mendidihkan satu liter air mencapai 3.95 %. Nilai ini lebih rendah dari nilai efisiensi sekam (7.12%).20 Grafik nilai-nilai efisiensi tersebut ditunjukkan pada Gambar 7.

Terlihat pada Gambar 7 bahwa nilai rata-rata efisiensi cangkang kemiri lebih kecil dibandingkan dengan sekam, padahal nilai HVF (heat value fuel) atau nilai pemanasan yang dikandung cangkang kemiri lebih besar daripada sekam yakni sekitar 5200 kkal/kg sedangkan sekam hanya 3300 kkal/kg dimana semakin besar nilai HVF semakin cepat waktu pendidihan airnya. Hal ini disebabkan karena massa jenis cangkang kemiri yang lebih besar daripada sekam, sehingga untuk volume

reservoir (kerucut) tungku yang sama, massa bahan bakar (cangkang kemiri) yang dibutuhkan untuk setiap kali pembakaran lebih banyak daripada massa bahan bakar (sekam) yang dibutuhkan. Sehingga, jika dihitung laju pembakaran bahan bakarnya (perbandingan antara massa bahan bakar yang dibutuhkan untuk setiap kali pendidihan air per satuan waktu) atau disebut dengan Fuel Consumption Rate

(FCR), cangkang kemiri mempunyai nilai FCR yang lebih tinggi dibanding sekam, dimana semakin tinggi nilai FCR maka semakin rendah nilai efisiensinya. Grafik perbandingan efisiensi kedua jenis bahan bakar ini ditunjukkan pada Gambar 3.

Pengaruh Diameter Dasar

Reservoir

dan Ukuran Cangkang Kemiri

terhadap Efisiensi Energi

Ukuran diameter dasar reservoir tungku yang digunakan adalah 6 cm, 9 cm dan 12 cm. Pengaruh diameter dasar reservoir tungku terhadap nilai efisiensi energi yakni dihasilkan nilai efisiensi tertinggi pada diameter dasar reservoir 6 cm, kemudian berikutnya 9 cm dan yang terendah adalah 12 cm. Efisiensi pemakaian bahan bakar cangkang kemiri pada berbagai ukuran diameter dasar reservoir dan ukuran cangkang kemiri disajikan pada Tabel 1 dan grafiknya disajikan pada Gambar 4.

(19)

Tabel 1 Efisiensi pemakaian bahan bakar cangkang kemiri pada berbagai ukuran diameter dasar reservoir dan ukuran cangkang kemiri.

Diameter Dasar

Reservoir 6 cm 9 cm 12 cm

Ukuran Cangkang Cangkang kecil

Cangkang

besar

Cangkang

kecil

Cangkang

besar

Cangkang

kecil

Cangkang

besar

Massa

Bahan

Bakar

(kg)

Massa Awal 1 1 1 1 1 1

Massa Sisa 0.42 0.44 0.34 0.36 0.32 0.32

Massa Arang 0.23 0.22 0.28 0.28 0.28 0.30

Massa Terpakai 0.35 0.34 0.38 0.36 0.40 0.38

Waktu didih (menit) 9.58 9.43 8.85 8.68 7.32 7.36

FCR (kg/jam) 2.22 2.20 2.58 2.52 3.28 3.14

Qn (kcal/jam) 457.30 464.48 494.92 504.61 598.36 595.11

Efisiensi (%) 4.11 4.23 3.84 4.00 3.65 3.79

Gambar 3 Efisiensi bahan bakar cangkang kemiri dan sekam

(20)

12

Cangkang kemiri yang digunakan terdapat dua macam ukuran, yaitu cangkang ukuran besar dan cangkang ukuran kecil. Cangkang ukuran kecil yang dimaksud adalah cangkang yang berasal dari ukuran besar namun dihancurkan terlebih dahulu sebelum digunakan sehingga ukurannya menjadi lebih kecil, sedangkan cangkang ukuran besar adalah cangkang yang tidak dihancurkan terlebih dahulu sebelum digunakan. Melihat perbandingan nilai efisiensinya, cangkang ukuran besar mempunyai nilai efisiensi lebih tinggi daripada cangkang ukuran kecil. Hal ini disebabkan cangkang ukuran kecil lebih cepat habis terbakar dibandingkan cangkang ukuran besar.

