• Tidak ada hasil yang ditemukan

getdoc12cf. 119KB Jun 04 2011 12:04:07 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdoc12cf. 119KB Jun 04 2011 12:04:07 AM"

Copied!
9
0
0

Teks penuh

(1)

ELECTRONIC COMMUNICATIONS in PROBABILITY

A NOTE ON A FENYMAN-KAC-TYPE FORMULA

RALUCA BALAN1

University of Ottawa, Department of Mathematics and Statistics, 585 King Edward Avenue, Ottawa, ON, K1N 6N5, Canada.

email: [email protected]

SubmittedOctober 30, 2008, accepted in final formMay 15, 2009 AMS 2000 Subject classification: Primary 60H15; secondary 60H05

Keywords: fractional Brownian motion, stochastic heat equation, Feynman-Kac formula, planar Poisson process

Abstract

In this article, we establish a probabilistic representation for the second-order moment of the solution of stochastic heat equation in[0, 1]×Rd, with multiplicative noise, which is fractional in time and colored in space. This representation is similar to the one given in[8]in the case of an s.p.d.e. driven by a Gaussian noise, which is white in time. Unlike the formula of[8], which is based on the usual Poisson process, our representation is based on the planar Poisson process, due to the fractional component of the noise.

1

Introduction

The classical Feynman-Kac (F-K) formula gives a stochastic representation for the solution of the heat equation with potential, as an exponential moment of a functional of Brownian paths (see e.g. [14]). This representation is a useful tool in stochastic analysis, in particular for the study stochastic partial differential equations (s.p.d.e.’s). We mention briefly several examples in this direction. The F-K formula lied at the origin of the existence, large time asymptotic and inter-mittency results of [4]and[5], for the solution of the heat equation with random potential on Zd, respectivelyRd. The same method, based on a discretized F-K formula, was used in[17]for obtaining an upper bound for the exponential behavior of the solution of the heat equation with random potential on a smooth compact manifold. The technique of[4] was further refined in [6]in the case of parabolic equations with Lévy noise, for proving the exponential growth of the solution. The F-K formula was used in[9]for solving stochastic parabolic equations, in the context of white noise analysis. A F-K formula for the solution of the stochastic KPP equation is used in [15]for examining the asymptotic behavior of the solution.

The present work has been motivated by the recent article [8], in which the authors obtained an alternative probabilistic representation for the solution of a deterministic p.d.e., as well as a

1RESEARCH SUPPORTED BY A GRANT FROM THE NATURAL SCIENCE AND ENGINEERING RESEARCH COUNCIL OF

CANADA

(2)

representation for the moments of the (mild-sense) solution of a s.p.d.e. perturbed by a Gaussian noise ˙F, with “formal” covariance:

E[F˙t,xF˙s,y] =δ0(ts)f(xy).

More precisely, in [8], {F(h),h ∈ P } is a zero-mean Gaussian process with covariance E(F(h)F(g)) = 〈h,g〉P, where P is the completion of {1[0,tA;t ∈ [0, 1],A ∈ Bb(Rd)} with

respect to the inner product〈·,·〉P given by

〈1[0,tA, 1[0,sB〉P = (ts)

Z

A

Z

B

f(xy)d y d x. (Here,Bb(Rd)denotes the class of bounded Borel sets inRd.)

In the particular case of the stochastic heat equation:

∂u

∂t = 1

2∆u+uF˙, t>0,x∈R

d (1)

u0,x = u0(x), x∈Rd,

the representation for the second-moments of the (mild-sense) solutionuis:

E[ut,xut,y] =etE x,y

w(tτNt,B1

τNt)w(tτNt,B2τNt)

Nt

Y

j=1

f(Bτ1

jB

2

τj)

, (2)

(with the convention that on{Nt =0}, the product is defined to be 1), whereB1= (B1t)t0and B2= (B2t)t0are independent d-dimensional Brownian motions starting from x, respectively y, N= (Nt)t≥0is an independent Poisson process with rate 1 and pointsτ1< τ2<. . ., and

w(t,x) = Z

Rd

pt(xy)u0(y)d y, wherept(x) =

1

(2πt)d/2e

−|x|2/(2t)

.

