PROPOSAL
PENELITIAN LABORATORIUM ITS
DANA ITS TAHUN 2020
JUDUL PENELITIAN
PENGEMBANGAN METODE KLASIFIKASI : M-Logit MULTILEVEL REGRESI LOGISTIK BINER DAN APLIKASINYA
Tim Peneliti: Dr. Ismaini Zain, M.Si.
(Statistika/Fakultas Sains dan Analitika Data/Institut Teknologi Sepuluh Nopember) Erma Oktania Permatasari, S.Si., M.Si
(Statistika/ Fakultas Sains dan Analitika Data/Institut Teknologi Sepuluh Nopember)
DIREKTORAT PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA 2020
DAFTAR ISI
HALAMAN SAMPUL... ...i
DAFTAR ISI ... ii DAFTAR TABEL ... iv DAFTAR GAMBAR ... v DAFTAR LAMPIRAN ... vi BAB I ... 7 RINGKASAN ... 7 BAB II... 8 LATAR BELAKANG ... 8 2.1 Latar Belakang ...8 2.2 Rumusan Masalah ...9 2.3 Tujuan Penelitian ...9 2.4 Manfaat Penelitian ... 10 BAB III ... 11 TINJAUAN PUSTAKA ... 11
3.1 Analisis Regresi Logistik ... 12
3.2 Model Multilevel ... 13
3.2.1 Model Regresi Logistik Multilevel (M-Logit) ... 13
3.2.2 Aplikasi dari Multilvel Regresi Logistik ... 14
3.2.3 Telaah Awal Tentang Jurnal Topik Metode Multilevel Klasifikasi... 15
3.3 Roadmap Penelitian Tim Peneliti ... 16
BAB IV ... 17
METODE ... 17
4.1 Desain dan Sumber Data Penelitian ... 17
4.2 Variabel Penelitian dan Stuktur Data ... 17
4.3 Struktur Data Penelitian ... 18
4.4 Diagram Alir Penelitian dan Peran Peneliti ... 18
4.5 Luaran ... 19
BAB V ... 22
JADWAL ... 22
BAB VI ... 23
DAFTAR PUSTAKA ... 23
BAB VII ... 25
LAMPIRAN ... 25
LAMPIRAN 1 BIODATA PENELITI ... 26
LAMPIRAN 2 SURAT PERNYATAAN KESEDIAAN ... 32
DAFTAR TABEL
Tabel 4.1 Variabel Penelitian ... 17
Tabel 4.2 Struktur Data Penelitian ... 18
Tabel 4.3 Rekapitulasi Biaya Penelitian ... 20
DAFTAR GAMBAR
Gambar 3.1 Capture Sebagian dari Roadmap Laboratorium Sosial dan Kependudukan ... 10 Gambar 3.2 Capture Sebagian dari Roadmap Pusat Penelitian Sains dan Fundamental ... 11 Gambar 3.3 Ilustrasi Model Multilevel (2 Level) ... 13 Gambar 3.4 Roadmap Penelitian Yang Direncanakan ………..……16 Gambar 4.1 Diagram Alir Metode penelitian Tahun Ke-1 (Tahun 2020)…………..……18
DAFTAR LAMPIRAN
Biodata Tim Peneliti………..……….….……25 Surat Pernyataan Kesediaan Anggota Tim Penelitian…...……...…………..………….28 Rencana Anggaran Biaya…..………..30
BAB I RINGKASAN
Metode klasifikasi merupakan salah satu dari metode statistika yang berfungsi untuk menemukan sebuah model atau fungsi yang menjelaskan dan mencirikan konsep atau kelas data. Contoh metode klasifikasi klasik misalnya analisis diskriminan dan regresi logistik. Metode klasifikasi klasik memiliki beberapa kelemahan, diantaranya harus terpenuhinya beberapa asumsi. Dalam perkembangannya, beberapa metode klasifikasi mulai muncul untuk mengatasi keterbatasan metode klasik, seperti Classification and Regression Trees (CART), Random Forest dan banyak metode lain yang bebas dari asumsi klasik, namun masih memiliki kemampuan klasifikasi yang optimal.
Semua metode klasifikasi yang berkembang saat ini masih terbatas pada data dengan struktur satu level saja, padahal seperti pada kasus status penerimaan mahasiswa baru di perguruan tinggi, tidak hanya dipengaruhi oleh satu level bisa lebih dari satu. Sebagai contoh, status diterima tidaknya peserta tidak murni dipengaruhi hasil tes semata-mata melainkan juga dipengaruhi daya tampung dan factor lain. Dalam hal ini daya tampung menjadi penentu pada struktur level dua. Oleh karena itu, perlu dikembangkan suatu metode klasifikasi yang bersifat multilevel. Terkait dengan pemodelan dilakukan pengembangan Multilevel Regresi Logistik (M-Logit) yang akan diaplikasikan pada ketepatan klasifikasi kasus status penerimaan peserta tes masuk perguruan tinggi.
Status penerimaan peserta tes dalam ujian tulis masuk perguruan tinggi adalah diterima atau tidak diterima (berskala biner). Dalam penelitian ini akan dilakukan klasifikasi menurut status penerimaan dikaitkan dengan masing-masing sub tes, daya tampung dan karakteristik peserta menurut kewilayahan berbasis propinsi dan kabupaten sehingga bisa diketahui potensi masing-masing wilayah secara multilevel.
Studi diawali dengan kajian tentang konsep Multilevel Logistic Biner Regression disebut M-logit. Tahap berikutnya, dilakukan dengan membuat model pada level 1 sebagaimana regresi logistik klasik, kemudian hasil dari model level 1 akan digunakan untuk memodelkan di level 2, demikian seterusnya sampai tujuan penelitian ini mendapatkan hasil model terbaik. Kriteria hasil model terbaik akan dikembangkan dengan mengacu kriteria yang sudah ada. Sumber data yang digunakan adalah skor ujian tulis. Hasil penelitian diharapkan dapat dipublikasikan suatu artikel dengan topik pengembangan M-Logit baik secara konsep maupun empiris pada jurnal yang terindeks scopus ditambah artikel yang dimuat dalam prosiding seminar internasional.
BAB II
LATAR BELAKANG
2.1 Latar Belakang
Salah satu dari metode statistika yang berfungsi untuk menemukan sebuah model atau fungsi yang menjelaskan dan mencirikan konsep atau kelas data adalah metode klasifikasi. Metode klasifikasi merupakan salah satu dari metode statistika yang berfungsi untuk menemukan sebuah model atau fungsi yang menjelaskan dan mencirikan konsep atau kelas data. Metode klasifikasi klasik pada umumnya membutuhkan asumsi yang harus dipenuhi sehingga menjadi salah satu unsur kelemahan. Selain itu, metode klasifikasi yang berkembang saat ini masih terbatas pada data dengan struktur satu level saja, padahal seperti pada kasus status penerimaan mahasiswa baru di perguruan tinggi, tidak hanya dipengaruhi oleh satu level bisa lebih dari satu level. Diperlukan suatu metode klasifikasi yang mengakomodir lebih dari satu level.