Pada ukuran diameter 6 cm, dengan bahan bakar cangkang kemiri ukuran besar (tidak dihancurkan) efisiensinya mencapai 4.11% dan mencapai 4.23 % dengan menggunakan cangkang kemiri ukuran kecil (dihancurkan). Sedangkan pada ukuran diameter 9 cm, dengan bahan bakar cangkang kemiri ukuran besar (tidak dihancurkan)efisiensinya mencapai 3.84% dan mencapai 4.00 % dengan menggunakan cangkang kemiri ukuran kecil (dihancurkan). Serta pada ukuran diameter 12 cm, dengan bahan bakar cangkang kemiri ukuran besar (tidak dihancurkan)efisiensinya mencapai 3.79 % dan mencapai 3.65 % dengan menggunakan cangkang kemiri ukuran kecil (dihancurkan).

Sebaran Kalor pada

Reservoir

Tungku

Kalor pada reservoir (kerucut) tungku mengalir secara konduksi dari bagian dasar reservoir ke bagian atas reservoir. Persamaan konduksi panas satu dimensi pada reservoir dapat didefinisikan sebagai persamaan sebaran panas satu dimensi yang merupakan persamaan differensial parabolik seperti Persamaan (1) di atas.

Dari Persamaan (1) dapat diperoleh suatu hasil penyelesaian berupa distribusi suhu yang merupakan fungsi posisi (x) dan fungsi waktu (t ) , yaitu T = T (x,t). Harga α adalah besarnya difusivitas suhu dari bahan yang dapat diasumsikan berharga konstan. Metode yang digunakan untuk menyelesaikan persoalan sebaran panas tersebut adalah metode beda hingga dengan skema implisit.

Langkah-langkah menyelesaikan Persamaan (1) tersebut dengan metode beda hingga skema implisit telah diurakan pada bab sebelumnya. Pada langkah 2 untuk menentukan nilai awal dan nilai batas suhu didapatkan dari pengukuran suhu pada

reservoir tungku. Berikut adalah hasil pengukuran nilai awal dan nilai batas suhu pada berbagai ukuran diameter dasar reservoir tungku.

Untuk reservoir berdiameter dasar 12 cm (L=15 cm)

T(x,0) = 25 0C , 0 < x < L

T(0,t) = 296 0C , t > 0

T(L,t) = 1870C , t > 0

Untuk reservoir berdiameter dasar 9 cm (L=18 cm)

T(x,0) = 250C , 0 < x < L

T(0,t) = 2180C , t > 0

T(L,t) = 1160C , t > 0

Untuk reservoir berdiameter dasar 6 cm (L=19.5 cm)

T(x,0) = 250C , 0 < x < L

T(0,t) = 1740C , t > 0

(21)

Pada langkah 6 dan 7, sistem Persamaan (12) didapatkan dengan memasukkan nilai i pada Persamaan (11) dengan nilai i = 1, 2, 3,..., n-1 kemudian memasukkan nilai awal dan nilai batas suhu hasil pengukuran. Sistem Persamaan (12) yang didapat pada masing-masing ukuran diameter dasar reservoir tungku, diuraikan secara lengkap pada lampiran 7. Demikian pula bentuk matriks yang didapat pada langkah 8 ditampilkan pada lampiran 7. Langkah-langkah di atas dijalankan pada setiap diameter dasar reservoir dan disimulasikan pada program Matlab R12 kemudian hasilnya diplotkan pada grafik, maka akan menghasilkan plot grafik yang akan disajikan pada Gambar 5 hingga Gambar 10..

Gambar 8, Gambar 9 dan Gambar 10 adalah grafik hubungan antara nilai suhu (T), waktu (t) dan panjang apotema reservoir(x) pada diameter reservoir 6 cm, 9 cm dan 12 cm. Sedangkan grafik kontur dari ketiga hubungan tersebut digambarkan pada Gambar 11, Gambar 12 dan Gambar 13. Warna yang terlihat pada masing-masing grafik menunjukan adanya perbedaan suhu. Warna merah berarti bersuhu tinggi dan warna biru adalah suhu yang rendah.