Note that the representation (2) does not rely on the entire Brownian path, but only on its values at the (random) pointsτ1,τ2, . . . ,τNt. This property has allowed the authors of[8]to generalize the representation to a large class of s.p.d.e.’s, including the wave equation.

To see where the idea for this representation comes from, we recall briefly the salient points lead-ing to (2). If the solution of (1) exists, then it is unique and admits the Wiener chaos expansion: (see e.g. Proposition 4.1 of[8])

ut,x=w(t,x) +

X

n=1

In(fn(·,t,x)), (3)

whereIn(fn(·,t,x)) =R

([0,1]×Rd)nfn(t1,x1, . . . ,tn,xn)d Ft1,x1. . .d Ftn,xn, andfn∈ P⊗nis a

symmet-ric function given by:

fn(t1,x1, . . . ,tn,xn,t,x) = 1

n!w((1),(1))

n

Y

j=1

ptρ(j+1)tρ(j)(xρ(j+1)xρ(j)). (4)

Here, ρ is a permutation of {1, . . . ,n} such that (1) < (2) < . . . < (n), (n+1) = t and

(n+1)=x. By the orthogonality of the terms in the series (3),

E[ut,xut,y] =w(t,x)w(t,y) +

X

n=1

(3)

where

Jn(t,x,y) = n!〈fn(·,t,x),fn(·,t,y)〉2Pn=

Z

Tn(t)

F(t1, . . . ,tn)dt, and

F(t1, . . . ,tn) =

Z

R2nd n

Y

j=1

ptj+1tj(xj+1−xj) n

Y

j=1

ptj+1tj(yj+1−yj)

w(t1,x1)w(t1,y1)

n

Y

j=1

f(xjyj)dydxdt.

Here, we denote t = (t1, . . . ,tn),x = (x1, . . . ,xn), y = (y1, . . . ,yn) and Tn(t) = {(t1, . . . ,tn); 0<t1<. . .<tn<t}.

A crucial observation of[8]is that, for anyF:[0,t]nR

+measurable,

Z

Tn(t)

F(t1, . . . ,tn)dt=etEN[F(tτn, . . . ,tτ1)1{Nt=n}]. (5)

This is a key idea, which yields a probabilistic representation for Jn(t,x,y), based on the jump times of the Poisson process. This idea is new in the literature, although it appeared implicitly in the earlier works[10],[13],[16]. Secondly, for any 0<t1<. . .<tn<t,F(ttn, . . . ,tt1)is represented as:

F(ttn, . . . ,tt1) =

EB1,B2

w(ttn,B1

tn)w(ttn,B

2

tn) n

Y

j=1

f(B1t

jB

2

tj)

. (6)

Relation (2) follows from these observations, using the independence betweenN andB1,B2. In this article, we generalize these ideas to the case of the stochastic heat equation driven by a fractional-colored noise. More precisely, we consider the following equation:

∂u

∂t = 1

2∆u+uW˙, t∈[0, 1],x∈R

d (7)

u0,x = u0(x), x∈Rd,

whereu0∈Cb(Rd)is non-random,⋄denotes the Wick product, and ˙W is a Gaussian noise whose

covariance is formally given by:

E[W˙t,xW˙s,y] =η(t,s)f(xy), with

η(t,s) =αH|t−s|2H−2, f(x) = Z

Rd

eiξ·xµ().

Here,H∈(1/2, 1),αH=H(2H−1)andµis a tempered measure onRd. (Note thatη(t,s)is the covariance kernel of the fractional Brownian motion.)

The noise ˙W is defined rigourously as in[2], by considering a zero-mean Gaussian processW =

{W(h);h∈ H P }with covariance

(4)

whereH P is the the completion of {1[0,t]×A;t ∈[0, 1],A∈ Bb(Rd)}with respect to the inner product〈·,·〉H P given by:

〈1[0,t]×A, 1[0,sB〉H P =

Zt

0 Zs

0 Z

A

Z

B

η(u,v)f(xy)d y d x d vdu.

(See also[7]for a martingale treatment of the case η(t,s) =δ0(ts), which corresponds to H=1/2.)

