I�
PENDUGAAN UKURAN BERAS DENGAN PENGOLAHAN CITRA DAN
ARTIFICML NEURAL NETWORK UNTUK EV ALUASI MUTU BERAS SOSOH
Oleh:
HERNIK NUR mDA YATI
F01499043
2003
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
•
. ' . •
,
-��
"
.'
-,
,.-,A J
.-...'
-
.,
-,
HENIK NUR HIDAYATI.
Pendugaan Ukuran Beras dengan Pengolahan Citra
dan
Artificial Neural Network
untuk Evaluasi Mutu Beras Sosoh.
Di bawah
bimbingan : I Wayan Astika dan Mohamad Solahudin. 2003.
RINGKASAN :, ' 10"'�
--\
'cO',Salah satu masalah daln dunia perberasan nasional adalah penentuan mutu
beras. Parameter yang digunakan untuk menentukan mutti beras yaitu kadar air,
derajat sosoh, butir utuh, bulir patah, butir menir, butir hijau (kapur), butir kuning
(rusak), benda asing, butir merah dan butir gabah. Kadar butir patah merupakan
faktor perrentu paling ulama mutu beras di pasar dunia. Dengan mengetahui
kandungan butir patah yang terdaat dalam suatu sampel eras maka dapat
menentukan mutu beras secara fisik dan penggolongan ke tingkat ke1as tertentu.
Menurut SKB Deptan-Bulog (2003) ukuran butiran beras dikelompokkan
menjadi beras kepala
(head rice),
butir utub
(whole enel),
butir patah besar
(big
broken),
butir patah, dan butir menir. Beras kepala merupakan penjwnlahan butir
utub dan butir patah besar. Butir utub adalah butir beras baik, sehat,cacat yang utuh
tanpa ada bagian yang patah. Butir patah besar adalah butir beras patah, baik sehat
maupun cacat yang mempunyai ukuran lebih besar atau na dengan 611 0
(BPB:6/1O) bagian
i
ukuran panjang rata-rata butir beras utub yang dapat
melewati pennukaan cekungan
indented plate
dengan persyaratan ukuran lubang 4.2
n.
Butir patah adalah butir beras patah, baik sehat maupun eaeat yang mempunyai
ukuran lebih kecil dati 6/10 bagian tetapi lebih besar dari 211 0 bagian
(2/1 0<BP<6/1 0) panjang rata-rata butir beras utuh. Bulir menir adalab bulir
beas
patah, baik sehat maupun eaeat yang mempunyai ukuran lebih keeil atau sna
dengan 211 0 bagian butir utub (BM:2/10). Penggunaan ayakan menir standar
dengan lubang berukuran garis tenah minimal 1.8
ndan maksimal 2.0
m.Penelitian ini bertujuan meneari nilai numerik dari
25parameter yang
mencenninkan bentuk dan ukuran butiran beras yaitu pajang (P), lebar
(L/,L2_ .. ·,L20),
lebar maksimum (Lm,,), keliling(K), luas (A),
roundness
(R).
Berdasarkan parameter-parameter tersebut kemudian dikembangkan
artificial neural
network
untuk mendapatkan komposisi beras utub, beras patah besar, beras patah,
dan menir.
Kegiatan pene1itian
inidilakukan di Laboratorium Sistem Manajemen dan
Mekanisasi Pertanian, Jurusan Teknik Pertanian, Institut Pertanian Bogor.
PenggiIingan padi dilakukan di Laboratorium Balai Penelitian dan Pengembangan
BULOG Tambun, Bekasi. Waktu penelitian adalah selama lima bulan dari Bulan
Mei sampai dengan Bulan September 2003.
Contob padi diperoleh dari Balai Penelitian Tanaman Padi (Inlitpa Muara)
Bogor sebanyak sepulub varietas dengan berat tiap-tiap varietas 1 kg. Kesepuluh
varitas tersebut adalah Batang Gadis, Cimelati, Ciherang, Cisadane, Gilirang, IR
64, Membramo, Sintanur, Widas, dan Way Seputih.
Padi tersebut kemudian
mengalami proses penggilingan dan penyosohan menjadi beras dengan derajat sosoh
95%.
Kegiatan penyiapan sampel ini menggunakan alat
Moisture Tester, Grain
Analys Tester, Sample devider,
timbangan
Triple Beam Balance
merk OHAUS,
ayakan menir,
Indented Plate,
pinset, kaea pembesar, cawan petri, dan penyiduk.
empat buah lampu TL 5 watt, n iluminance meter merk Minolta tipe T-lH. Pada pengolahan citra dan pendugaan varietas digunakan seperangkat komputer sebagai perangkat keras dan perangkat lunak yang digunakan adalah bahasa pemrograman Visual Basic 6.0.