Gambar 5 Nilai suhu,T(x,t),pada diameter 6 cm Gambar 6 Nilai suhu,T(x,t),pada diameter 9 cm

(22)

14

Dari semua grafik tersebut dapat dilihat bahwa semakin naik nilai x (semakin mendekati x = L), maka nilai suhu semakin menurun secara hampir linear. Hal ini dikarenakan ketika nilai x semakin mendekati L, maka semakin menjauhi sumber api (sumber api di x = 0), sehingga suhu di x = L lebih rendah daripada di x = 0 (di dekat sumber api). Selain itu, dapat dilihat juga bahwa semakin lama (nilai t

semakin besar), maka nilai suhu semakin meningkat secara eksponensial. Hal ini membuktikan adanya kalor yang merambat dari sumber api ke reservoir tungku.

Jika dibandingkan antara reservoir berdiameter 6 cm, 9 cm dan 12 cm pada grafik nilai maupun grafik kontur tersebut, dapat dilihat bahwa setelah ∆t (60 detik atau 10 menit) suhu di x = 0 maupun di x = L meningkat dari suhu awalnya, peningkatan suhu tertinggi terdapat pada reservoir berdiameter 12 cm dan terendah pada reservoir berdiameter 6 cm. Peningkatan suhu tertinggi pada diameter 12 cm dan peningkatan suhu terendah pada diameter 6 cm dapat dicirikan dengan warna yang dominan merah pada gambar kontur nilai suhu (Gambar 8, Gambar 9, Gambar 10), sedangkan pada Gambar 5, Gambar 6, dan Gambar 7 dapat dilihat dengan batas suhu yang lebih tinggi pada diameter 12 cm, kemudian 9 cm dan yang terendah adalah diameter 6 cm. Hal ini disebabkan pada reservoir berdiameter 12 cm mampu menampung massa bahan bakar yang lebih banyak, sehingga kalor yang dihasilkan dari pembakaran bahan bakar tersebut lebih banyak dan lebih cepat merambat. Pada

reservoir berdiameter 12 cm, jika dihitung dari suhu awal (saat api baru mulai menyala) peningkatan suhunya adalah sebesar 269 0C di x = 0 dan 160 0C di x =

L. Pada reservoir berdiameter 9 cm, peningkatan suhunya adalah sebesar 191 0C di x

= 0 dan 89 0C di x = L. Sedangkan pada reservoir berdiameter 6 cm, peningkatan suhunya adalah sebesar 147 0C di x = 0 dan 62 0C di x = L.

Gambar 8 Kontur nilai suhu, T(x,t), pada diameter 6 cm

Gambar 10 Kontur nilai suhu, T(x,t), pada diameter 12 cm Gambar 9 Kontur nilai suhu, T(x,t),

(23)

Lama waktu pendidihan satu liter air pada tungku yang reservoirnya berdiameter dasar 6 cm dengan menggunakan cangkang kemiri kecil adalah 9.58 menit dan dengan cangkang kemiri besar adalah 9.43 menit, sedangkan pada tungku yang reservoirnya berdiameter dasar 9 cm dengan menggunakan cangkang kemiri kecil adalah 8.85 menit dan dengan cangkang kemiri besar adalah 8.68 menit. Pada tungku yang reservoirnya berdiameter dasar 12 cm lama waktu pendidihan satu liter air dengan menggunakan cangkang kemiri kecil adalah 7.32 menit dan dengan cangkang kemiri besar adalah 7.36 menit.

Rata-rata efisiensi energi yang didapatkan pada proses pendidihan satu liter air dengan bahan bakar cangkang kemiri adalah sekitar 3.95 %. Efisiensi yang didapatkan menunjukkan bahwa diameter reservoir tungku 6 cm memiliki efisiensi tertinggi. Pada bahan bakar kemiri didapatkan rata-rata efisiensinya pada diameter 6 cm, 9 cm dan 12 cm berturut-turut 4.17%, 3.92% dan 3.72% . Efisiensi yang didapatkan terhadap ukuran cangkang menunjukkan bahwa ukuran cangkang besar memiliki efisiensi lebih tinggi daripada cangkang ukuran kecil.