Pada metode klasifikasi klasik satu level dikenal analisis diskriminan atau analisis regresi logistik. Analisis diskriminan adalah salah satu teknik statistik yang bisa digunakan pada hubungan dependensi (hubungan) antar variabel dimana sudah bisa dibedakan mana variabel respon dan mana variabel penjelas. Metode klasifikasi klasik lainnya adalah regresi logistik [1] atau regresi logistik biner [2]. Regresi Logistik mirip dengan analisa regresi, tapi peubah respon bukan lagi peubah (variabel) kuantitatif melainkan berupa peubah (variabel) kategorik yang hanya terdiri dari beberapa nilai. Model regresi yang sering digunakan untuk menganalisis peubah respon berskala biner adalah Regresi Logistik.
Dalam perkembangannya, beberapa metode klasifikasi mulai muncul untuk mengatasi keterbatasan metode klasik, seperti Classification and Regression Trees sering disebut CART [3], Random Forest [4[ dan banyak metode lain yang bebas dari asumsi klasik, namun masih memiliki kemampuan klasifikasi yang optimal. Namun sekali lagi, walaupun sudah ada perkembangan yang melakukan penelitian, metode klasifikasi masih terbatas pada satu level.
Sebagai gambaran penerapan metode yang membutuhkan lebih dari satu level adalah status penerimaan peserta masuk perguruan tinggi melalui suatu tes. Hasil akhir yaitu status diterima tidaknya peserta tidak murni dipengaruhi hasil tes semata-mata melainkan juga dipengaruhi daya tampung dan faktor lain. Dalam hal ini daya tampung menjadi penentu pada struktur level dua. Oleh karena itu, perlu dikembangkan suatu metode klasifikasi yang bersifat multilevel.
Pada umumnya, data yang bersifat multilevel bentuk dari struktur data akan berhirarki [5]. Dengan demikian, metode yang bisa digunakan untuk struktur data hirarki adalah model multilevel [6] dan [5]. Tingkatan dalam struktur data hirarki disebut sebagai level. Beberapa penelitian yang mengembangkan metode multilevel secara umum,
diantaranya dilakukan pada klasifikasi penyakit arteri koroner [7]. Selain itu, juga masalah penggunaan kontrasepsi di Bangladesh yang menunjukkan bahwa keputusan menggunakan kontrasepsi isteri (level 1) terkait dengan keputusan suami disebut level 2 [8]. Metode yang dikembangkan adalah metode regresi logistik multilevel. Selain itu, juga dikembangkan model klasifikasi multilevel yang berasal dari regression trees [9, 10, dan 11].
Dengan demikian, walaupun konsep multilevel pada klasifikasi sudah pernah disinggung, khususnya Multilevel Logistic (sebut M-Logit) dan dikembangkan, namun sepengetahuan penulis belum banyak yang membahas. Selain itu, topik klasifikasi sudah menjadi salah satu bagian yang yang masuk dalam roadmap penelitian di Laboratorium Sosial dan Kependudukan, Departemen Statistika, Fakultas Sains dan Analitikal Data. Selain itu, topik penelitian yang diangkat juga sejalan dengan roadmap yang dikembangkan di Pusat Penelitian Sain dan Fundamental. Untuk itu, perlu dikaji lebih mendalam untuk menentukan algoritma dalam mendapatkan taksiran parameter M-Logit. Implementasi diterapkan pada kasus status penerimaan peserta pada jalur ujian tulis yaitu variabel sub tes pada level 1 dan akan dipertimbangkan adanya pengaruh daya tampung pada masing-masing prodi sebagai struktur level 2. Selanjutnya, dikembangkan struktur level ke 3 dengan variable-variabel yang memungkinkan menjadi hirarki yang lebih tinggi.
2.2 Rumusan Masalah
Peningkatan kualitas input mahasiswa baru di Perguruan Tinggi Negeri (PTN) tergantung dari kualitas tes masuk khususnya jalur Ujian Tulis. Setiap tahun, peserta yang tidak diterima jauh lebih banyak dibandingkan yang diterima, sekitar 80% banding 20% [11]. Salah satu penyebab tidak diterima bukan karena hasil tes tidak baik melainkan dikarenakan masalah daya tampung setiap program studi (prodi) yang terbatas. Daya tampung suatu prodi menjadi masalah tersendiri dikarenakan terkait dengan Sumber Daya Manusia dan insfrastuktur di masing-masing PTN. Apabila hanya menggunakan hasil tes semata (level 1) bisa digunakan analisis regresi logistik. Namun, apabila dimasukkan unsur jumlah daya tampung maka diperhitungkan ke level 2. Metode regresi logistik yang klasik tidak bisa lagi menyelesaikan permasalahan tersebut. Oleh karena itu, perlu dilakukan pengembangan metode klasifikasi yang multilevel yaitu M-Logit. Dengan demikian dapat dihasilkan suatu klasifikasi yang bisa mengukur sejauh mana peran hasil seleksi dikaitkan dengan hasil tes (level 1) dan daya tampung (level 2). Bisa juga dipertimbangkan level yang lebih tinggi misal peminat.
2.3 Tujuan Penelitian
Tujuan dari penelitian ini adalah sebagai berikut.
2. Melakukan eksplorasi data dan pemetaan kasus status penerimaan sebagai klasifikasi awal.
3. Melakukan estimasi parameter untuk M-Logit pada kasus status penerimaan di perguruan tinggi.
4. Membandingkan ketepatan klasifikasi pada poin 3 dengan kriteria pemilihan model terbaik antara metode klasifikasi klasik (regresi logistik) dan metode pengembangan klasifikasi (multilevel regresi logistik) khususnya yang biner. 2.4 Manfaat Penelitian
Secara umum, hasil penelitian ini akan memberikan kontribusi dalam perkembangan ilmu pengetahuan, khususnya bidang statistika, sosial dan pendidikan serta secara khusus, mengembangkan metode klasifikasi multilevel. Adapun urgensi penelitian ini dapat digunakan sebagai masukan dan bahan evaluasi dalam penentuan diterima atau tidaknya calon mahasiswa baru di sebuah perguruan tinggi yang dituju. Selain itu, temuan dalam penelitian ini diharapkan sangat terkait dengan peningkatan kualitas tes jalur ujian tulis dikarenakan dapat ditemukan nilai batas minimal sub tes suatu pilihan prodi.
