• Tidak ada hasil yang ditemukan

II. TINJAUAN PUSTAKA POTENSI TANAMAN ALFALFA (Medicago sativa L.) SEBAGAI FITOREMEDIATOR TANAH TERCEMAR LOGAM BERAT TIMBAL (Pb).

N/A
N/A
Protected

Academic year: 2017

Membagikan "II. TINJAUAN PUSTAKA POTENSI TANAMAN ALFALFA (Medicago sativa L.) SEBAGAI FITOREMEDIATOR TANAH TERCEMAR LOGAM BERAT TIMBAL (Pb)."

Copied!
27
0
0

Teks penuh

(1)

7 A. Pencemaran Lingkungan (Tanah)

Pencemaran lingkungan adalah suatu keadaan yang terjadi karena perubahan kondisi tata lingkungan (tanah, udara, dan air) yang tidak menguntungkan (merusak dan merugikan kehidupan manusia, binatang, dan tumbuhan) yang disebabkan oleh kehadiran benda-benda asing (seperti sampah, limbah industri, minyak, logam berbahaya dan sebagainya). Hal ini salah satunya sebagai akibat perbuatan manusia, sehingga mengakibatkan lingkungan tersebut tidak berfungsi seperti semula (Susilo, 2003). Kontaminasi pada tanah dan perairan diakibatkan oleh banyak penyebab termasuk limbah industri, limbah pertambangan, residu pupuk dan pestisida hingga bekas instalasi senjata kimia. Bentuk kontaminasi berupa berbagai unsur dan substansi kimia berbahaya (Squires 2001; Matsumoto 2001; Wise dkk, 2000) yang mengganggu keseimbangan fisik, kimia, dan biologi tanah.

(2)

permukaan tanah maupun air tanah dan dapat menyebar ke daerah sekitarnya melalui air, angin, penyerapan oleh tumbuhan, dan bioakumulasi pada rantai makanan (Chaney dkk., 1998).

Pada dasarnya kontaminasi logam dalam tanah pertanian bergantung pada: 1) Jumlah logam yang ada pada batuan tempat tanah terbentuk, 2) Jumlah mineral yang ditambahkan pada tanah sebagai pupuk, 3) Jumlah deposit logam dari atmosfer yang jatuh ke dalam tanah, dan 4) Jumlah yang terambil pada proses panen ataupun merembes ke dalam tanah yang lebih dalam (Darmono, 2001). Kandungan logam dalam tanah sangat berpengaruh terhadap kandungan logam pada tanaman yang tumbuh di atasnya, kecuali terjadi interaksi diantara logam itu sehingga terjadi hambatan penyerapan logam tersebut oleh tanaman. Akumulasi logam dalam tanaman tidak hanya tergantung pada kandungan logam dalam tanah, tetapi juga tergantung pada unsur kimia tanah, jenis logam, pH tanah, dan spesies tanaman (Darmono, 2001).

B. Logam Berat Timbal (Pb)

(3)

Logam berat adalah istilah yang digunakan secara umum untuk kelompok logam dan metaloid dengan densitas lebih besar dari 5 g/cm3, terutama pada unsur seperti Cd, Cr, Cu, Hg, Ni, Pb dan Zn. Unsur-unsur ini biasanya erat kaitannya dengan masalah pencemaran dan toksisitas. Logam berat secara alami ditemukan pada batu-batuan dan mineral lainnya, maka dari itu logam berat secara normal merupakan unsur dari tanah, sedimen, air, dan organisme hidup yang akan menyebabkan pencemaran bila konsentrasinya telah melebihi batas normal. Jadi konsentrasi relatif logam dalam media adalah hal yang paling penting (Alloway dan Ayres, 1997).

Timbal atau timah hitam (Pb) adalah logam lunak berwarna abu-abu kebiruan mengkilat serta mudah dimurnikan dari pertambangan. Timbal (Pb) memiliki titik lebur rendah, mudah dibentuk, memiliki sifat kimia yang aktif, sehingga bisa digunakan untuk melapisi logam agar tidak timbul perkaratan. Timbal meleleh pada temperatur 328oC, titik didih 1740oC, dan memiliki berat jenis 11,34 gr/ml dengan berat atom 207,20 (Widowati, dkk., 2008). Selain dalam bentuk logam murni, timbal dapat ditemukan dalam bentuk senyawa anorganik dan organik. Semua bentuk Pb tersebut berpengaruh sama terhadap toksisitas pada manusia (Darmono, 2001).

(4)

perairan melalui proses pengendapan yang berasal dari aktivitas di darat seperti industri, rumah tangga, erosi, jatuhan partikel-partikel dari sisa proses pembakaran yang mengandung tetraetil Pb, air buangan dari pertambangan bijih timah hitam, dan buangan sisa industri baterai (Palar, 1994).

Soepardi (1983) dalam Charlena (2004) menjelaskan bahwa timbal (Pb) tidak akan larut ke dalam tanah jika tanah tidak masam. Pengapuran tanah mengurangi ketersediaan timbal (Pb) dan penyerapan oleh tanaman. Timbal akan diendapkan sebagai hidroksida fosfat dan karbonat.