Kalor merambat dari sumber api yang berasal dari pembakaran bahan bakar ke

(24)

DAFTAR PUSTAKA

1. Paimin, F.R. Kemiri, Budidaya dan Prospek Bisnis. Penebar Swadaya. Jakarta. 1994.

2. Badan Penelitian dan Pengembangan Pertanian. Sekam sebagai Sumber Energy Alternatif dalam Rumah Tangga Petani. [terhubung berkala]. http://www.litbang.deptan.go.id/artikel/one/210/pdf/Sekam%20Padi%20Sebaga i%20Sumber%20Energi%20Alternatif%20dalam%20Rumah%20Tangga%20Pe tani.pdf.Departemen Pertanian. 2010. [21 april 2012].

3. Kusuma, Achmad. Kemiri dan Prospek Pengembangannya di Indonesia. Media Indonesia. Jakarta. 2012. [26 Agustus 2012]. Aktif dengan Cara Pirolisis. Jawa Timur : Jurnal Penelitian Ilmu Teknik. 2006; Vol.6, No.2 Desember 2006 :133-140.

7. Winarni, I. dkk. Pengaruh Kombinasi Perlakuan Terhadap Keutuhan Biji Kemiri. Pusat Litbang Hasil Hutan. 2004.

8. Umrih, T. Analisis Efisiensi Energi Bahan Bakar Sekam dan Kayu Sengon pada Proses Sterilisasi Media Tumbuh Jamur Tiram Putih . [Skripsi]. Bogor:Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor . 2012. 9. Demiati. Pembuatan beberapa Macam Ukuran lubang pada Dinding Tubuh

Tungku Sekam untuk Mendapatkan efisiensi Kalor Lebih Tinggi. [Skripsi]. Bogor : Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. 2010.

10.Fitrianto, E. Perpindahan Panas. [terhubung berkala]. http://endarfitrianto.blogspot.com/2008/07/perpindahan-panas.html. 2008. [20 april 2012]

11.Chasanah, U. Komputasi Distribusi Temperatur Pelat Logam dalam Keadaan Tunak dengan Penyelesaian Persamaan Differensial Parsial Laplace Dua Dimensi Metode Beda Hingga Menggunakan Matlab 7.9. Jurusan Fisika FMIPA. Universitas Negeri Surabaya. Surabaya. 2011.

12.Purwadi, PK. Metode Alternating Direction Implicit pada Penyelesaian Persoalan Perpindahan Kalor Konduksi Dua Dimensi Keadaan Tak Tunak. SIGMA. 2000; Vol. 3, No.1, Januari 2000: 69-79

13.Yang, Won Yung. Applied Numerical Methode Using Matlab. USA: Wiley Interscience. 2005.

14.Tolcin, A. C. Mineral Commodity Summaries 2009: Zinc. United States Geological Survey. USA. 2009.

(25)

16.Yulianto, F.E. Perhitungan Tekanan Air Pori pada Proses Sand Drain dengan Menggunakan Metode Beda Hingga. Jurusan Tenik Sipil, Fakultas Teknik. Universitas Madura. Madura. 2008.

17.United Nations Environment Programme. Peralatan Energi Panas: Tungku dan Refraktori. Pedoman Efisiensi Energi untuk Industri. www.energyefficiencyasia.org. 2006. [27agustus 2008]

18.Tambunan, Bisrul H. Karakteristik Pembakaran Briket Cangkang Kemiri:Presentase Arang. Jurusan Teknik Mesin Fakultas Teknik Universitas Negeri Medan. 2007

19.Anonim. http://2.bp.blogspot.com/ [18 september 2012]

(26)
(27)

LAMPIRAN 1

Alur Kerja Penelitian

Mulai

Persiapan alat dan Bahan

Diameter

reservoir 9 cm

Diameter

reservoir 12 cm Diameter

reservoir 6 cm

Perebusan air

Cangkang kemiri ukuran besar (2 kali ulangan) Cangkang kemiri ukuran

kecil (2 kali ulangan)

Arang

Perhitungan dan analisis data

Penyusunan laporan

(28)

20

LAMPIRAN 2

Tabel 1 Nilai Pemanasan pada Berbagai Bahan Bakar. 17, 19

BAHAN BAKAR NILAI

LPG 11767

Kayu 3355

Cangkang Kemiri 5200

Sekam Padi 3300

Minyak Tanah 11000

Bensin 11528

(29)

LAMPIRAN 3

Gambar 1 Biji kemiri dan cangkangnya. 19

Gambar 2 Desain tungku sekam. 8 Keterangan :

(A) Reservoir (tandon) sekam dalam bentuk kerucut terbalik. (B) Cerobong berlubang untuk membatasi aliran api.