BAB III
TINJAUAN PUSTAKA
Metode klasifikasi berkatian dengan pengelompokan atau cluster. Pengelompokan bisa dilakukan dengan suatu fungsi pemisah diantara dua kelompok tersebut. Fungsi pemisah berfungsi sebagai pembatas untuk menentukan suatu pengamatan akan masuk ke dalam kelompok yang mana. Topik klasifikasi atau cluster merupakan suatu bidang yang telah masuk dalam roadmap laboratorium Sosial Kependudukan, Departemen Statistika, Fakultas Sains dan Analitika Data sebagaimana Gambar 3.1.
Gambar 3.1 Capture Sebagian dari Roadmap Laboratorium Sosial dan Kependudukan Selain itu, pada roadmap Pusat Penelitian Sans dan Fundamental juga telah menjadi bagian yang perlu dikembangkan. Salah satu dari topik penelitian adalah metode klasifikasi dan cluster. Mulai dari analisis Diskriminan, regresi logistik, sampai dengan pengembangan metode klasifikasi dan cluster sebagaimana dapat dilihat pada Gambar 3.2.
Selama ini, metode klasifikasi yang ada masih terbatas satu level, diantaranya Discriminant, Logistik Biner dan Classification and Regression Trees (CART). Fokus dari usulan penelitian ini adalah Logistik Biner. Regresi logistik biner adalah suatu metode analisis data yang digunakan untuk mencari hubungan antar variabel respon (y) yang bertsifat biner atau dikotomus dengan variabel prediktor (x) yang bersifat polikotomus [1]. Metode regresi logistic yang sudah ada pada umumnya masih bersifat satu level; belum multilevel. Oleh karena itu, pada bagian Tinjauan Pustaka ini diuraikan metode klasifikasi khususnya regresi logistik yang satu level dan konsep yang multilevel yang sudah didapatkan dari referensi.
3.1 Analisis Regresi Logistik
Analisisi Regresi Logistik digunakan bila variable respon atau utcome dari variabel respon y terdiri dari 2 kategori yaitu “sukses” dan “gagal” yang dinotasikan dengan y=1 untuk sukses dan y=0 untuk gagal. Variabel y mengikuti distribusi Bernoulli untuk setiap observasi tunggal. Ruang dari variabel random diskrit Y adalah
0,1
0,1y Y y
dengan ~ (1, )Y B yang memiliki distribusi probabilitas dengan persamaan (3.1) sebagai berikut.
1
( ) y(1 ) y, 0,1
f y y (3.1)
Dimana jika y=0 maka f y( ) 1 dan jika y =1 maka f y( ) . Fungsi regresi logistiknya dapat dituliskan dalam persamaan (3.2) sebagai berikut.
0 1 1 0 1 1 ... ... ( ) 1 p p p p x x x x e x e (3.2)
Dimana p=banyaknya variabel prediktor 𝑥𝑖
Metode estimasi menggunakan metode Maxmum Likehood Estimation atau MLE. Digunakan untuk mengestimasi parameter-parameter dalam regresi logistik dan pada dasarnya metode maksimum likelihood memberikan nilai estimasi β dengan memaksimumkan fungsi likelihoodnya [1]. Fungsi likelihood yang diperoleh dengan pengamatan yang diasumsikan independen dalam persamaan (3.2) adalah sebagai berikut.
1 1 ( ) ( ) (1i (( )) i n y y i i i l x x (3.3)
Persamaan (3.3) dapat diuraikan menjadi persamaan (3.4)
0 1 1 0 (β) ln 1 exp p n n p i ij j i j ij j i i j L y x n x
(3.4)Persamaan tersebut kemudian diturunkan terhadap β , sehingga diperoleh persamaan (3.5) berikut. 1 1 (β) ( ) β n n i ij ij i i i j L y x x x
(3.5)Persamaan (3.5) merupakan persamaan nonlinier. Penyelesaian Metode Newton-Raphson merupakan metode untuk menyelesaikan persamaan nonlinier seperti menyelesaikan persamaan likelihood dalam model regresi logistic [2].
3.2 Model Multilevel
Model multilevel merupakan salah satu cara atau metode untuk memodelkan data yang berjenjang atau hirarki [6]. Model multilevel merupakan model linier campuran, yaitu model yang menggabungkan komponen tetap (fixed effect) dengan komponen acak (random effect) ke dalam satu persamaan model. Komponen tetap berada pada level 1, dan kelompok acak di level 2, sehingga jika tanpa mempertimbangkan komponen acak pada level 2, akan dapat menghilangkan beberapa informasi yang berharga (Gambar 3.3).
Gambar 3.3 Ilustrasi Model Multilevel (2 Level) 3.2.1 Model Regresi Logistik Multilevel (M-Logit)
Model regresi logistik klasik, estimasi parameternya harus menggunakan fungsi penghubung (link function). Pada model multilevel juga dibutuhkan hal yang sama. Apabila variabel respon berdistribusi binomial dengan parameter proporsi (ij), maka fungsi penghubung yang digunakan adalah logit
log
1
, sehingga modelnya disebut model logistik [4]. Secara umum model 2 level dengan respon biner dapat dituliskan [12] sebagaimana persamaan 3.6.0 1 log 1 ij ij j ij x u , (3.6) Level 2 Level 1 Kelompok 1 2 n Kelompok 1 2 n Kelompok m 1 2 nm
dengan u , merupakan efek acak pada level 2, j Yij diasumsikan independen. u j diasumsikan berdistribusi normal, dengan rata-rata 0 dan varians 2
u
. Persamaan (3.6) dideskripsikan sebagai alternatif dalam literatur pada model multilevel model level 1 (persamaan 3.7) 0 1 log 1 ij j ij ij ij x , (3.7)
model level 2 (persamaan 3.8)
0
oj uj
, (3.8)
secara umum dapat dituliskan pada persamaam (3.9)
0 1 log , 1 ij ij j ij ij x u (3.9)dengan uj merupakan error pada level 2 yang berdistribusi normal dengan rata-rata 0 dan varians 2
u
, dan independen terhadap i.
Estimasi parameter dalam regresi logistik dilakukan dengan menggunakan metode Maximum Likelihood Estimation (MLE). Metode ini mengestimasi para-meter dengan cara memaksimumkan fungsi likelihood dan mensyaratkan bahwa data harus mengikuti suatu distribusi tertentu. Jika xi dan yi adalah pasangan variabel bebas dan variabel tidak
bebas pada pengamatan ke-i, dan diasumsikan setiap pasangan pengamatan independen dengan pasangan pengamatan lainnya, i1, 2, ,n maka fungsi probabilitas untuk setiap pasangan
1 1 i; 0,1. i y y i i i i f y x x y Setiap pasangan diasumsikan independen sehingga fungsi likelihood-nya merupakan gabungan dari fungsi distribusi masing-masing fungsi pasangan
1 1 1 1 i. i n n y y i i i i i L f y x x
(3.10)Secara umum persamaan 3.10 tidak bisa diselesaikan kecuali dengan menggunakan prosedur iterasi dengan menggunakan integrasi numerik. Dalam model multilevel, integrasi numerik digunakan prosedur Gauss-Hermite Quadrature (akan menjadi salah satu tujuan penelitian ini).