Tabel 1. Jenis-jenis batuan induk pembentuk tanah yang mengandung logam berat Pb

Jenis batuan Pb (ppm)

Ultra basalt 1 - 14

Basalt 3 - 6

Granit 18 - 24

Sabs dan Liat 20 - 23

Sabs Hitam 20 - 30

Pasir 10 - 12

Kapur 5 - 9

Sumber: Barchia (2009)

(5)

dibutuhkan tanaman dalam jumlah sangat sedikit. Hasil analisis jaringan tanaman (rerumputan) pada masa pertumbuhan aktif menunjukkan bahwa kandungan Pb berkisar dari 0,3-1,5 mg/kg bahan kering (Alloway, dan Ayres, 1997).

Menurut Sudarmaji, dkk., (2006), timbal (Pb) dapat bersumber dari hasil pembakaran bahan tambahan (additive) Pb pada bahan bakar kendaraan bermotor menghasilkan emisi Pb anorganik. Logam berat Pb yang bercampur dengan bahan bakar tersebut akan bercampur dengan oli dan melalui proses di dalam mesin maka logam berat Pb akan keluar dari knalpot bersama dengan gas buang lainnya, sedangkan industri yang berpotensi sebagai sumber pencemaran Pb adalah semua industri yang memakai Pb sebagai bahan baku maupun bahan penolong, misalnya:

a. Industri pengecoran maupun pemurnian

Industri ini menghasilkan timbal konsentrat (primary lead), maupun

secondary lead yang berasal dari potongan logam (scrap). b. Industri baterai

Industri ini banyak menggunakan logam Pb terutama lead antimony alloy

dan lead oxides sebagai bahan dasarnya. c. Industri bahan bakar

(6)

d. Industri kabel

Industri kabel memerlukan Pb untuk melapisi kabel. Saat ini pemakaian Pb di industri kabel mulai berkurang, walaupun masih digunakan campuran logam Cd, Fe, Cr, Au dan As yang juga membahayakan untuk kehidupan makluk hidup.

e. Industri kimia yang menggunakan bahan pewarna

Pada industri ini seringkali dipakai Pb karena toksisitasnya relatif lebih rendah jika dibandingkan dengan logam pigmen yang lain. Sebagai pewarna merah pada cat biasanya dipakai red lead, sedangkan untuk warna kuning dipakai lead chromate (Sudarmaji, dkk., 2006).

Timbal merupakan logam berat yang sangat beracun, dapat dideteksi secara praktis pada seluruh benda mati di lingkungan dan seluruh sistem biologi. Sumber utama timbal adalah makanan dan minuman. Komponen ini beracun terhadap seluruh aspek kehidupan. Timbal menunjukkan beracun pada sistem saraf, hemetologic, hemetotoxic dan memengaruhi kerja ginjal. Rekomendasi dari WHO, logam berat Pb dapat ditoleransi dalam seminggu dengan takaran 50 mg/kg berat badan untuk dewasa dan 25 mg/kg berat badan untuk bayi dan anak-anak. Mobilitas timbal di tanah dan tumbuhan cenderung lambat dengan kadar normal pada tumbuhan berkisar 0,5-3 ppm.

(7)

pengaruh toksik pada proses fotosintesis dan pertumbuhan tanaman (Charlena, 2004).

Logam Pb bersifat toksik pada manusia dan dapat menyebabkan keracunan akut dan kronis. Keracunan akut biasanya ditandai dengan rasa terbakar pada mulut, adanya rangsangan pada sistem gastrointestinal yang disertai dengan diare. Sedangkan gejala kronis umumnya ditandai dengan mual, anemia, sakit di sekitar mulut dan dapat menyebabkan kelumpuhan (Darmono, 2001).

Fardiaz (1992) menambahkan bahwa daya racun dari logam ini disebabkan terjadi penghambatan proses kerja enzim oleh ion-ion Pb2+. Penghambatan tersebut menyebabkan terganggunya pembentukan hemoglobin darah. Hal ini disebabkan adanya bentuk ikatan yang kuat (ikatan kovalen) antara ion-ion Pb2+ dengan gugus sulphur di dalam asam-asam amino. Untuk menjaga keamanan dari keracunan logam ini, batas maksimum timbal dalam makanan laut yang ditetapkan oleh Departemen Kesehatan RI dan FAO adalah sebesar 2,0 ppm. Pada organisme air kadar maksimum Pb yang aman dalam air adalah sebesar 50 ppb (EPA, 1973).

Keberadaan unsur logam pada tanah dapat terjadi karena berbagai hal

yaitu penggunaan bahan agrokimia (pupuk, pestisida dan fungisida), polusi

(asap kendaraan bermotor), penggunaan bahan bakar minyak, pupuk organik,

buangan limbah rumah tangga, industri, dan pertambangan sehingga terjadi

kontaminasi logam-logam pada tanah dan tumbuh-tumbuhan (Alloway dan

(8)

pada tanah, air dan tanaman ditunjukkan pada Tabel 2 dan kisaran kadar

logam berat sebagai pencemar dalam tanah dan tanaman ditunjukkan pada

Tabel 3.