As in[3], the solution of equation (7) is interpreted in the mild sense, using the Skorohod integral with respect toW. More precisely, an adapted square-integrable processu={ut,x;(t,x)∈[0, 1]× Rd}is asolution to(7) if for any(t,x)[0, 1]×Rd, the process{pts(xy)us,y1[0,t](s);(s,y)

[0, 1]×Rd}is Skorohod integrable, and

ut,x=ptu0(x) + Z T

0 Z

Rd

pts(xy)us,y1[0,t](s)δWs,y.

The existence of a solutionu(in the space of square-integrable processes) depends on the rough-ness of the noise, introduced by H and the kernel f. We mention briefly several cases which have been studied in the literature. If f = δ0, the solution exists for d = 1, 2 (see[12]). If

f(x) =Qdi=1αHi|xi|2Hi−2, the solution exists ford<2/(2H1) +Pd

i=1Hi (see[11]). Recently,

it was shown in[3]that if f is the Riesz kernel of orderα, or the Bessel kernel of orderα <d, then the solution exists ford≤2+α, whereas if f is the heat kernel or the Poisson kernel, then the solution exists for anyd.

Our main result establishes a probabilistic representation for the second moment of the solution, similar to (2), and based on the planar Poisson process.

Theorem 1.1. Suppose that equation (7) has a solution u={ut,x;(t,x)∈[0, 1]×Rd}in[0, 1]×Rd.

Then, for any(t,x)∈[0, 1]×Rd and(s,y)[0, 1]×Rd, E[ut,xus,y] =w(t,x)w(s,y) +ets

X

i1,...,in

Ex,y

w(tτ∗,B1

τ∗)w(sρ,B2

ρ∗)

Nt,s

Y

j=1

η(tτi

j,sρij)f(B

1

τi jB

2

ρi j)IAi1 ,...,in

,

where the sum is taken over all distinct indices i1, . . . ,in,

B1= (B1

t)t∈[0,1] and B2= (B2t)t∈[0,1] are independent d-dimensional standard Brownian

mo-tions, starting from x, respectively y,

N = (Nt,s)(t,s)∈[0,1]2 is an independent planar Poisson process with rate1and points{Pi}i1,

with Pi= (τi,ρi),

Ai1,...,in(t,s) is the event that N has points Pi1, . . . ,Pin in [0,t]×[0,s], τ

= max{τ

i1, . . . ,

τi

n}andρ

=max{ρ

(5)

2

Proof of Theorem 1.1

(ii) NRhas a Poisson distribution with meanλ|R|, for any rectangleR;

(iii) NR1, . . . ,NRkare independent, for any disjoint rectanglesR1, . . . ,Rk.

The following construction of the planar Poisson process is well-known (see e.g. [1]). LetX a Poisson random variable with meanλ, and{Pi}i≥1be an independent sequence of i.i.d. random

vectors, uniformly distributed on[0, 1]2. We denoteP

i= (τi,ρi). For any(t,s)∈[0, 1]2, define

The following result is probably well-known. We include it for the sake of completeness.

Lemma 2.1. The conditional distribution of

(6)

ƒ

As a consequence, for any measurable functionF:([0,t]×[0,s])nR

+,

E[F(tτi1,sρi1, . . . ,tτin,sρin)|Ai1,...,in(t,s)] = (9)

1

(ts)n

Z

[0,t]n

Z

[0,s]n

F(t1,s1, . . . ,tn,sn)dsdt,

wheret= (t1, . . . ,tn)ands= (s1, . . . ,sn).

Suppose thatλ=1. Then(ts)n=n!etsP(N

t,s=n)and

E[F(tτi1,sρi1, . . . ,tτin,sρin)|Ai1,...,in(t,s)] =

1 n!etsP(N

t,s=n)

Z

[0,t]n

Z

[0,s]n

F(t1,s1, . . . ,tn,sn)dsdt.

Using (8) and (9), we obtain that for anyF:([0,t]×[0,s])nR+measurable,

Z

[0,t]n

Z

[0,s]n

F(t1,s1, . . . ,tn,sn)dsdt= (10)

n!ets

X

i1,...,in≥1 distinct

EN[F(tτi1,sρi1, . . . ,tτin,sρin)IAi1 ,...,in(t,s)].