3.2.2 Aplikasi dari Multilvel Regresi Logistik
Salah satu aplikasi yang dapat menerapkan multivel Regresi Logistik (M-Logtit)adalah pada kasus tes seleski jalur ujian tulis. Pada jalur ujian tulis dirancang untuk mengukur kemampuan dasar yang dapat memprediksi keberhasilan calon mahasiswa di semua program studi, yakni kemampuan penalaran tingkat tinggi (higher order thinking).
Dibedakan menjadi bidang sains dan teknologi (saintek) dan sosial dan humaniora (soshum). Materi ujian tulis kelompok Saintek adalah Tes Potensi Skolastik atau TPS (4 sub tes) dan Tes Kompetensi Akademik (TKA) Saintek (5 sub tes); sedangkan untuk kelompok Soshum adalah TPS dan TKA Soshum (6 sub tes). Masing-masing diberi bobot menurut rumpun keilmuan (tidak dibahas dalam proposal ini). Pada tahun mendatang, ingin diketahui batas minimal nilai sub tes tertentu terhadap pilihan prodi. Penelitian ini diharapkan dapat menjawab pertanyaan penelitian tersebut.
Peneliti juga pernah melakukan penelitian mengenai nilai peserta jalur ujian tulis di ITS dengan menggunakan nilai subtes dengan metode Classification and Regression Trees [13] dan metode regresi logistik [14]. Kedua penelitian tersebut tidak mempertimbangkan efek prodi berupa daya tampung. Padahal pada penerimaan calon mahasiswa baru terdapat pengaruh prodi pilihan yang akan membuat probabilitas di tiap prodi berbeda-beda. Dari sini jelas terlihat bahwa setiap prodi memberikan probabilitas yang berbeda-beda. Oleh sebab itu sangat diperlukan analisis yang melibatkan efek prodi, atau analisis dengan multilevel.
3.2.3 Telaah Awal Tentang Jurnal Topik Metode Multilevel Klasifikasi
Pada bagian ini dikaji mengenai jurnal-jurnal yang mendasari usulan penelitian ini. Pertama, jurnal tentang metode klasifikasi yang diterapkan untuk klasifikasi penyakit arteri coroner [6]. Penelitian ini membandingkan kinerja dari beberapa teknik klasifikasi (regresi logistik, CART, Multi-layer perceptron, Radial Basis Function, Self-organizing feature maps). Jurnal lain membahas pengembangan pohon regresi untuk menangani data berkelompok [7]. Metode yang diusulkan dalam jurnal ini ialah mixed effect regression trees. Penelitian ini menerapkan algoritma metode standar dalam kerangka algoritma expectation-maximization (EM).
Jurnal yang membahas tentang regresi logistik multilevel dengan topik penggunaan kontrasepsi di Banglades menggunakan estimasi dengan menggunakan pendekatan likelihood [7]. Digunakan dua pendekatan likelihood, yaitu Marginal Quasi Likelihood (MQL) dan Penalized Quasi Likelihood (PQL). Setelah mengunakan metode Quasi Likelihood, model ini kemudian diestimasi dengan menggunakan Iterative Generalized Least Square (IGLS) atau Reweighted IGLS (RIGLS). Jurnal lain mengenai 179 metode pengklasifikasian dari 17 keluarga klasifikasi pada 121 dataset [17]. Jurnal ini memberikan hasil bahwa dari semua metode klasifikasi yang digunakan, diperoleh hasil yang terbaik ditunjukkan oleh metode random forest.
Jurnal lain meneliti mengenai penilaian kolaborasi peneliti tingkat internasional berbasis pada Web [10]. Metode yang digunakan dalam penelitian tersebut ialah multilevel regression logistic 3 level. Jurnal terbaru menerapkan metode random forest multilevel pada data produksi dengan pemberian bobot [15, 16, 17]. Metode klaster hirarki diterapkan untuk meningkatkan keragaman antara pohon klasifikasi. Jurnal lain aplikasi multilevel klasifikasi di bidang pendidikan adalah mengidentifikasi mengenai
profil siswa di Chili berdasarkan nilai ujian matematika sebagai metode analisis random forest dan CART [15].
3.3 Roadmap Penelitian Tim Peneliti
Roadmap penelitian dari peneliti ini disajikan pada Gambar 3.4 yang menggambarkan konsep metoda statistika yang dikembangkan dan proposisi konsep implementasi yang direncanakan. Dari peta jalan tersebut terlihat fokus penelitian yang diusulkan dan rencana penelitian pada saat ini dan pada 2(dua) tahun mendatang.
Gambar 3.4 Roadmap Penelitian Yang Direncanakan
Fokus penelitian pada tahun 2020 lebih ke konsep Multilevel baik regresi logistic biner dari satu level dan multilevel. Pada tahun 2020 akan direncanakan membahas antara Regresi Pohon satu level dan multilevel. Apabila memungkinkan dilakukan juga dengan Multilevel Random Forest. Dalam anaisis akan dibandingkan berbagai metode multilevel dan kriteria terbaik.
Pernah dilakukan oleh peneliti dan tim
Tahun 2014 :
Pratiwi, F.E, dan
Zain, I [19] Tahun 2015: Pratiwi, L. B., Wibowo, W., & Zain, I. [15] Tahun 2019 : Permatasari, EO dan Zain, I [20] Usulan Penelitian Tahun 2020: Dikembangkan METODE REGRESI LOGOSTIK yang MULTILEVEL (M-Logit) Usulan Penelitian Tahun 2021 & 2022 Dikembangkan METODE KLASIFIKASI MULTILEVEL untuk Regresi Pohon dan Random Forest LUARAN PENELITIAN
1. Artikel pada Jurnal Terindeks Scopus 2. Seminar Internasional 3. Empat Tugas Akhir (S1) Topik A : Anreglog Topik B : Pengelompokan Topik C : Regresi Multivariat Topik D : Pemetaan
BAB IV METODE
4.1 Desain dan Sumber Data Penelitian
Desain penelitian ini adalah riset mengembangkan konsep multilevel terhadap masalah klasifikasi yang selama ini masih terbatas pada satu level. Kajian konsep multilevel difokuskan pada multilevel regresi logistik biner mulai estimasi parameter sampai dengan penentuan algoritma dalam menentukan estimasi parameter. Selanjutnya, dilakukan analisis data dan pemilihan model terbaik. Adapun sumber data yang digunakan dalam penelitian ini adalah data sekunder yang diperoleh dari Bidang Teknologi Sistem Informasi Hasil Tes Jalur Ujian. Unit observasi yang digunakan dalam penelitian ini adalah peserta sebagai struktur data level1 dan struktur data level 2 dibentuk dari daya tampung masing-masing prodi pilihan peserta.