Tabel 2. Batas kritis logam berat pada tanah, air dan tanaman

Logam berat Tanaha (ppm) Airb (ppm) Tanamanc (ppm)

Pb 100 0,003 50

Cd 0,5 0,005 - 0,10 5 - 30

Co 10 0,4 - 0,6 15 - 30

Cr 2,5 0,5 - 1,0 5 - 30

Ni 20 0,2 - 0,5 5 - 30

Cu 60 - 125 2 – 3 20 - 100

Mn 1.500 - -

Zn 70 5 – 10 100 - 400

Sumber : a Kementerian Kependudukan dan Lingkungan Indonesia bekerjasama dengan Universitas Dalhouse Canada (1992)

b Pemerintah Republik Indonesia (1990) c Alloway dan Ayres (1997)

Tabel 3. Kisaran kadar logam berat sebagai pencemar dalam tanah dan tanaman

Unsur Kisaran Kadar Logam Berat (ppm)

Tanah Tanaman

As 0,1 - 40 0,1 – 5

B 2 - 100 30 – 75

F 30 - 300 2 – 20

Cd 0,1 – 7 0,2 – 0,8

Mn 100 - 4000 15 – 200

Ni 10 - 1000 1

Zn 10 - 300 15 – 200

Cu 2 - 100 4 – 15

Pb 2 - 200 0,1 – 10

Sumber: Barchia (2009)

(9)

sekeliling tanaman tersebut. Dua jalan masuknya timbal ke dalam tanaman yaitu, melalui akar dan daun. Timbal setelah masuk ke sistem tanaman akan diikat oleh membran-membran sel, mitokondria dan kloroplas. Bahkan pencemaran dapat menyebabkan terjadinya kerusakan fisik. Kerusakan tersembunyi dapat berupa penurunan kemampuan tanaman dalam menyerap air, pertumbuhan yang lambat atau pembukaan stomata yang tidak sempurna (Hutagalung dan Jalaluddin, 1982).

C. Fitoremediasi

Fitoremediasi adalah penggunaan tumbuhan untuk menghilangkan, memindahkan, menstabilkan, atau menghancurkan bahan pencemar baik itu senyawa organik maupun anorganik. Fitoremediasi didefinisikan sebagai pencucian polutan ke bentuk yang tidak berbahaya (Chaney, 1995). Fitoremediasi merupakan metode yang murah, efisien, dan ramah lingkungan. Metode fitoremediasi sangat berkembang pesat karena metode ini mempunyai beberapa keunggulan diantaranya relatif murah bila dibandingkan dengan metode konvensional sehingga biaya dapat dihemat sebesar 75-85% (Schanoor dan Cutcheon, 2005).

Menurut Mangkoedihardjo (2010), proses fitoremediasi secara umum dibedakan berdasarkan mekanisme fungsi dan struktur tumbuhan. Adapun klasifikasi proses fitoremediasi adalah sebagai berikut:

1. Fitostabilisasi (phytostabilization)

(10)

presipitat polutan dalam zona akar. Proses ini secara tipikal digunakan untuk dekontaminasi zat-zat anorganik yaitu sulfur, nitrogen, dan beberapa logam berat.

2. Fitoekstraksi/fitoakumulasi (phytoextraction/phytoaccumulation)

Akar tumbuhan menyerap polutan dan selanjutnya ditranslokasi ke dalam organ tumbuhan. Proses ini cocok digunakan untuk dekontaminasi zat-zat anorganik seperti pada proses fitostabilisasi.

3. Rizofiltrasi (rhizofiltration)

Akar tumbuhan mengadsorpsi atau presipitasi pada zona akar atau mengabsorpsi larutan polutan sekitar akar ke dalam akar. Proses ini digunakan untuk bahan larutan yang mengandung bahan organik maupun anorganik.

4. Fitodegradasi/fitotransformasi (phytodegradation/phytotransformation) Organ tumbuhan menguraikan polutan yang diserap melalui proses metabolisme tumbuhan atau secara enzimatik.

5. Rizodegradasi (rhizodegradation)

(11)

6. Fitovolatilisasi (phytovolatilization)

Penyerapan polutan oleh tumbuhan dan dikeluarkan dalam bentuk uap cair ke atmosfer. Kontaminan bisa mengalami transformasi sebelum lepas ke atmosfer. Proses ini tepat digunakan untuk kontaminan zat-zat organik.

Gambar 1. Mekanisme penyerapan logam berat oleh tanaman (Sumber: Favas dkk., 2014)

(12)

meningkatkan konsentrasi Pb di dalam pucuk kedua tumbuhan tersebut dari sekitar 500 mg/kg menjadi 10.000 mg/kg dengan kandungan Pb di dalam tanah lebih kurang 2.500 mg/kg.