(C) Isolator kompor. (D) Badan kompor.

(E) Ruang antara tatakan abu sementara dan ujung bawah kerucut. (F) Penampung abu sementara.8

(30)

22

Waktu didih (menit) 9.72 9.44 9.58 9.46 9.40 9.43

FCR (kg/jam) 2.22 2.22 2.22 2.16 2.23 2.20

Qn (kcal/jam) 450.80 463.98 457.30 463.00 465.96 464.48

(31)

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

Rata-rata efisiensi = (4.06% + 4.17%) / 2 = 4.11%

3. Cangkang Ukuran Besar Ulangan 1

 Laju bahan bakar yang dibutuhkan

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

4. Cangkang Ukuran Besar Ulangan 2

 Laju bahan bakar yang dibutuhkan

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

(32)

24

Waktu didih (menit) 8.90 8.80 8.85 8.83 8,53 8.68

FCR (kg/jam) 2.56 2.59 2.58 2.45 2.60 2.52

Qn (Kcal/jam) 492.13 497.73 494.92 496.04 513.48 504.61

(33)

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

Rata-rata efisiensi = (3,84% + 3.84%) / 2 = 3.84%

3. Cangkang Ukuran Besar Ulangan 1

 Laju bahan bakar yang dibutuhkan

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

4. Cangkang Ukuran Besar Ulangan 2

 Laju bahan bakar yang dibutuhkan

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

(34)

26

Waktu didih (menit) 7.68 6.96 7.32 7.05 7.67 7.36

FCR (kg/jam) 3.13 3.45 3.28 3.23 3.05 3.14

Qn (Kcal/jam) 570.31 629.31 598.36 621.28 571.06 595.11

(35)

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

Rata-rata efisiensi = (3,65% + 3.65%) / 2 = 3.65%

3. Cangkang Ukuran Besar Ulangan 1

 Laju bahan bakar yang dibutuhkan

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

4. Cangkang Ukuran Besar Ulangan 2

 Laju bahan bakar yang dibutuhkan

 Laju energi yang dibutuhkan

 Efisiensi bahan bakar

(36)

28

LAMPIRAN 7

Sistem Persamaan (12) pada reservoir tungku berdiameter dasar 6 cm dengan panjang apotema (L) = 19.5 cm, banyaknya pias yang diambil (n) = 39, i = 1, 2, 3,..., 38, suhu batas T(0,t) = 174 0C dan suhu batas T(L,t) = 89 0C.

(37)

(38)

30

Sistem Persamaan (12) pada reservoir tungku berdiameter dasar 9 cm dengan panjang apotema (L) = 18 cm, banyaknya pias yang diambil (n) = 36, i = 1, 2, 3,..,35, suhu batas T(0,t) = 218 0C dan suhu batas T(L,t) = 1160C.

(39)

(40)

32

Sistem Persamaan (12) pada reservoir tungku berdiameter dasar 12 cm dengan panjang apotema (L) = 15 cm, banyaknya pias yang diambil (n) = 30, i = 1, 2, 3,., 29, suhu batas T(0,t) = 296 0C dan suhu batas T(L,t) = 1870C.

(41)

(42)

34

Bentuk matriks dari Persamaan (12) pada reservoir tungku berdiameter dasar 6 cm.

(43)
(44)

36

LAMPIRAN 8

Program Sebaran Panas dengan Metode Beda Hingga Skema Implisit pada Tungku dengan diameter dasar reservoir 6 cm (tinggi apotema=19.5 cm)

clc;clear all; format long e;

disp('===============================================') disp(' Solusi Persamaan Diferensial Parsial')

(45)

disp('===============================================')

title('Gambar 9. Grafik nilai suhu (T(x,t))pada diameter 6cm');

Program Sebaran Panas dengan Metode Beda Hingga Skema Implisit pada Tungku dengan diameter dasar reservoir 9 cm (tinggi apotema=18 cm)

clc;clear all; format long e;

disp('===============================================') disp(' Solusi Persamaan Diferensial Parsial')

(46)
(47)