4.2 Variabel Penelitian dan Stuktur Data
Variabel independen pada level 1 yang digunakan dalam penelitian ini ada 10 indikator, yaitu nilai ujian tulis dari masing-masing mata ujian. Unit observasi pada penelitian ini adalah data individu peserta pada level 1, dimana 1 untuk diterima dan 0 untuk tidak diterima sebagai variabel respon. Prodi yang ada dipilih sebagai level 2, dengan menggunakan variabel daya tampung sebagai variabel independen. Berikut dicontohkan variabel penelitian yang akan digunakan pada kelompok ujian Saintek pada Tabel 4.1
Tabe 4.1 Variabel Penelitian
Variabel Indikator Skala
Y = Status Status penerimaan, diterima atau tidak diterima Nominal
Level 1 (Individu)
X1 = Matematika Dasar Nilai ujian tulis Matematika Dasar Rasio
X2 = Bahasa Indonesia Nilai ujian tulis Bahasa Indonesia Rasio
X3 = Bahasa Inggris Nilai ujian tulis Bahasa Inggris Rasio
X4 = TPA Verbal Nilai ujian tulis TPA Verbal Rasio
X5 = TPA Numerikal Nilai ujian tulis TPA Numerikal Rasio
X6 = TPA Vigural Nilai ujian tulis TPA Figural Rasio
X7 = Matematika IPA Nilai ujian tulis Matematika IPA Rasio
X8 = Fisika Nilai ujian tulis Fisika Rasio
X9 = Kimia Nilai ujian tulis Kimia Rasio
X10 = Biologi Nilai ujian tulis Biologi Rasio
Level 2 (Prodi)
Z = Daya Tampung Banyaknya mahasiswa baru yang akan diterima
4.3 Struktur Data Penelitian
Struktur data yang digunakan dalam penelitian ini bersifat hirarki atau berjenjang, yaitu data individu peserta yang terkelompok ke dalam prodi pilihan peserta. Struktur data yang digunakan dalam penelitian ini seperti yang dituliskan pada Tabel 4.2
Tabel 4.2 Struktur Data Penelitian
Prodi Individu Variabel Dependen Variabel Independen Level 1 Variabel Independen Level 2 Y X1 X2 X10 Z 1 1 Y11 X111 X211 X10;11 1 Z 2 Y21 X121 X221 X10;21 1 n Yn1 X1 1n X2 1n X10; 1n 2 1 Y12 X112 X212 X10;12 2 Z 2 Y22 X122 X222 X10;22 2 n Yn2 X1 2n X2 2n X10; 2n M 1 Y1m X11m X21m X10;1m m Z 2 Y2m X12m X22m X10;2m m n Ynm X1nm X2nm X10;nm
4.4 Diagram Alir Penelitian dan Peran Peneliti
Berikut diuraikan langkah analisis pada tahun 2020, adapun langkah pada tahun kedua akan menyesuaikan. Metode analisis pada tahun pertama dan kedua secara ringkas dapat dilihat pada Gambar 4.1. Sekaligus pada Gambar tersebut diperlhatkan peran dari tim dalam melakukan analisis data.
Gambar 4.1 Diagram Alir Metode penelitian Tahun Ke-1 (Tahun 2020)
Kajian Konsep Estimasi M-Logit Penyusunan Algoritma Estimasi Parameter M-Logit
1. Untuk mencapai tujuan pertama, dilakukan kajian teoritis tentan konsep multilevel klasifikasi M-Logit. Metode yang dilakukan adalah dengan studi literatur dari berbagai sumber. Selain itu, juga dirancang penyusunan algoritma model multilevel klasifikasi. Hasil tahap ini diharapkan dapat dibuat 1 (satu) artikel yang akan disampaikan dalam seminar internasional dengan topik “Estimasi Parameter M-Logit”.
2. Untuk mencapai tujuan kedua, dilakukan eksplorasi data dan pemetaan kasus status penerimaan sebagai klasifikasi awal. Metode yang digunakan adalah melakukan pemetaan dengan Arc-View berbasis karakteristik agregrat potensi wilayah.
3. Untuk mencapai tujuan ketiga, yaitu melakukan estimasi parameter untuk M-Logit pada kasus status penerimaan peserta jalur ujian tulis. Metode yang direncanakan adalah dengan melakukan analisis data menggunakan program “R”. Dari hasil ini diharapkan dapat dibuat 1 (satu) artikel yang akan dipublikasikan pada jurnal terindeks scopus dengan topik “Multilevel Logistic Regression Analysis Applied to Binary Statue on Written Tes Selection Data”
4.5 Luaran
Luaran yang akan dicapai dalam usulan penenlitian antara lain sebagai berikut. 1. Publikasi 1 makalah atau paper pada jurnal internasional terindeks scopus
berkategori Q2. Rencana di Songklanakarin Journal of Science and Technology (SJST). Judul yang direncanakan: “Multilevel Logistic Regression Analysis Applied to Binary Statue on Written Tes Selection Data”
a. Satu makalah hasil Conference hasil riset yang telah dilakukan pada seminar nasional maupun internasional. Judul menyesuaikan dengan tema konferensi
b. Empat buah Tugas Akhir yang terkait dengan topik penelitian ini dengan nama mahasiswa dan judul Tugas Akhir, serta Pembimbing dan Co Pembimbing sebagai berikut.
Identitas Pengusul
Nama : Regina Hayden Sagita
NRP : 06211640000111
Jurusan : Statistika
Tahap : Sarjana
Identitas Pembimbing
Pembimbing I : Dr. Dra. Ismaini Zain, M. Si. NIP Pembimbing I : 19600525 198803 2 001 Judul Penelitian
Pemodelan Regresi Logistik Biner Terhadap Status Penerimaan Calon Mahasiswa ITS pada Jalur Ujian Tulis Tahun 2019.
Identitas Pengusul
Nama : Fathin Ayu Qusyairi Losida
NRP : 06211640000107
Jurusan : Statistika
Tahap : Sarjana
Identitas Pembimbing
Pembimbing : Dr. Dra. Ismaini Zain, M.Si.
NIP : 19600525 198803 2 001
Judul Penelitian
Pengelompokan Jurusan Statistika di Indonesia Berdasarkan Skor Ujian Tulis Masuk Perguruan Tinggi Negeri dan Karakteristik Jurusan Statistika Menggunakan Metode Ensemble ROCK.
Identitas Pengusul
Nama : Nimas Sefrida Andriaswuri
NRP : 06211640000012
Departemen : Statistika
Tahap : Sarjana
Dosen Pembimbing : Dr. Dra. Ismaini Zain, M.Si Judul Penelitian
Analisis Perbandingan Skor Hasil Ujian Tulis Antar PTN-BH dengan Menggunakan Multivariate Analysis of Variance
Identitas Pengusul
Nama : Alissa Chintyana
NRP : 062116 4000 0015
Departemen : Statistika
Tahap : Sarjana
Identitas Pembimbing
Pembimbing I : Erma Oktania Permatasari, S.Si., M.Si. NIP Pembimbing I : 19881007 201404 2 002
Pembimbing II : Dr. Dra. Ismaini Zain, M.Si. NIP Pembimbing II : 19600525 198803 2 001
Judul Penelitian
Pemodelan Regresi Multivariat Antara Skor Mata Uji pada Seleksi Masuk Jalur Ujian Tulis dengan Nilai Matematika dan Ilmu Dasar Mahasiswa ITS
4.6 Rencana Anggaran Biaya
Rencana anggaran biaya yang diajukan untuk penelitian ini adalah sebagaimana Tabel 4.3.
Tabel 4.3 Rekapitulasi Biaya yang Diajukan
No Jenis Pengeluaran Biaya Yang Diusulkan (Rp)
1. Honorarium
( Maksimum 30% )
- 2. Pembelian Bahan Habis Pakai
( Maksimun 60% )
18.985.000 3. Perjalanan
( Maksimun 40% )
21.500.000 4. Sewa / Peralatan Penunjang
Lainnya ( Maksimum 40% )
9.500.000
Jumlah 49.985.000
Terbilang: Empat Puluh Sembilan Juta Sembilan Ratus Delapan Puluh Lima Ribu Rupiah
BAB V JADWAL
5.1 Rencana Jadwal Penelitian
Penelitian ini dilaksanakan pada laboratorium Sosial Kependudukan, Departemen Statistika, Fakultas Sains dan Analitikal Data, Institut Teknologi Sepuluh Nopember. Penelitian ini direncanakan selama 8 bulan dengan jadwal penelitian 6 (bulan) efektif sebagai Tabel 5.1.
Tabel 5.1 Jadwal Penelitian
Kegiatan Bulan 1 Bulan 2 Bulan 3 Bulan 4 Bulan 5 Bulan 6 1 2 3 4 1 2 3 4 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 4444333344 Studi Literatur dan
Referensi Kajian Estmasi
Paramater
Penentuan Algoritma
Analisis dengan Regresi
Logistik Multilevel a. Mendapatkan model pada level 1 b. Mendapatkan model pada level 2 c. Menghitung ketepatan klasifikasi d. Menginterpretasikan hasil Membuat Laporan Kemajuan Membuat Artikel untuk
Konferensi dan Jurnal
Mengikuti Seminar
Membuat Laporan
Akhir 4
BAB VI
DAFTAR PUSTAKA
[1] Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression Second Edition. New York: John Willey & Sons Inc.
[2] Agresti, A. (2007). Categorical Data Analysis Second Edition. New York: John Willey & Sons.
[3] Lewis, & Roger, J. (2000). An Introduction to Classification and Regression Trees (CART) Analysis. Torrance: Department of Emergency Medicine.
[4] Hox, J. (2010). Multilevel Analysis : Techniques and Applications Second Edition. New York: Routledge.
[5] Goldstein, H. (2010). Multilevel Statistical Models 4th Edition. United Kingdom: John Wiley & Sons, Ltd.
[6] Kurt, I., Ture, M., & Kurum, A. T. (2008). Comparing performance of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert system with Application, 34(1), 366-374.
[7] Khan, M. R., & Shaw, J. H. (2011). Multilevel Logistic Regression Analysis Applied to Binary Contraceptive Prevalence Data. Journal of Data Science, 9, 93-110. [8] Hajjem, A., Bellavance, F., & Larocque, D. (2011). Mixed effects regression trees
for clustered data. Statistics and Probability Letter, 81(4), 451-459.
[9] Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effect random forest for clustered data. Journal of Statistical Computation and Simulation, 84(6), 1313-1328.
[10] Bornmann, L., Stefaner, M., Anegon, F. d., & Mutz, R. (2016). Excellence network in science: A Web-based application based on Bayesian multilevel logistic regression (BMLR) for the identification of institutions colaborating successfully. Journal of Informetrics, 10(1), 312-327.
[11] Kemenristekdikti. (2018, 09 16). Diambil kembali dari Official Page SBMPTN: https://sbmptn.ac.id/?mid=13
[12] Guo, G., & Zhao, H. (2000). Multilevel Modeling for Binary Data. Annual Review of Sosiology, 26, 441-462.
[13] Pratiwi, L. B., Wibowo, W., & Zain, I. (2015). Klasifikasi Nilai Peminat SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri) ITS dengan Pendekatan Classification and Regression Trees (CART). Jurnal Sains dan Seni ITS, 4(2). [14] Fajri, M. (2015). Splitting Rule dan Penerapan Bagging pada Pohon Klasifikasi.
[15] Sanzana, M. B., Garrido, S. S., & Poblete, C. M. (2015). Profiles of Chilean students according to academic performance in mathematics: An exploratory study using classificacion trees and random forest. Studies in Educational Evaluation, 44, 50-59.
[16] Delgado, M. F., Cernadas, E., Barro, S., & Amorim, D. (2014). Do We Need Hundreds of Classifiers to Solve Real Word Classification Problems? Journal of Machine Learning Research, 15(1), 3133-3181.
[17] Martin, D. P. (2015). Efficiently Exploring Multilevel Data with Recursive Partitioning. Virginia: Disertasi : Univercity of Virginia.
BAB VII LAMPIRAN
LAMPIRAN 1 BIODATA PENELITI
Ketua
1. Nama Lengkap (dengan gelar) Dr. Dra. Ismaini Zain, M.Si
2. Jabatan Fungsional Lektor
3. NIP 196005251988032001
4. Tempat dan Tanggal Lahir Surakarta, 25 Mei 1960
5. NIDN 002505196009
6. Alamat Rumah Deltasari Indah AB/9 Sidoarjo, 61256
7. Nomor Telepon/Fax 031-8536724/-
8. Nomor HP 08123036678
9. Alamat Kantor Jurusan Statistika FMIPA ITS, Jl. Arief
Rachman Hakim, Sukolili, Surabaya, 60111
10. Nomor Telepon/Fax 031-5943352/031/5843352
11. Alamat e-mail [email protected]
A. PENGALAMAN PENELITIAN (bukan skripsi, tesis, maupun disertasi) 3 tahun terakhir
No. Tahun Judul Penelitian
1 2017 Pengelompokan Dan PemodelanKualitasProses PendidikanPerguruan Tinggi NegeriDi Indonesia MenurutJalurMasuk
DenganPendekatan MetodeEnsemble Rock (Robust Clustering Using Links) Dan Similarity Weight And Filter Method (Swfm) Serta Quantile Regression. Penelitian Departemen. Ketua.
2 2018 Pemodelan Konsumsi Air Bersih dengan Pendekatan Model Tobit Double Hurdle Berbasis Analisis Gender pada Rumahtangga Miskin. Penelitian Terapan Unggulan Perguruan Tinggi. Ketua.
3 2018 Estimasi Kurva Regresi Semiparametrik Multivariabel Menggunakan Pendekatan Estimator Campuran Spline dan Kernel. SK Penelitian Terapan Unggulan Perguruan Tinggi. Anggota.
4 2018 Pengelompokkan Kabupaten/Kota Berdasarkan Indikator Sanitasi
Lingkungan Sebagai Dasar Evaluasi Pencapaian Tujuan SDGs Di Provinsi Jawa Timur. Penelitian Pemula ITS. Anggota.
5 2019 Analisis Faktor-Faktor yang Mempengaruhi Angka Kematian Bayi (AKB) Berdasarkan Indikator Sanitasi dan Kesehatan Sebagai Dasar Evaluasi Pencapaian Target SDGs di Provinsi Sulawesi Utara. Penelitian Pemula ITS. Anggota.
B. PENGALAMAN PENGABDIAN KEPADA MASYARAKAT – 3 tahun terakhir
No .
Tahun Judul Pengabdian Kepada Masyarakat
1 2017 Program Terapan Bidang Teknologi lnformasi dan Komunikasi (PRODISTIK) Madrasah Aliyah Zainul Hasan I Genggong
2 2017 KAMPUNG LITERASI DOLLY JILID II: PENGUATAN POTENSI MENULIS BAGI REMAJA DI KAWASAN BUDAYA KELURAHAN PUTAT JAYA. ABDIMAS REGULER ITS tahun 2018:
3 2018 PELATIHAN TATA CARA PENYUSUNAN PROPOSAL PENELITIAN DANA RISTEK DIKTI UNTUK DOSEN UNDAR JOMBANG. SK ABDIMAS REGULER ITS.
4 2019 PELATIHAN METODELOGI PENELITIAN UNTUK DOSEN STIKOM – SURABAYA. SK ABDIMAS REGULER ITS
5 2019 Penguatan Kampung Literasi ITS: Meningkatkan Profesionalisme Petugas Taman Baca Masyarakat (TBM) Di Wilayah Kota Surabaya Melalui Program Mentoring Literasi Berimbang (Balanced Literacy). ABDIMAS BERBASIS PENELITIAN ITS tahun 2019:
C. PENGALAMAN PENULISAN ARTIKEL ILMIAH DALAM JURNAL/PROSIDING
No Tahun Judul Artikel Ilmiah
1. 2011 Estimation and Test Statisticc in Bivariat Probit Model (rxc) . Journal of Basic Applied of Scientific Research Volume :1Nomor : 3
2 2012
Analisis CART (Classification And Regression Trees) pada Faktor-Faktor, Jurnal Sains dan Seni, Vol, 1 Nomer 1
3 2015 Pengaruh Pengangguran Terbuka Menggunakan CART (Classification
anda regression Trees. Jurnal Sains dan Seni, Vol, 2 Nomer 2.
4 2017
Censored Hurdle Negative Binomial Regression (Case Study:
Neonatorum Tetanus Case in Indonesia) Provinsi Sumatera Utara, Jurnal Sains dan Seni ITS
Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.
Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Penelitian Laboratorium DANA LOKAL ITS 2020
Surabaya, 6 Maret 2020 Peneliti,
Dr. Dra. Ismaini Zain, M.Si.
nggota 1
A. IDENTITAS DIRI
1. Nama Lengkap (dengan gelar) Erma Oktania Permatasari, S.Si., M.Si. 2. Jabatan Fungsional Asisten Ahli
3. NIP 198810072014042002
4. Tempat dan Tanggal Lahir Surabaya, 7 Oktober 1988
5. NIDN 0007108801
6. Alamat Rumah Jl. Sumedi No.11 Surabaya 7. Nomor Telepon/Fax -
8. Nomor HP 085648143518
9. Alamat Kantor Jurusan Statistika, FMIPA-ITS, Sukolilo, Surabaya 10. NomorTelepon/Fax 031-5943352 / 031-5922940
11. Alamat e-mail [email protected]
12. Lulusan yang telah dihasilkan S1= 6 orang
13. Mata Kuliah yang diampu 1. Metode Riset Sosial (S-1) 2. Analisis Regresi (S-1)
3. Pengantar Metode Statistika (S-1) 4. Statistika Matematika I (S-1) 5. Statistika Matematika II (S-1) 6. Analisis Data II (S-1)
7. Analisis Data Kategorik (S-1) 8. Analisis Multivariat (S-1) 9. Analisis Deret Waktu (S-1) 10. Studi Kependudukan (S-1)
B. PENGALAMAN PENELITIAN (bukan skripsi, tesis, maupun disertasi) Judul penelitian yang pernah dilakukan(sebagai ketua) selama 5 tahun terakhir
No .
Tahun Judul Penelitian Pendanaan
Sumber Jml (Juta Rp) 1. 2014 Pendekatan Multivariate Adaptive
Regression Spline (MARS) untuk klasifikasi status terinfeksi penyakit Infeksi Menular Seksual (IMS) pada Pekerja Seks Komersial (PSK) di Lokalisasi Moroseneng Surabaya
PNBP ITS-2014
25
2. 2014 Pendekatan Multivariate Adaptive
Regression Spline (MARS) untuk pemodelan bayi yang mendapat ASI di Indonesia
Balitbangke
D. PENGALAMAN PENGABDIAN KEPADA MASYARAKAT (bukan skripsi, tesis, maupun disertasi)
Judul pengabdian kepada masyarakat yang pernah dilakukan selama 5 tahun terakhir.
No .
Tahun Judul Pengabdian Kepada Masyarakat Pendanaan
Sumber Jml (Juta Rp) 1. 2014 Pembinaan dan pemetaan keterampilan
kelompok anak jalanan binaan di Surabaya
BOPTN ITS 2014
25
Sumber Pendanaan: Penerapan IPTEKS, Vucer, Vucer Multi Tahun, UJI, Sibermas, atau sumber lainnya, sebutkan.
E. PENGALAMAN PENULISAN ARTIKEL ILMIAH DALAM JURNAL Judul artikel ilmiah yang pernah diterbitkan selama 5 tahun terakhir:
No .
Tahun Judul Artikel Ilmiah Volume/
Nomor
Nama Jurnal
1. 2015
Multivariate Adaptive Regression Spline (MARS) Approach For
Classification of Sexually Transmitted Infections (IMS) Diseases On
Commercial Sex Workers (PSK) In Moroseneng Localization Vol 53, No.4 International Journal of Applied Mathematics and Statistics
F. Pengalaman Penyampaian Makalah Secara Oral Pada Pertemuan / Seminar Ilmiah Dalam
5 Tahun Terakhir
No Tah
un
Judul Seminar Judul Makalah Instansi
Pemberi Sertifikat/Piag am Keterangan 1. 2012 The 8th IMT-GT 2012 Conference on Mathematic, Statistics, and Its Application (ICMSA12) Multivariate Adaptive Regression Splines (MARS) Approach for Classification of Poverty in East Java Province Jurusan Statistika dan Matematika ITS Surabaya Ketua Penyaji
2. 2014 International Conference Statistics and Mathematics (ICSM) Multivariate Adaptive Regression Spline (MARS) Approach For Classification of Diseases Infected Status Sexually Transmitted Infection (IMS) On Commercial Sex Workers (PSK) In Moroseneng Localization Surabaya Jurusan Statistika ITS Surabaya Ketua Penyaji
Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima resikonya.
Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proprosal Penelitian Laboratorium DANA LOKAL ITS 2020
Surabaya, 6 Maret 2020 Anggota Peneliti,
( Erma Oktania Permatasari, S.Si., M.Si )
LAMPIRAN 2 SURAT PERNYATAAN KESEDIAAN
SURAT PERNYATAAN KESEDIAAN ANGGOTA TIM PENELITIAN
Yang bertanda tangan dibawah ini kami:
Nama : Erma Oktania Permasari, S.Si., M.Si.
NIP : 198810072014042002
Jurusan/Fakultas : Statistika/Sains dan Analitika data
menyatakan bersedia untuk melaksanakan tanggung jawab sebagai anggota tim penelitian:
Judul Penelitian :
PENGEMBANGAN METODE KLASIFIKASI : M-Logit MULTILEVEL REGRESI LOGISTIK BINER DAN APLIKASINYA
Ketua Tim Peneliti : Dr. Dra. Ismaini Zain, M.Si. dengan tugas:
- Membantu Ketua dalammenyelesaikan tujuan penelitian - Mengalisis data untuk Analisa Regresi Logistik dan M-Logit - Membuat Artikel untuk dimuat dalam Jurnal dan Konferensi
Surat pernyataan ini kami buat dengan sebenarnya untuk digunakan seperlunya.
Surabaya, 08 Maret 2020 Anggota tim peneliti
LAMPIRAN 3 ANGGARAN BIAYA PENELITIAN
Honor /Jam (Rp) Ketua Tim -Anggota-1 -10 rim 4 buah 6 buah 1 paket 1 buah 5 jurnal 1 paket 1 paket 192 kali 4 2 4 2 2 2Publikasi Jurnal International (termasuk Proff Reading) Laporan Kemajuan Penelitian Laporan Akhir Penelitian -Minggu
Sub Total Bagian I (Rp) (Jam/minggu)
3.000.000
21.500.000 Sub Total Bagian III (Rp)
750.000 =Tiket (PP) 3.000.000 6.000.000 850.000 450.000 1.500.000 1.700.000 1.800.000 3.000.000 Total Biaya 49.985.000 Kuantitas Harga Satuan (Rp) 1.500.000 Jumlah 6.000.000 1 Bendel 1 Bendel 1.000.000 1.000.000
Sub Total Bagian IV (Rp) 9.500.000
1 jurnal 1 jurnal 7.500.000 7.500.000
1 Bendel 1 Bendel 1.000.000 1.000.000
IV. Sewa / Peralatan Penunjang Lainnya
Material Justifikasi Sewa Kuantitas Harga
Satuan (Rp) Sewa
- Biaya seminar 2 orang
- Prosiding seminar 2 buah
- Hotel 1 Kmr x 2 hari
- Taxi 2 kali (PP)
Biaya mengikuti Seminar Nasional (mhs) di Surabaya
Biaya mengikui Seminar Internasional
Lokal/paket Luar Kota
Material Justifikasi
Perjalanan
Sub Total Bagian II(Rp) 18.985.000
Jumlah
2.500.000 2.500.000
III. Perjalanan
Pembuatan Software (Program Statistik Komputer)
Konsumsi Rapat :4 x 6org x 8 bln 35.000 6.720.000
2.500.000 Pengolahan Data 2.500.000 2.500.000 Pembelian Jurnal 500.000 ATK 1.000.000 1.000.000 Exsternal Hardisk 965.000 965.000 Flash Disk 200.000 1.200.000 Kertas 40.000 400.000 Tinta printer 300.000 1.200.000
II Pembelian Habis Pakai Material
Justifikasi Pembelian Satuan
Harga Satuan (Rp)
Jumlah (Rp) I. Honorarium
DATA USULAN DAN PENGESAHAN PROPOSAL DANA LOKAL ITS 2020
1. Judul Penelitian
PENGEMBANGAN METODE KLASIFIKASI : M-Logit MULTILEVEL REGRESI LOGISTIK BINER DAN APLIKASINYA
Skema : PENELITIAN LABORATORIUM
Bidang Penelitian : Sains Fundamental
Topik Penelitian : Metode Klasifikasi dan Cluster 2. Identitas Pengusul
Ketua Tim
Nama : Dr. Dra. Ismaini Zain M.Si
NIP : 196005251988032001
No Telp/HP : 08123036678
Laboratorium : Laboratorium Statistika Sosial dan Kependudukan
Departemen/Unit : Departemen Statistika
Fakultas : Fakultas Sains dan Analitika Data
Anggota Tim
No Nama Lengkap Asal Laboratorium Departemen/Unit Perguruan Tinggi/Instansi
1 Dr. Dra. Ismaini
Zain M.Si
Laboratorium Statistika Sosial dan
Kependudukan
Departemen Statistika ITS
2
Erma Oktania Permatasari S.Si,
M.Si
Laboratorium Statistika Sosial dan
Kependudukan
Departemen Statistika ITS
3. Jumlah Mahasiswa terlibat : 0
4. Sumber dan jumlah dana penelitian yang diusulkan
a. Dana Lokal ITS 2020 :
b. Sumber Lain :
49.985.000,-Tanggal Persetujuan Nama Pimpinan Pemberi Persetujuan Jabatan Pemberi Persetujuan Nama Unit Pemberi Persetujuan QR-Code 09 Maret 2020 Prof. Dr. Drs Agus Rubiyanto M.Eng.Sc. Kepala Pusat Penelitian/Kajian/Unggulan Iptek Pusat Penelitian Sains dan Fundamental 09 Maret 2020 Agus Muhamad Hatta , ST, MSi, Ph.D Direktur Direktorat Riset dan Pengabdian Kepada Masyarakat