Kerusakan akibat pencemaran dapat terjadi karena adanya akumulasi

bahan toksik dalam tubuh tumbuhan, perubahan pH, peningkatan atau

penurunan aktivitas enzim, rendahnya kandungan asam askorbat di daun,

tertekanya fotosintesis, peningkatan respirasi, produksi bahan kering rendah,

perubahan permeabiltas, terganggunya keseimbangan air dan penurunan

kesuburanya dalam waktu yang lama. Gangguan metabolisme berkembang

menjadi kerusakan kronis dengan konsekuensi tak beraturan. Tumbuhan akan

berkurang produktivitasnya dan kualitas hasilnya juga rendah (Guritno dan

Sitompul, 1995).

Beberapa penelitan menunjukan bahwa pencemaran mengakibatkan

menurunnya pertumbuhan dan produksi tanaman serta dikuti dengan gejala

yang tampak (visible symptoms). Kerusakan tanaman karena pencemaran

berawal dari tingkat biokimia (ganguan proses fotosintesis, respirasi, serta

biosintesis protein dan lemak), selanjutnya tingkat ultrastruktural

(disorganisasi sel membran), kemudian tingkat sel (dinding sel, mesofil,

pecahnya inti sel) dan diakhiri dengan terlihatnya gejala pada jaringan daun

seperti klorosis dan nekrosis (Malhotra dan Khan, 1984 dalam Treshow,

1989).

Tanaman yang tumbuh di daerah dengan tingkat pencemaran tingi

(13)

penyakit, antara lain klorosis, nekrosis, dan bintik hitam. Partikulat yang

terdeposisi di permukan tanaman dapat menghambat proses fotosintesis

(Fatoba dan Emem, 2008). Menurut Gothberg (2008), tingginya kandungan

Pb pada jaringan tumbuhan menyebabkan berkurangnya kadar klorofil daun

sehinga proses fotosintesis terganggu, selanjutnya berakibat pada

berkurangnya produksi suatu tumbuhan.

D. Tumbuhan Sebagai Hiperakumulator

Secara alami tumbuhan memiliki beberapa keunggulan, yaitu: (i)

Beberapa famili tumbuhan memiliki sifat toleran dan hiperakumulator

terhadap logam berat, (ii) Banyak jenis tumbuhan dapat merombak polutan,

(iii) Pelepasan tumbuhan yang telah dimodifikasi secara genetik ke dalam

suatu lingkungan relatif lebih dapat dikontrol dibandingkan dengan mikrob,

(iv) Tumbuhan memberikan nilai estetika, (v) Dengan perakarannya yang

dapat mencapai 100 x 106 km akar per ha, tumbuhan dapat mengadakan

kontak dengan bidang tanah yang sangat luas dan penetrasi akar yang dalam,

(vi) Dengan kemampuan fotosintesis, tumbuhan dapat menghasilkan energi

yang dapat dicurahkan selama proses detoksifikasi polutan, dan (vii) Asosiasi

tumbuhan dengan mikrobia memberikan banyak nilai tambah dalam

memperbaiki kesuburan tanah (Feller, 2000).

Semua tumbuhan memiliki kemampuan menyerap logam tetapi dalam

jumlah yang bervariasi. Sejumlah tumbuhan dari banyak famili terbukti

(14)

konsentrasi tinggi pada jaringan akar dan tajuknya, sehingga bersifat

hiperakumulator. Sifat hiperakumulator berarti dapat mengakumulasi unsur

logam tertentu dengan konsentrasi tinggi pada tajuknya dan dapat digunakan

untuk tujuan fitoekstraksi. Dalam proses fitoekstraksi ini logam berat diserap

oleh akar tanaman dan ditranslokasikan ke tajuk untuk diolah kembali atau

dibuang pada saat tanaman dipanen (Chaney, 1995).

Mekanisme biologis dari hiperakumulasi unsur logam pada dasarnya

meliputi proses-proses: (i) Interaksi rizosferik, yaitu proses interaksi akar

tanaman dengan media tumbuh (tanah dan air). Dalam hal ini tumbuhan

hiperakumulator memiliki kemampuan untuk melarutkan unsur logam pada

rizosfer dan menyerap logam bahkan dari fraksi tanah yang tidak bergerak

sehingga menjadikan penyerapan logam oleh tumbuhan hiperakumulator

melebihi tumbuhan normal (McGrath, dkk., 1997), (ii) Proses penyerapan

logam oleh akar pada tumbuhan hiperakumulator lebih cepat dibandingkan

tumbuhan normal, terbukti dengan adanya konsentrasi logam yang tinggi

pada akar (Lasat, dkk., 1996). Akar tumbuhan hiperakumulator memiliki daya

selektifitas yang tinggi terhadap unsur logam tertentu, (iii) Sistem translokasi

unsur dari akar ke tajuk pada tumbuhan hiperakumulator lebih efisien

dibandingkan tanaman normal. Hal ini dibuktikan oleh konsentrasi logam

tajuk/akar pada tumbuhan hiperakumulator lebih dari satu (Gabbrielli, dkk.,

1991).