Relation (10) is the analogue of (5), needed in the fractional case.

Suppose now that equation (7) has a solutionu={ut,x;(t,x)∈[0, 1]×Rd}. Then the solution is unique and admits the Wiener chaos expansion (3), where

In(fn(·,t,x)) =

Z

([0,1]×Rd)n

fn(t1,x1, . . . ,tn,xn)dWt1,x1. . .dWtn,xn

is the multiple Wiener integral with respect toW, andfn∈ H P⊗nis the symmetric function given

by (4). (See (7.4) of[11], or (4.4) of[12], or Proposition 3.2 of[3]).

Using (3), and the orthogonality of the Wiener chaos spaces, we conclude that for any (t,x)∈

[0, 1]×Rd and(s,y)∈[0, 1]×Rd,

E[ut,xus,y] = E(ut,x)E(us,y) +

X

n≥1

E[In(fn(·,t,x))In(fn(·,s,y))]

= w(t,x)w(s,y) +X

n≥1

1

n!αn(t,x,s,y), (11) whereαn(t,x,s,y):= (n!)2〈f

n(·,t,x),fn(·,s,y)〉H P⊗nfor anyn≥1. Note that

αn(t,x,s,y) =

Z

[0,t]n

Z

[0,s]n n

Y

j=1

η(tj,sj)〈Gt;x,Gs;y〉P(Rd)ndsdt, (12)

whereP(Rd)is the the completion of{1A;A∈ Bb(Rd)}with respect to the inner product〈1A, 1B〉P(Rd)=

R

A

R

Bf(xy)d y d x,

Gt;x(x1, . . .xn) = w(tρ(1),xρ(1))

n

Y

j=1

ptρ(j+1)tρ(j)(xρ(j+1)xρ(j))

Gs;y(y1, . . .yn) = w(sσ(1),yσ(1))

n

Y

j=1

(7)

the permutationsρandσare chosen such that:

0<tρ(1)<tρ(2)<. . .<tρ(n) and 0<sσ(1)<sσ(2)<. . .<sσ(n),

(n+1)=t,sσ(n+1)=s,xρ(n+1)=x and(n+1)=y.

Using (10) and (12), we conclude thatαn(t)admits the representation:

αn(t,x,s,y) =n!ets X

The next result gives a probabilistic representation of the inner product appearing in (13). This result is the analogue of (6), needed for the treatment of the fractional case.

Lemma 2.2. For any t1, . . . ,tn∈[0,t], s1, . . . ,sn∈[0,s], x∈Rdand yRd,

independent d-dimensional Brownian motions, starting from x, respectively y.

Proof:LetB1andB2be independentd-dimensional Brownian motions, starting from 0. Note that

(8)

n

Y

j=1

ptρ(j)(j+1)(zn+1−j)

n

Y

j=1

psσ(j)(j+1)(wn+1−j)dwdz.

We now use the fact thatpts(x)d xis the density of the increment of ad-dimensional Brownian

motion over the interval(s,t], these increments over disjoint intervals are independent, and the Brownian motions B1,B2 are independent. Therefore, we replace the integral overR2nd by the expectationEB1,B2, and the variableszk,wkbyB1(n+1−k)−B

1

(n+1−k+1), respectivelyB 2

(n+1−k)−B 2

(n+1−k+1),

for allk=1, . . . ,n. Note that, for anym=1, . . . ,n

m

X

k=1 (B1t

ρ(n+1−k)−B 1

(n+1−k+1)) =B 1

(n+1−m)

m

X

k=1 (B2s

σ(n+1−k)−B 2

(n+1−k+1)) =B 2

(n+1−m).

Hence,

I=EB1,B2[w(t(1),x+B1(1))w(s(1),y+B 2

(1))

n

Y

j=1

f((x+B1t

j)−(y+B

2

sj))].