Setelah padi digiling dan disosoh menjadi beras, diambil 100 g untuk dilakukan analisa ukuran butiran. Yaitu pemisahan antara butir utuh, butir patah besar, butir patah, dan menir denan menggunakan ayakan menir dan
indented plate
standar BULOG. Butiran yang sudah dikelompokkan tersebut kemudian dianalisa kembali secara visual dengan bantuan pinset, kaca pembesar dan cawan petri untuk menghindari tercampnya ukuran butiran lain.Sampel beras diletakkan 20 em di bawah kamera dengan resolusi citra
480 x 640. Sampel beras diletakkan di atas kertas berwama merah. Beras diletakkan
secara acak dan tidak tumpang tindih antara satu dengan lainnya sehingga memudahkan komputer mengenali butir demi butir. Kemudian gambar atau citranya diambil dengan menggunakan kamera digital dan disimpan pada
file
gambar berformat JPEG. Program pengolahan citra beras yang digunakan merupakan program dengan bahasa pemrograman Visual Basic 6.0. Dengan program ini didapatkan data-data numerik dari cira yang berupa luas (A), panjang (P), lebar (L" L" ... ,L20), lebar maksimum (Lmwl, keliling (K), danroundness
(R)
yang digunakan sebagai masukan data padaarticial neural nework.
Luas butiran beras tergantung dari varietas masing-masing beras. Karena beras yang diambil pada penelitian ini banyak dan mempunyai kekhasan bentuk masing-masing. Beras yang dinyatakan butir patah pada satu varietas, luasnya mungkin akan sama dengan butir patah besar pada varietas yang lain. Begitu juga dengan keliling, keliling butir patah pada satu varietas mungkin na dengan keliling pada butir patah besar varietas yang lain. Untuk panjang, panjang suatu varietas berbeda dengan varietas yang lain. Misalnya butir patah pada varietas
IR
64mungkin dinyatakan sebagai butir patah esar pada varietas Widas. Dalam pemilihan sampel, beras yang diambil adalah beras normal sehingga tidak memperbandingkan lebamya, namun memperbandingkan ukuran panjang dengan panjang butir utuh pada varietas yang sama. Sehingga karakteristik dari lebar tidak tergantung dari ukuran butiran.
Proses training pada
articial neural network
dilakukan sampai jaringan mendapatkan nilai akurasi yang stabil. Pada penelitian ini proses training dilakukan sampai dengan 17 000 iterasi dengan nilai akurasi 98.7% yang terdiri dari akurasi pendugaan terhadap butir utuh 100%, akurasi pendugaan terhadap butir patah besar96%, akurasi pendugaan terhadap butir atah 99.18%, dan akurasi pendugaan terhadap menir 99.35%. Karakteristik cira untuk luas (A), panjang (P), keliling (K), lebar maksimum (Lmks), dan
roundness
(R)
yang tumpang tindih pada masing masing ukuran butiran terhadap ukuran butiran yang lain menyebabkan hasil pendugaan ukuran butiran tertebak menjadi ukuran butiran lain. Dari nilai akurasi yang diperoleh dapat disimpulkan bahwa hobot yang dihasilkan pada modelarticial
neural network
yang dikembangkan dapat digunakan untuk pendugaan ukuran butian beras. Hasil pendugaan validasi set dengan menggunakan data yang baru menghasilkan nilai akurasi 92.9 1% yang terdiri dari akurasi pendugaan terhadap butir utuh 97.4%, akurasi pendugaan terhadap butir patah besar 89.72%, akurasi pendugaan terhadap butir patah 92.9%, dan akurasi pendugaan terhadap menirPENDUGAAN UKURAN BERAS DENGAN PENGOLAHAN CITRA DAN
ARTIFICIAL NEURAL NETWORK UNTUK EV ALUASI MUTU BERAS SOSOH
SKRIPSI
Sebagai salah satu syarat untuk memperoleh gelar
SARJANA TENOLOGI PERTANIAN
Pada Jn Teknik Pertanian,
Fakultas Teknologi Pertanian,
Institut Pertanian Bogor
Oleh:
HERNIK NUR HIDAYATI
F01499043
2003
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
INSTITUT PERTANIAN BOGOR
FAKULTAS TEKNOLOGI PERTANIAN
PENDUGAAN UKURAN BERAS DENGAN PENGOLAHAN CITRA
DANARTIFICUL NEURAL NETWORKUNTUK
EVALUASI MUTU BERAS SOSOH
, .
SKRIPSI
Sebagai salah satu syarat memperoleh gelar
SARJANA TEKNOLOGI PERTANIAN
Pada Jurusan Teknik Pertanian,
Fakultas Teknologi Pertanian,
Institut Pertanian Bogor
Oleh:
HERN� NUR HIDA Y A TI
FOl499043
Dilahirkan pada tanggai 29 J anuari 1981
di Sukoharjo
Tanggallulus: 29 September 2003
Menyetujui,
Bogor,
g
Oktober 2003Dr. If. I Wayan Astika, M.Si
RIWAYAT InUp
Penulis bemama lengkap Hemik Nur Hidayati, dilahirkan di Sukoharjo. 29
Januari 1981 dan merupakan anak keempat
i
empat bersaudara denan ayahbemna Ir. Daliyo dan Ibu benama Hem Prihatin.
Pada bn 1993 penulis menyelesaikan pendidikan dasar di Sekolah Dasar
Negeri 02 Singopuran, Sukoharjo. Penulis kemudian melanjutkan pendidikan di
Sekolah Lanjutan Tingkat PertaIna Negeri I Kartasura, SukohaJjo dan lulus bn
1996. Kemudian melanjutkan ke Sekolah Lanjutan Menengah Atas Islam Batik I
Surakarta dan lulus bn 1999.
Pada bn 1999, melalui Undangan Seleksi Masuk IPB (USMI), penulis
diterima di Jurusan reknik Pertanian, Fakultas Teknologi Pertanian, Institut
Pertanian Bogor n menyelesaikan pendidikan program Sarjana pada hn 2003.
Selama menempuh studi di IPB, penulis terdatar sebagai anggota
HIMATETA dan menikuti keanitiaan yang diadakan oleh mahasiswa atan umum.
Penulis juga pemah menjadi asisten dosen uotuk roata kuliah Penerapan Kompter
pada bn 2003.
Penulis melaksanakan praktek Japang di PT. Tiperary Indonesia, Lampung
Timur dengan topik Manajemen Penggunaan Alat dan Mesin Pertanian pada
Industri Penggemukan Sapi di PT. Tipperary Indonesia, Lampung Timur.
Selanjutnya penulis melakukan penelitian dengan topik Pendugaan Ukuran Beras
KATA PENGANTAR
Alhamdulillab, puji syukur hanya keada Allab SWT, sang pencipta yang patu!
disemhah, atas segala rnat dan hidayah-Nya sehingga penulis dapat
menyelesaikan skripsi ini.
Pada kesempatan ini penulis ingin menyampaikan terima kasih kepada :
I, Dr. Ir. I Wayan Astika, MSi atas bimbingan yang telab dierikan.
2.
Ir. Mohamad Solahudin, MSi atas saran dan bantuan moril yang diberikan selakupembimbing endamping.
3. Dr. Ir. Suroso, MAgr atas kesediaannya untuk menguji, kritik, dan saran yang
diberikan kepada enulis.
4. Ir. Abdul Waries Patiwiri, MBA dari BULOG yang telab menyediakan fasilitas
se1ama penelitian.
5. Ir. Ennan zz, MSc, Bapak Rahman Sugiyanto, dan Bapak Rudi dari Balai
Penelitian dan Pengemhanan BULOG Tambun, Bekasi yang telah banyak
membantu dalam pelaksanaan penelitian.
6.
Bapak Gozalii
Lahoratorium Sistem Manajemendn Meknisasi
Pertanianyang telah banyak memhantu dalam pelaksanaan enelitian.
7. Program Penelitian Due-Like yang telah membiayai penelitian ini.
8. Pihak-pihak yang tidak bisa penulis sebutkan satu-persatu.
Akhimya kritik dan saran sangat penulis harapkan demi perbaikan tulisan
selanjutnya.
Bogor, 8 Oktober 2003
Jaa(!!(marium) )an 16u Tercinta, Mas ipin,
Mas L{an, Mas Ian )an jponazn(u {asna )It as Segaa )oa,
Periatan, (asii Sayang, )an Semangat 'Yang eai )i6eri(an jpaa
Penu(is.
MaYa, Puti, Nom, M'Ma ltas Segaa j6ersamaan.
Peuangan 'Yang jta La(ui Jersama Seama In.
Jaga (e6ersamaan (ita (awan.
'Yusuf {enarawan, (' {enara, L '"n, Waan, M' Cano It as Sega
Jantuan )an )u(ungan Mori( 'Y ang )i6er(an Seaa Ini.
Marini, )esy, Mu(a, lny, Joe ltas )oa, Semangat, )an
Pesaia6atannya.
%nny,
VU,
Jana, )iana, Pen, Tiwi , q'ita, ryuu, rUSOn, Ifsa,
l6un, Monic, Mawan 'Yang Teai Mem6antu )an Teman-Tean EP
'36
'Yang Teai Mengisi {ari-{ai(u Seama Ini )engan (eceaan.
ja, 'Yuli, {ani, Ety, 'Yana, Tevi, {enty, )an Teman-Teman )i
Eae(weiss
.
N
ltas Segaa Jantuan, Pengertian, jsa6aran, )an
(e6ersaaan.
M'Lii, Inara, M' )eay, two., ptii, Jram, Lisaa, aan semua ana;
anal'VMIS ltas Segaa (e6ersamaanSeama Ini
ii
I3
M'lnton, (' Zui, ('lguslri, M'lj, M''Yu6i )an Teman-Tean
EP
'35
ltas Jim6ingannya.