Karakteristik tumbuhan hiperakumulator adalah: (i) Tahan terhadap

(15)

Tingkat laju penyerapan unsur dari tanah yang tinggi dibanding tanaman lain,

(iii) Memiliki kemampuan mentranslokasi dan mengakumulasi unsur logam

dari akar ke tajuk dengan laju yang tinggi (Reeves, 1992).

Banyak jenis tumbuhan berpembuluh (vascular plants) ditemukan mempunyai kemampuan untuk mengakumulasikan logam berat (metal hyperaccumulator plants). Lebih dari 400 jenis tumbuhan telah ditemukan mempunyai kemampuan hiperakumulator termasuk anggota famili Asteraceae, Brassicaceae, Caryophyllaceae, Cyperaceae, Cunouniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, Violaceae dan Euphorbiaceae. Tumbuhan yang termasuk hiperakumulator adalah anturium merah/kuning, alamanda kuning/ungu, akar wangi, bambu air, cana presiden merah/kuning/putih, dahlia, dracenia merah/hijau, helikonia kuning/merah, jaka, keladi loreng/sente/hitam, kenyeri merah/putih, lotus kuning/merah, onje merah, pacing merah/mutih, padi-padian, papirus, pisang mas, ponaderia, sempol merah/putih, spider lili, dan lain-lain (Hindersah, 2004).

E. Deskripsi, Taksonomi dan Kemampuan Tanaman Alfalfa (Medicago sativa L.)

(16)

karena kemampuannya dalam menutup tanah sangat baik. Secara ekonomi alfalfa merupakan komoditas yang bernilai (Earthnotes, 2001).

Alfalfa memiliki kandungan protein yang tinggi hingga mencapai 25% dan 8 asam amino, kaya akan kandungan kalsium dan kalium, mineral mikro, tinggi kandungan vitamin A, B1, B2, B6, B12, C, D, E, K dan U, betakaroten, garam organik, tinggi klorofil, fosfor, besi dan magnesium, rendah kandungan serat kasarnya tapi masih memenuhi kebutuhan serat untuk ternak ruminansia (Earthnotes, 2001). Nilai kecernaan alfalfa berkisar antara 71-80% (Phillips, dkk., 2003).

Alfalfa dapat beradaptasi dengan baik pada berbagai macam iklim dan kondisi tanah. Alfalfa beradaptasi sangat baik pada tanah lempung yang dalam dengan bagian tanah yang berpori. Alfalfa juga membutuhkan banyak kapur dan tidak bagus tumbuh pada tanah yang masam (Hanson dan Barnes, 1973). Umumnya alfalfa dapat tumbuh baik pada pH 6,2 (Rowell, 1994).

Alfalfa responsif terhadap aplikasi pemupukan, khususnya fosfor, sulfur dan potasium (Whiteman, 1980) dan menurut Pearson dan Ison (1987) efisiensi penggunaan pupuk fosfor umumnya berkisar 0,7 – 1,0, namun bisa juga turun hingga nol bila diaplikasikan saat curah hujan tinggi pada tanah berpasir. Di Missouri, alfalfa diperhadapkan dengan beberapa penyakit: busuk akar (phytophtora root rot), penyakit layu (bacterial wilt),

(17)

pencegahan melalui pemilihan varietas yang resisten terhadap phytophtora root rot, bacterial wilt dan anthracnose (Henning dan Nelson, 1993)

Menurut USDA (2011), pengelompokan tanaman alfalfa dalam sistem binomial adalah sebagai berikut:

Kerajaan : Plantae

Subkerajaan : Tracheobionta Filum : Tracheophyta Subfilum : Spermatophytina Super divisi : Spermatophyta Divisi : Magnoliophyta Super kelas : Angiospermae Kelas : Gymnospermae Subkelas : Dicotyledonae Bangsa : Fabales Suku : Fabaceae Marga : Medicago

Jenis : Medicago sativa L.

Alfalfa termasuk tanaman leguminosa (suku polong-polongan) yang berkembang secara luas sebagai pakan ternak. Pertumbuhan akar yang dalam dapat mencapai 4,5 meter sehingga tanaman tangguh menghadapi musim kering atau kekeringan yang panjang. Tanaman bercabang dan membentuk rhizome, membutuhkan sinar matahari dan kadar kapur yang cukup, toleran kekeringan tetapi tidak tahan kelembaban tinggi dan penggembalaan berat (Al-Neem, 2008).

(18)

mendatar, berkayu di bagian dasar, cabang-cabang dan menanjak sampai tegak setinggi 30 – 120 cm. Daun satu tangkai (petiol) berdaun tiga (trifoliat), panjang 5 – 15 mm, berbulu pada permukaan bawah, tangkai daun berbulu, bunga berbentuk tandan yang rapat berisi 10 – 35 bunga, mahkota bunga berwarna ungu atau biru jarang yang berwarna putih (Mannetje dan Jones, 2000). Menurut Hoy, dkk. (2002) alfalfa termasuk tanaman leguminosa yang biasa tumbuh di daerah temperate (sedang) dan berumur 8 - 10 tahun tergantung kondisi iklim dan lingkungan pertumbuhan tanaman. Bunga dan morfologi tanaman alfalfa terlihat seperti yang disajikan dalam Gambar 2 dan 3 di bawah ini.

Gambar 2. Gambar tanaman alfalfa Keterangan: 1. Bunga, 2. Daun petiol-trifoliat, 3. Batang, 4. Akar tunggang.

Gambar 3. Tanaman alfalfa foto asli Keterangan : 1. Daun, 2. Bunga berwarna ungu atau biru, 3. Batang tegak berkayu. (Sumber: Parman, 2007)

2 1

3 2

1

3

(19)

Menurut Subantoro (2009), pertumbuhan tanaman alfalfa dipengaruhi oleh berbagai faktor, antara lain:

a. Iklim

Tanaman alfalfa merupakan jenis tanaman sub-tropis sehingga bila dibudidayakan di daerah tropik perlu adaptasi serta perlakuan khusus. Tanaman alfalfa yang berkembang di Indonesia dapat tumbuh optimal pada ketinggian kurang dari 100 mdpl. Hal itu menunjukkan bahwa tanaman alfalfa dapat tumbuh dengan baik pada dataran rendah dengan temperatur yang lebih tinggi. Intensitas cahaya optimal diperlukan oleh tanaman alfalfa untuk mengimbangi kandungan klorofil empat kali lipat daripada tanaman sayuran (Subantoro, 2009).

Unsur iklim merupakan faktor penentu dalam budidaya tanaman. Tanaman alfalfa merupakan jenis tanaman sub-tropis sehingga bila dibudidayakan di daerah tropik perlu adaptasi serta perlakuan khusus. Adapun data mengenai karakteristik tanaman alfalfa yang tahan terhadap musim kemarau di Grati (Jawa Timur) sebagai berikut :

Tabel 4. Karakter tanaman alfalfa yang tahan musim kemarau Umur Hasil Hijauan

(kg/ha) Uraian (Musim)

49 hari 1.500 Musim hujan

24 hari (regrowth) 2.100 Musim hujan 28 hari (regrowth) 2.000 Hujan berkurang 30 hari (regrowth) 2.540 Mulai musim kemarau 33 hari (regrowth) 3.571 Musim kemarau 36 hari (regrowth) 4.077 Musim kemarau hebat Tanaman hidup terus

(20)

Data tersebut menunjukkan bahwa tanaman alfalfa mempunyai daya adaptasi yang luas terhadap perubahan musim, serta menghasilkan hijauan yang optimal pada musim kemarau. Tanaman alfalfa merupakan leguminose perrenial yang tahan terhadap invasi weed, menahan erosi dan tetap hijau sepanjang tahun baik musim hujan maupun musim kemarau (Subantoro, 2009).

Tanaman alfalfa yang berkembang di Indonesia dapat tumbuh dengan optimal pada ketinggian kurang dari 100 mdpl. Hal itu menunjukkan bahwa tanaman alfalfa dapat tumbuh dengan baik pada dataran rendah dengan temperatur yang lebih tinggi. Hal itu akan mengoptimalkan produksi tanaman melalui efisiensi fotosintesis. Belum ada penelitian yang menjelaskan tentang berapa besar intensitas cahaya yang diperlukan agar diperoleh hasil yang optimal.

Temperatur merupakan faktor penting dalam pertumbuhan bagi tanaman secara umum, maupun pada tanaman alfalfa. Tanaman alfalfa sebagai tanaman sub-tropis mempunyai kemampuan beradaptasi dengan lingkungan dengan temperatur yang relatif tinggi. Alfalfa tumbuh baik pada temperatur antara 15-250C (Peters, 2007).

b. Tanah

Pertumbuhan tanaman alfalfa baik pada jenis tanah grumosol yang bersifat sangat basa dan temperatur rendah. Adapun penyebaran tanah grumosol (vertisols) di Indonesia ada tiga daerah yaitu :

(21)

2. Dataran rendah berbatasan dengan cekungan dan bukit-bukit kapur. 3. Dataran aluvial campuran gunung berapi dan bahan batu pasir dari

pantai (Subantoro, 2009).

Tanaman alfalfa dapat tetap tumbuh dengan baik pada jenis tanah yang kurang produktif dan tingkat kesuburan yang relatif rendah. Dengan demikian tanaman alfalfa dapat dikembangkan pada daerah-daerah tersebut, sebagai upaya meningkatkan penggunaan lahan tidur yang tidak produktif. Pemanfaatan tanah yang kurang produktif tersebut dalam kurun waktu yang lama mampu meningkatkan produktifitas lahan (Subantoro, 2009).