ƒ

Conclusion of the Proof of Theorem 1.1: Since equation (7) has a solution, this solution is unique and admits the Wiener chaos expansion (3). The result follows from (11), (13) and Lemma 2.2.ƒ

References

[1] R.J. Adler, D. Monrad, R.H. Scissors and R.J. Wilson. Representations, decompositions, and sample function continuity of random fields with independent increments.Stoch. Proc. Appl. 15(1983), 3-30. MR694534. MR0694534

[2] R.M. Balan and C.A. Tudor. The stochastic heat equation with fractional-colored noise: ex-istence of the solution. Latin Amer. J. Probab. Math. Stat.4 (2008), 57-87. MR2413088. MR2413088

[3] R.M. Balan and C.A. Tudor. Stochastic heat equation with multiplicative fractional-colored noise. Preprint (2008). arXiv:0812.1913. MR2413088

[4] R.A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency.Memoirs Amer. Math. Soc.108(1994), no. 518, viii+125 pp. MR1185878. MR1185878

[5] R.A. Carmona and F. Viens. Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter.Stoch. Stoch. Rep.62(1998), 251-273. MR1615092. MR1615092

(9)

[7] R.C. Dalang. Extending martingale measure stochastic integral with application to spatially homogenous s.p.d.e.’s.Electr. J. Probab.4(1999), paper 6, 1-29. MR1684157. MR1684157 [8] R.C. Dalang, C. Mueller and R. Tribe. A Feynman-Kac-type formula for the

determinis-tic and stochasdeterminis-tic wave equations and other p.d.e.’s.Trans. AMS 360(2008), 4681-4703. MR2403701. MR2403701

[9] T. Deck, S. Kruse, J. Potthoff and H. Watanabe. White noise approach to s.p.d.e.’s. In: Stochastic partial differential equations and applications V (Trento, 2002). Eds. G. Da Prato and L. Tubaro. Lecture Notes in Pure and Appl. Math.227(2002), 183-195. Dekker, New York. MR1919509. MR1919509

[10] R. Hersch. Random evolutions: a survey of results and problems.Rocky Mountain J. Math.4 (1974), 443-477. MR0394877. MR0394877

[11] Y. Hu. Heat equations with fractional white noise potentials.Appl. Math. Optim.43(2001), 221-243. MR1885698. MR1885698

[12] Y. Hu and D. Nualart. Stochastic heat equation driven by fractional noise and local time. Probab. Theory Rel. Fields143(2009), 285-328. MR2449130. MR2449130

[13] M.A. Kac. A stochastic model related to the telegraph’s equation.Rocky Mountain J. Math.4 (1974), 497-509. MR0510166. MR0510166

[14] I. Karatzas and S.E. Shreve.Brownian Motion and Stochastic Calculus, Second Edition (1991). Springer, New York. MR1121940. MR1121940

[15] B. Oksendal, G. Vage and H.Z. Zhao. Asymptotic properties of the solutions to stochas-tic KPP equations.Proc. Roy. Soc. Edinburgh Sect. A 130(2000), 1363-1381. MR1809108. MR1809108

[16] M.A. Pimsky. Lectures on Random Evolution (1991). World Scientific. MR1143780. MR1143780

Referensi

Dokumen terkait

Pada hari ini Senin tanggal tiga puluh satu bulan Juli tahun dua ribu tujuh belas dimulai pukul sepuluh Waktu Indonesia Bagian Barat sampai dengan pukul tiga belas Waktu

Pada penelitian ini akan menggunakan Ethernet Over Internet Protokol (EoIP) sebagai sebuah sistem yang akan menghubungkan kantor pusat dengan kantor

Penelitian ini dilakukan agar masyarakat, terutama keluarga karaton mengetahui bahwa media dapat mengkonstruksi sebuah realitas dari peristiwa yang terjadi agar menjadi

Demikian Berita Acara Pembukaan Penawaran ( BAPP ) ini dibuat dengan sebenarnya,.. ditandatangani bersama oleh Panitia Pokja I Unit Layanan Pengadaan ( ULP

Materi e-learning dikatakan sebagai enrichmen t (pengayaan),apabila kepada peserta didik yang dapat dengan cepat menguasai/memahami materi pelajaran yang disampaikan

Dalam kerangka konseptual ini, penulis mengaplikasikan teori yang digunakan sebagai landasan penelitian dengan keadaan yang ada di lapangan tentang Strategi komunikasi

The independent variables of this research are product, price, promotion, place, consumers’ characteristics (cultural influences, social influences, and

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD