• Tidak ada hasil yang ditemukan

Kajian Eksperimental dan Elemen Hingga Karet Lokal dan Kawat Galvanis pada Sistem Isolasi Seismik di Daerah Gempa Kuat

N/A
N/A
Protected

Academic year: 2021

Membagikan "Kajian Eksperimental dan Elemen Hingga Karet Lokal dan Kawat Galvanis pada Sistem Isolasi Seismik di Daerah Gempa Kuat"

Copied!
40
0
0

Teks penuh

(1)

i

PROPOSAL

PENELITIAN

HIGH IMPACT

DANA ITS TAHUN 2020

Kajian Eksperimental dan Elemen Hingga Karet Lokal dan

Kawat Galvanis pada Sistem Isolasi Seismik

di Daerah Gempa Kuat

Tim Peneliti:

Ketua: Prof. Tavio, M.Eng., PhD. (Teknik Sipil/FTSLK/ITS Surabaya) Anggota1: Dr. Windiani, S.Sos., M.Si.(Studi Pembangunan/FBMT ITS) Anggota2: Sandy I. Yansiku, ST., M.Eng. (Teknik Sipil/FTSLK/ITS Surabaya)

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

SURABAYA

2020

(2)

ii  

HALAMAN PENGESAHAN

PROPOSAL PROGRAM PENELITIAN HIGH IMPACT DANA LOKAL ITS TAHUN 2020

1. Judul penelitian : Kajian Eksperimental dan Elemen Hingga

Karet Lokal dan Kawat Galvanis pada Sistem Isolasi Seismik di Daerah Gempa Kuat

2. Ketua tim

a. Nama Lengkap : Prof. Tavio, M.Eng., PhD.

b. NIP : 197203271997021001

c. Pangkat / Golongan :

d. Jabatan Fungsional : Guru Besar

e. Departemen : Teknik Sipil

f. Fakultas : FTSLK - ITS Surabaya

g. Alamat Kantor : Program Studi Teknik Sipil

ITS Surabaya, Keputih, Sukolilo, Surabaya Jawa Timur, Indonesia 60111

h. Telp / HP / Fax : 0816537135

3. Jumlah anggota : 3 orang

4. Jumlah mahasiswa yang terlibat : 1 orang

5. Sumber dan dana penelitian yang diusulkan:

a. Dana ITS tahun 2020 : Rp. 69.300.000,-

b. Sumber lain : Rp. ………..

Jumlah : Rp. 69.300.000,-

Mengetahui

Kepala Pusat Studi Mitigasi Kebencanaan dan Perubahan Iklim,

Adjie Pamungkas, ST.,M.Dev.Plg, Ph.D.

NIP. 197811022002121002

Kota Surabaya, 06-03-2020 Ketua Tim Peneliti,

Prof. Tavio, S.T., M.T., PhD.

NIP. 197003271997021001 Mengesahkan

Direktur DRPM,

Agus Muhamad Hatta, S.T., M.Si., Ph.D.

(3)

iii DAFTAR ISI

HALAMAN PENGESAHAN ii

DAFTAR ISI iii

DAFTAR TABEL iv

DAFTAR GAMBAR v

DAFTAR LAMPIRAN vi

BAB 1. RINGKASAN 1

BAB 2. LATAR BELAKANG 2

2.1 Latar Belakang 2

2.2 Perumusan Masalah 3

2.3 Tujuan Penelitian 3

2.4 Manfaat Penelitian 4

2.5 Urgensi Penelitian 4

2.6 Kontribusi Penelitian dan Relevansinya terhadap Skema 5

BAB 3. TINJAUAN PUSTAKA 6

3.1 Teknologi Low-cost Base Isolator 6

3.2 Pengaruh Mekanisme Tumpuan Bonded 10

3.3 Design 15

3.4 State of the Art Penelitian 16

3.5 Road Map Penelitian 18

BAB 4. METODE 19

4.1. Material 19

4.2. Geometri Isolator dan Notasi 20

4.3. Metode Pengujian Material 20

4.4. Desain Isolator 23

4.5. Manufakturisasi 23

4.6. Pengujian Base Isolator 23

4.7. Alur Penelitian 25

4.8. Organisasi Tim 26

BAB 5. JADWAL 27

BAB 6. DAFTAR PUSTAKA 28

(4)

iv

DAFTAR TABEL

Tabel 1. State of the art penelitian ... 16

Tabel 2. Dimensi rencana isolator karet ... 21

Tabel 3. Notasi Spesimen Uji ... 21

Tabel 4. Tanggungjawab tim peneliti ... 26

(5)

v

DAFTAR GAMBAR

Gambar 1. Jenis pengekangan pada isolator karet ... 10

Gambar 2. Overlapping area of rubber bearing without core ... 11

Gambar 3. Pengaruh lubang dan tekanan vertikal pada model bonded FRRI ... 13

Gambar 4. Kurva histeresis LDNRI, HDRI dan LRI ... 14

Gambar 5. Isolator usang dan penggantinya terpasang di dasar gedung ... 15

Gambar 6. Tata cara umum desain base isolator karet ... 15

Gambar 7. Road map penelitian ... 18

Gambar 8. Material uji... 19

Gambar 9. Geometri bMRI ... 20

Gambar 10. Dumbbell specimen uji tarik uniaksial ... 22

Gambar 11. Konfigurasi lubang penampang karet ... 22

Gambar 12. Mold dan proses vulkanisasi ... 23

Gambar 13. Pengujian vertikal (tekan) dan horisontal ... 24

(6)

vi

DAFTAR LAMPIRAN

Lampiran A. Biodata Tim Peneliti ... 31 Lampiran B. Pernyataan Kesediaan Anggota Tim ... 33

(7)

1

BAB 1.

RINGKASAN

Penelitian ini mengkaji pemanfaatan karet alam / natural rubber dan kawat anyam (galvanized square mesh/GSM sebagai elemen base isolator yang ringan dan murah serta memiliki performa yang memadai melalui pekerjaan eksperimental dan mengembangkan prosedur analitis untuk diaplikasikan pada rumah tinggal sederhana terhadap goncangan gempa. Dengan demikian penghuni/pemilik rumah tinggal sederhana pun dapat turut memperoleh manfaat atas teknologi base isolator.

Pengkajian ini dilaksanakan dalam beberapa tahap pengujian di laboratorium yaitu pengujian sifat fisik material karet berupa uji hardness, tear strength, density, volume change, uji ageing dan uji tarik uniaksial karet dan kawat ram Pengujian kekakuan vertikal, kekakuan horisontal dan kapasitas redaman base isolator di Laboratorium Malaysian Rubber Board. Dengan berbagai kombinasi material penyusun berbiaya rendah tersebut diharapkan dapat diciptakan suatu prototipe isolasi seismik yang murah namun layak secara teknis dalam mengurangi goncangan saat gempa terjadi. Prototipe yang akan dihasilkan diharapkan memberikan kontribusi maksimal dalam upaya mitigasi dampak bencana gempa bumi bagi hunian sederhana pada daerah dengan intensitas gempa tinggi (Maximum Considered Earthquake/MCE) selain dapat memperdalam konsep perencanaan dan penerapan teknologi peredam gempa. Jurnal ilmiah yang menjadi target publikasi hasil penelitian ini adalah International Journal on Advanced Science, Engineering and Information Technology (Q2) dan akan dipublikasikan pada akhir tahun 2020 .

(8)

2

BAB 2.

LATAR BELAKANG

2.1 Latar Belakang

Kerusakan akibat kejadian gempa kuat telah menunjukkan pentingnya langkah mitigasi gempa pada struktur bangunan khususnya hunian sederhana yang lebih berpotensi mengalami kerusakan dan menelan korban jiwa. Rumah tinggal sederhana pada umumnya dibangun tanpa mempertimbangkan beban gempa dan dengan biaya yang jauh lebih murah. Untuk mengurangi dampak kerusakan akibat gempa pada struktur bangunan, salah satu teknik peredaman getaran gempa yang sering digunakan dan telah dibuktikan keberhasilannya adalah pemasangan base isolator (BI) yang berfungsi sebagai komponen pemisah struktur bawah dan struktur atas.

Meskipun pemanfaatan BI dapat mengurangi besarnya getaran yang terjadi pada bangunan, tingginya harga isolator disertai biaya instalasinya menyebabkan teknik ini dianggap tidak efisien untuk diaplikasikan pada rumah tinggal sederhana. Dengan mempertimbangkan kerusakan yang ditimbulkan, akan sangat bermanfaat apabila biaya isolator ini dapat direduksi melalui berbagai teknik yang lebih sederhana dan efektif serta mempertimbangkan daya beli masyarakat luas sehingga dapat digunakan pada rumah tinggal khususnya di daerah dengan aktivitas seismik tinggi.

Berbagai modifikasi telah dikembangkan pada isolator konvensional seperti high damping rubber bearing (HDRB) dan lead rubber bearing (LRB) untuk menyederhanakan jenis-jenis isolator tersebut. Pendekatannya antara lain dengan penggantian mutu karet dengan material karet alternatif seperti karet ban bekas (Jie et al., 2016; Mishra, 2012; Tsompanakis et al., 2011; Turer & Özden, 2008) atau karet hasil daur ulang (A. Calabrese et al., 2019; Andrea Calabrese et al., 2015; Spizzuoco et al., 2014) untuk menggantikan karet elastomer mutu tinggi. Selain itu, peran lempeng baja (steel shim) sebagai perkuatan pada isolator konvensional diganti dengan penulangan serat karbon (Angeli et al., 2013; Russo et al., 2013; Toopchi-Nezhad et al., 2008)(Moon et al., 2002), serat kaca (Das et al., 2016; Moon et al., 2002; Mordini & Strauss, 2008), aramid dan nilon (Moon et al., 2002) sehingga disebut fiber reinforced elastomeric isolator (FREI). Metode lainnya adalah penghilangan inti timah atau lead core yang harganya sangat mahal untuk satu unit LRB. Memodifikasi bentuk dan dimensi karet isolator serta pemilihan jenis tumpuan, yang memiliki pengaruh pada seluruh komponen performa isolator, juga merupakan metode yang ditempuh untuk menurunkan harga isolator.

Dalam pengkajiannya, karet pengganti memiliki daya serap energi lebih rendah sehingga sulit terjadi perubahan gaya geser (A. Habieb, 2017; A. B. Habieb et al., 2017a;

(9)

3 Mishra, 2012). Sebagian besar hasil penelitian menyimpulkan bahwa karet berkapasitas redaman rendah yang digunakan pada low damping rubber bearing (LDRB) mengakibatkan penurunan kinerja isolator yang cukup signifikan sedangkan pemanfaatan berbagai jenis serat sebagai pengganti lempeng baja masih membutuhkan biaya yang relatif tinggi karena memerlukan proses manufakturisasi yang spesifik. Sementara itu, isolator tanpa lead core yang berperan dalam menyerap energi sangat berpengaruh pada penurunan kapasitas dukung isolator terhadap perpindahan lateral akibat gempa.

Pemanfaatan karet dengan tingkat kekerasan yang memadai, modifikasi bentuk penampang isolator, substitusi elemen perkuatan serta pemilihan model tumpuan yang tepat akan berdampak besar pada performa dan biaya isolator secara keseluruhan. Sehingga perlu dilakukan suatu rangkaian kajian mengenai pendekatan-pendekatan tersebut guna menghasilkan suatu sistem base isolator yang ekonomis dan layak untuk rumah tinggal sederhana.

2.2 Perumusan Masalah

1. Bagaimana karakteristik material karet alam dengan nilai hardness Shore A 60-80, galvanished square mesh, sebagai komponen alternatif penyusun base isolator seismik untuk rumah tinggal sederhana?

2. Bagaimana konfigurasi optimal penampang karet terhadap kekakuan vertikal dan kekakuan horisontal isolator untuk rumah tinggal sederhana melalui analisa parametrik dan FEM?

3. Bagaimana desain dan karakteristik kekakuan dan redaman sistem base isolator yang tersusun atas komponen-komponen tersebut pada kondisi tumpuan bonded?

2.3 Tujuan Penelitian

1. Melakukan kajian literatur dan rangkaian eksperimen pada karet alam, galvaized square mesh, tanah pasir padat dan lempung sebagai komponen alternatif penyusun base isolator seismik untuk rumah tinggal sederhana.

2. Melaksanakan studi parametrik penampang karet isolator dalam bentuk perforasi dan melakukan simulasi FEM untuk memprediksi karakteristik kekakuan karet isolator. 3. Melakukan desain serta menguji performa kekakuan dan redaman base isolator hasil

(10)

4

2.4 Manfaat Penelitian

1. Menjabarkan potensi fisik material alternatif serta kelayakan metode reduksi biaya isolator konvensional melalui rangkaian analisis dan program eksperimen baku dalam pengembangan ilmu pengetahuan di bidang teknik mitigasi gempa.

2. Menciptakan produk base isolator yang terjangkau secara komunal dan ekonomis serta efektif secara teknis sebagai bentuk kontribusi dalam usaha untuk mengurangi dampak kerusakan rumah tinggal sederhana dan meningkatkan keselamatan jiwa manusia akibat aktivitas seismik.

2.5 Urgensi Penelitian

Beberapa faktor berikut menjadikan penelitian ini perlu dilakukan yaitu :

1. Sejumlah besar penelitian telah dilakukan untuk menyelidiki perilaku isolator secara luas berkonsentrasi pada material mutu tinggi seperti HDRB yang lebih efektif digunakan pada struktur gedung bertingkat tinggi atau gedung fasilitas umum sedangkan dari segi biaya penerapan HDRB sangat tidak fisibel untuk hunian tingkat rendah maupun rumah sederhana di seluruh pelosok khususnya daerah yang rentan terhadap kejadian gempa.

2. Meskipun pemanfaatan karet bekas telah dilakukan oleh beberapa peneliti, penyekat karet elastomer cenderung menggunakan material dengan biaya tinggi seperti tulangan baja, fiberglas dan serat karbon yang membutuhkan proses fabrikasi kompleks. Selain material, bentuk lapisan antar karet pun memerlukan proses tambahan yang tidak sederhana karena memiliki bentuk dan konfigurasi yang tidak konvensional.

3. Penelitian ini mengajukan suatu pendekatan baru dengan memanfaatkan material lokal yang tersedia secara masif dalam kehidupan sehari-hari sehingga dapat mereduksi biaya total sistem rubber isolator secara keseluruhan namun tetap mempertahankan kemampuan layan bagi gedung hunian saat gempa.

4. Secara keseluruhan, material dasar sistem rubber isolator konvensional diganti dengan komposisi material yang lebih murah, bersifat lokal, masif dan dengan komposisi tertentu sehingga menghasilkan kapasitas fungsi isolasi yang optimal dari segi kelayakan teknis serta mempromosikan pendekatan yang ramah terhadap lingkungan hidup serta terjangkau bagi masyarakat luas terlebih di daerah rawan gempa. Pendekatan gabungan ini menjadi alternatif praktis dalam menyempurnakan kemampuan struktural sambil mempromosikan keberlanjutan dalam konstruksi.

(11)

5

2.6 Kontribusi Penelitian dan Relevansinya terhadap Skema

Rekayasa low-cost base isolator menjadi bagian penting dari bentuk kontribusi ITS Surabaya dalam menanggapi permasalahan nasional kegempaan yang sesuai dengan Sasaran Strategis ITS point K10 dalam Rencana Strategis ITS PTNBH 2015 – 2020 melalui peningkatan jumlah produk inovasi yang dapat dimanfaatkan pengguna. Selain itu, sesuai dengan Sasaran Strategis ITS point I2, penelitian ini dapat berkontribusi dalam penguatan internasionalisasi hasil riset yang berorientasi produk. Publikasi intellectual output innovation ini dalam jurnal-jurnal internasional dan jurnal-jurnal nasional terakreditasi dapat meningkatkan reputasi ITS sebagai WCU.

1. Kontribusi pada pencapaian renstra perguruan tinggi

Penelitian ini mendukung bidang ilmu Teknik Sipil yang menjadi salah satu kelompok riset unggulan di ITS Surabaya. Penelitian ini mendukung ITS Surabaya untuk menjadi kontributor nasional dalam mengatasi permasalahan nasional khususnya dalam aspek mitigasi bencana gempa bumi melalui inovasi penelitian. Penelitian ini akan meningkatkan reputasi ITS menjadi World Class University (WCU) melalui publikasi internasional hasil riset penelitian ini.

2. Kontribusi mendasar pada suatu bidang ilmu

Pengembangan low-cost rubber base isolation dengan mengoptimalkan pemanfaatan material lokal dengan harga rendah pakai disertai prosedur desain dan pengujian yang komprehensif mampu memperdalam konsep ilmu pengetahuan dalam bidang teknik sipil khususnya perencanaan dan penerapan teknologi peredam gempa. Dengan diperkenalkannya hasil penelitian ini, nilai dan peran ilmu pengetahuan yang sesungguhnya yakni kebermanfaatannya bagi kehidupan manusia dapat terlaksana. Hasil penelitian ini berpotensi paten untuk desain model base isolator untuk rumah tinggal sederhana terhadap gempa. Hasil penelitian juga dapat menjadi topik buku ajar pada matakuliah Teknik Gempa dan Struktur Tahan Gempa pada Program Studi Teknik Sipil (S1) di Indonesia. Rencana-rencana luaran jangka panjang ini akan diupayakan segera diusulkan dan diharapkan selesai pada tahun 2022.

(12)

6

BAB 3.