Tanaman alfalfa memiliki kemampuan mengikat nitrogen (N) dari udara. Nitrogen adalah unsur terpenting dalam pertumbuhan tanaman. Kandungan gas nitrogen (N2) di udara sebesar 79% namun tidak dapat dimanfaatkan tanaman. Akan tetapi tanaman dapat memanfaatkan nitrogen dari udara bila bersimbiose dengan bakteri tanah rhizobium dan membentuk bintil akar. Nitrogen diambil dalam bentuk N2 dan diubah menjadi amonium (NH4) sehingga dapat digunakan tanaman (Evers, 2004).

Alfalfa merupakan tanaman leguminosa yang sangat selektif terhadap

(22)

Nitrogen udara yang diikat oleh tanaman alfalfa digunakan untuk tanaman sendiri maupun untuk tanaman kompanionnya. Chapmen dan Myers (1987) dan Russelle (2004) melaporkan bahwa hasil fiksasi nitrogen oleh leguminosa dapat tersedia bagi tanaman yang berada di sekitarnya selama musim pertumbuhan melalui pembusukan akar dan bintil akar merupakan hal penting dalam transfer nitrogen. Pengaruh ini berdampak positif karena dapat mengurangi polusi dengan mengeluarkan nitrogen sesuai dengan kebutuhan tanaman di sekitarnya. Menurut Freeyer (2004), lahan setelah ditanami alfalfa selama 4 tahun kemudian ditanami jagung menjadi lebih efektif dalam penggunaan urea sampai 33%. Hal ini disebabkan alfalfa mampu mengikat N dari udara sebesar 35 kg/ha pada tahun I dan 102 kg N/ha tahun ke II (Ball, 2008).

Kemudian Martensson dan Ljunggren (1984) dan Freeyer (2004) melaporkan N yang dihasilkan alfalfa per m2 7,85 10,37 g. Menurut Russelle (2004), sumbangan N dalam tanah sebesar 75 lb N/akre atau setara 84,24 kg N/ha dan setelah 2 – 3 tahun meningkat 130 lb N/akre atau setara 146,01 kg N/ha. Tanaman demikian akan menyuburkan tanah secara alami sehingga akan terpenuhi kebutuhan nitrogen.

(23)

Sitanggang, 2006). Namun senyawa flavonoid dalam jumlah besar dapat bersifat sebagai antinutrisi, sehingga perlu pertimbangan sebelum dikonsumsi. Demikian juga Purwantari, dkk. (2009) melaporkan pada tanaman alfalfa di Indonesia mengandung senyawa fitoestrogen antara lain daidzin, apigenin, coumestrol, dan biochanin.

Fitoestrogen tersebut merupakan senyawa bukan steroid yang ada di dalam tanaman yang berfungsi untuk melindungi diri dari serangan hama (Hughes, 1988). Alfalfa sangat disenangi oleh serangga dan hama. Telah ditemukan lebih dari 17 spesies, yang menyerang alfalfa sehingga dari sejak tumbuh hingga tanaman menjelang panen (Randolph dan Garner, 1997). Akibat serangan hama, di AS pernah dilaporkan kehilangan hasil hijauan yang mencapai 6 ton bahan kering per ha (Aldryhin, 1994). Kemudian di Bogor juga dilaporkan bahwa serangan hama tersebut menurunkan produksi hijauan alfalfa sebesar 56,8%. Selain hama, alfalfa juga terserang penyakit seperti virus mosaik dan serangan virus ini menurunkan produktivitas hijauan (Yardiminci, dkk., 2007).

(24)

dan adenosine. Salah satu pemanfaatan alfalfa, diantaranya dapat diolah menjadi minuman suplemen dengan nama liquid chlorophyll, soft capsul, dan minuman penyegar yang diproduksi oleh beberapa pabrik farmasi yang cukup terkenal di dunia.

Faktor-faktor yang memengaruhi pertumbuhan tanaman, yang secara luas dapat dikategorikan sebagai faktor eksternal (lingkungan) dan internal (genetik), dikelompokkan sebagai berikut:

1. Faktor eksternal

a. Iklim: cahaya, temperatur, air, panjang hari, angin, dan gas (CO2, O2, N2, SO2, Fl, Cl, dan O3). Gas-gas ini seringkali merupakan polutan atmosfer (kecuali untuk tiga gas pertama) dan konsentrasinya dapat cukup tinggi untuk menghambat pertumbuhan.

b. Edafik (tanah): tekstur, struktur, bahan organik, kapasitas pertukaran kation, pH, kejenuhan basa, dan ketersediaan nutrisi.

c. Biologi: gulma, serangga, organisme penyebab penyakit, nematoda, macam-macam tipe herbivora, dan mikroorganisme tanah, seperti bakteri pemfiksasi N2 dan bakteri denitrifikasi, serta mikoriza (asosiasi simbiotik antara jamur dengan akar tanaman) (Gardner, dkk., 1991). 2. Faktor internal

a. Ketahanan terhadap tekanan iklim, tanah, dan biologi b. Laju fotosintetik

c. Respirasi

(25)

e. Klorofil, karoten, dan kandungan pigmen lainnya f. Tipe dan letak meristem

g. Kapasitas untuk menyimpan cadangan makanan h. Aktivitas enzim

i. Pengaruh langsung gen (misalnya heterosis, epistasis) j. Diferensiasi (Gardner, dkk., 1991).