Program Sebaran Panas dengan Metode Beda Hingga Skema Implisit pada Tungku dengan diameter dasar reservoir 12 cm (tinggi apotema=18 cm)

clc;clear all; format long e;

disp('===============================================') disp(' Solusi Persamaan Diferensial Parsial')

(48)

40

disp(['Waktu Komputasi = ',num2str(toc)])

disp('===============================================')

figure(1)

mesh(1:M+1,1:N,T); view(38,10)

title('Gambar 11. Grafik nilai suhu (T(x,t))pada diameter 12cm');

grid on;

zlabel('suhu (T(x,t))'); ylabel('waktu (t)'); xlabel('jarak (x)');

figure(2) pcolor(T); colorbar vert

cxs=max(max(abs(T))); caxis([0 15]);

shading interp

title('Gambar 14. Grafik kontur nilai suhu (T(x,t))pada diameter 12cm');

(49)

Penulis lahir pada tanggal 5 januari 1991 di Jakarta dari pasangan Suli Sriati dan Sunardi Taslim. Penulis menyelesaikan pendidikan formal SD pada tahun 1996-2002 di SD Negeri 012 Petang Jakarta, SMP Negeri 201 Jakarta pada 2002 – 2005, SMA Negeri 84 Jakarta pada 2005 – 2008, kemudian melanjutkan ke jenjang Perguruan Tinggi Negeri di Institut Pertanian Bogor Departemen Fisika pada 2008-2012 melalui jalur masuk Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN).

Penulis juga mengikuti beberapa pendidikan nonformal diantaranya Pelatihan IT dari PKBM (Pusat Kegiatan Belajar Masyarakat) pada tahun 2005, Harcourt English Course tahun 2007, Training dasar kepemimpinan 2006 serta berbagai training dan seminar. Selain itu penulis juga mengikuti berbagai organisasi dan kepanitiaan seperti LDF Serum-G divisi Public Relation 2010, LDF Serum-G divisi HRD 2011, Gugus Disiplin Asrama TPB 2008, Panitia Masa Perkenalan Kampus Mahasiswa Baru (MPKMB) divisi Komisi Disiplin 2009, Panitia Pesta Sains divisi Kestari 2010, Panitia Masa Perkenalan Fisika (MPF) divisi Squad Guardian 2010 dan sebagainya.

Gambar

Gambar 12 (pada lampiran) adalah gambar desain tungku yang merupakan alat
Gambar 2  Titik-titik pengambilan suhu pada reservoir tungku
Tabel 1 Efisiensi pemakaian bahan bakar cangkang kemiri pada berbagai ukuran diameter dasar reservoir dan ukuran cangkang kemiri
Gambar 7  Nilai suhu,T(x,t),pada diameter 12 cm
+6

Referensi

Dokumen terkait

Berdasarkan hasil lampiran pada tabel 4.3 antara pendidikan dan tingkat kepuasan pasien didapatkan sebagian kecil ( 2% ) atau 1 responden dari 2 responden yang berpendidikan PT

Salah satu masalah yang sering muncul dimasyarakat adalah tindak pidana pembunuhan, tindak pidana pembunuhan adalah salah satu bentuk kejahatan dalam jiwa seseorang

Iklan luar ruang billboard akan menampilkan gambar yang menunjukkan sejarah dari Candi Ngempon dan Petirtaan Derekan.. Iklan billboard akan dapat dipasang di

Berdasarkan dengan wawancara kepala Desa Salassae mengenai komitmen yang dijalani bersama KSPS dalam tujuan positif yakni untuk terciptanya kedaulatan pangan

(Issued by: Name of administration) Lembar Komunikasi mengenai persetujuan (atau penolakan atau penarikan persetujuan atau produk diskontinu secara permanen) dari sepeda motor

Sumber Data Pengumpulan data dilakukan dengan total sampling oleh kepala Ruang rawat Inap, yaitu dengan melihat/observasi langsung Inklusi: Seluruh pasien dengan operasi

Pada tahap ini produk utama yaitu Furfural (C5H4O2) yang sebelumnya telah berubah fase menjadi uap setelah keluar Reaktor di kondensasikan (CD-01) terlebih dahulu, untuk

Meskipun sebelumnya digambarkan bahwa pemasukan kas utama atau paling besar ialah  penerimaan dari pelanggan atau dengan kata lain penjualan produknya, namun