F. Spektrofotometri Serapan Atom (SSA)

(26)

Sumber cahaya pada AAS adalah sumber cahaya dari lampu katoda yang berasal dari elemen yang sedang diukur kemudian dilewatkan ke dalam nyala api yang berisi sampel yang telah teratomisasi, kemudian radiasi tersebut diteruskan ke detektor melalui monokromator. Chopper digunakan untuk membedakan radiasi yang berasal dari nyala api. Detektor akan menolak arah searah arus (DC) dari emisi nyala dan hanya mnegukur arus bolak-balik dari sumber radiasi atau sampel. Atom dari suatu unsur pada keadaan dasar akan dikenai radiasi maka atom tersebut akan menyerap energi dan mengakibatkan elektron pada kulit terluar naik ke tingkat energi yang lebih tingi atau tereksitasi. Atom-atom dari sampel akan menyerpa sebagian sinar yang dipancarkan oleh sumber cahaya. Penyerapan energi cahaya terjadi pada panjang gelombang tertentu sesuai dengan energi yang dibutuhkan oleh atom tersebut (Basset, 1994).

G. Indeks Bioremediasi dan Faktor Transfer

(27)

Perpindahan logam berat di lingkungan dinyatakan sebagai faktor transfer. Faktor transfer didefinisikan sebagai perbandingan konsentrasi pada jaringan tanaman atau hewan terhadap konsentrasi pada media. Faktor transfer dapat digunakan untuk mengetahui seberapa besar kemampuan tanaman dalam menyerap bahan logam berat dari dalam tanah atau air. Nilai faktor tranfer besarnya bervariasi bergantung pada jenis tanaman dan kondisi hidupnya (Opeolu, 2005).

Dari nilai faktor transfer tersebut dapat dilihat apakah suatu tanaman tertentu dapat digunakan sebagai agen fitoremediator. Nilai faktor transfer lebih besar dari satu (< 20) menandakan bahwa tanaman tersebut mempunyai kemampuan mengakumulasi logam berat yang baik. Nilai faktor transfer sama ≥ 20 menandakan bahwa tanaman tersebut ekonomis dan efektif untuk

diaplikasikan sebagai agen fitoremediator karena dapat menghemat biaya pembersihan sampai 95% (Tjahaja, dkk., 2006).

H. Hipotesis

1. Pertumbuhan tanaman alfalfa meliputi pertambahan tinggi, luasan daun, pemanjangan akar, dan berat kering akan terhambat bila menyerap timbal dalam jumlah yang berlebihan.

Gambar

Tabel 1. Jenis-jenis batuan induk pembentuk tanah yang mengandung logam berat Pb
Tabel 2. Batas kritis logam berat pada tanah, air dan tanaman Logam berat Tanaha (ppm) Airb (ppm) Tanaman
Gambar 1. Mekanisme penyerapan logam berat oleh tanaman  (Sumber: Favas dkk., 2014)
Gambar 2. Gambar tanaman alfalfa  Keterangan: 1. Bunga, 2. Daun
+2

Referensi

Dokumen terkait

Dengan kata lain, bahasa yang digunakan dalam filsafat adalah bahasa yang dalam pengertian tertentu sudah diketahui secara umum, dan oleh karena itu, filsafat tidak

Penamaan kompleks dengan nama asing adalah sebuah mitos yang menawarkan cara pandang hidup tertentu yang dalam waktu yang panjang berpeluang menjadi ideologi.. Di dalam

Untuk menemukan permasalahan dalam penelitian ini penulis menggunakan spesifikasi penelitian secara deskriptif analisis, yaitu menggambarkan tinjauan yuridis mengenai

( Memahami berbagai ragam teks tulis dalam bentuk gagasan atau dialog sederhana, baik fiksi dan atau non fiksi melalui kegiatan membaca dan menganalisis/ menemukan pokok

Kekuatan Dewan Halal Dunia,Majelis Ulama Indonesia,peran pemerintah dan masyarakat terurtama masyarakat muslim dalam penguatan pola pikir masyarakat maupun para

Dendrogram kekerabatan di antara jenis kemenyan di dapatkan bahwa kemenyan durame dan kemenyan minyak menjadi satu kelompok kecil dengan jarak genetik 0,44, kemudian membentuk

Maksud dari penelitian ini adalah untuk mengumpulkan data, mencari dan mendapatkan informasi yang berhubungan dengan pengaruh informasi laporan keuangan dan non keuangan

54 UIN Alauddin Makassar 2017 yang memperkenalkan wajah Bantaeng kepada kami, kemudian kami dijemput oleh Bapak Kepala Desa Bonto-bontoa, kecamatan Tompobulu