TINJAUAN PUSTAKA

3.1 Teknologi Low-cost Base Isolator

Teknologi base isolator (BI) yang paling populer ialah dalam bentuk laminasi lapisan karet diselingi dengan lempeng baja tipis dan memiliki inti timah berbentuk silinder di tengahnya yang sering disebut steel laminated lead rubber isolator (SLRI). Tingkat kesulitan yang tinggi dalam proses pembuatan SLRI disertai harga material yang tinggi menyebabkan tipe isolator ini pada umumnya hanya diaplikasikan pada gedung bertingkat tinggi atau gedung dengan tingkat keutamaan tinggi. Kondisi ini mendorong para peneliti untuk dapat menciptakan suatu jenis isolator dengan harga yang terjangkau secara lebih luas dan oleh karena fokus utama penelitian tersebut adalah rentang harga maka terminologi “base isolator murah” menjadi populer disertai dengan berbagai pendekatan di dalamnya. Pendekatan teknis yang diajukan oleh para peneliti dalam memodifikasi SLRI di antaranya adalah penggantian jenis dan kualitas karet; perubahan bentuk penampang; mengganti pelat baja; menghilangkan inti timah dan memodifikasi tumpuan isolator sehingga dapat mengurangi berat dan biaya total sistem isolasi dasar.

2.6.1. Penggantian Jenis dan Kualitas Karet

Elastomer sangat ideal untuk komponen BI karena modulus geser rendah, hampir tidak dapat dimampatkan dan berkemampuan untuk mengakomodasi regangan balik yang besar pada tingkat stres yang relatif rendah (Toopchi-Nezhad et al., 2011). Sifat mekanik karet juga dikendalikan oleh komposisi karbon hitam dalam bahan karet di mana dalam jumlah tinggi dapat menimbulkan efek Mullins dan umumnya meningkatkan kekuatan, kelenturan dan ketahanan terhadap kerusakan dan abrasi (Bijarimi et al., 2010). Untuk aplikasi model isolasi seismik dengan modulus geser antara 0,65 MPa hingga 0,9 MPa karet alam dengan nilai kekerasan durometer A50 biasanya digunakan (Warn & Ryan, 2012).

Karet bermutu rendah yang dihasilkan dari karet alam atau dalam kombinasi dengan karet daur ulang memiliki potensi besar untuk digunakan sebagai BI berbiaya murah. Referensi (Wijaya & Tavio, 2019) menyelidiki sifat-sifat karet di Indonesia dengan mengadopsi model konstitutif yang ada untuk bahan hiperelastik. Karet lokal memiliki nilai kekerasan Shore A 53-55 dan uji uniaksial mengkonfirmasi bahwa model yang paling cocok untuk karet adalah model Yeoh dan menghasilkan kelas yang lebih baik daripada yang diusulkan sebelumnya. Pengamatan lain menunjukkan bahwa karet dengan nilai hardness Shore A 85-95 memiliki modulus geser tertinggi yaitu 3,73 MPa dan mengalami deformasi aksial yang sangat kecil

(13)

7 dibandingkan dengan sampel karet dengan tingkat kekerasan yang lebih kecil. Semakin keras sampel, modulus geser semakin tinggi pada regangan rendah dan semakin rendah modulus geser pada tingkat regangan tinggi (Wijaya & Tavio, 2019). Dengan demikian karet dengan tingkat kekerasan tinggi dapat digunakan sebagai isolator seismik pada tingkat regangan tinggi karena berkurangnya modulus geser yang akan meningkatkan kemampuan disipasi energi gempa.

2.6.2. Model hiperelastik karet

Model konstitutif material dikembangkan dengan tujuan untuk memudahkan proses simulasi dalam analisis elemen hingga (FEA) sehingga hasil simulasi sedapat mungkin menggambarkan kondisi riil material. Data hasil uji sifat material di laboratorium digunakan sebagai dasar pengembangan model konstitutif material berdasarkan fungsi energi regangan (SEF). Karet dikategorikan sebagai material hiperelastik yang memiliki beberapa model konstitutif. Formulasi model Neo-Hook menunjukkan bahwa kekakuan meningkat ketika menerima beban tekan dan menurun jika mendapat beban tarik. Hubungan antara tegangan geser dan deformasi murni bersifat linier. Pada fungsi energi regangan dalam model Mooney-Rivlin terdapat dua konstanta sehingga kemungkinan untuk menyesuaikan model dengan data eksperimen akan lebih baik. Meskipun model Mooney-Rivlin (Rivlin, 1948) menunjukkan kesamaan yang cukup baik dengan data eksperimental model ini dianggap tidak konsisten dalam memodelkan perilaku volumetrik yang sebenarnya (Sugihardjo et al., 2018). Model Yeoh dengan fungsi multiparameter dapat menggambarkan kurva tegangan-regangan dari tes laboratorium yang jauh lebih baik namun membutuhkan upaya ekstra dalam menentukan konstanta dengan berbagai ketentuan. Model Ogden (Ogden et al., 2004) secara konsisten melakukan prediksi hubungan tegangan-regangan yang cukup akurat dalam memprediksi perilaku base isolator akibat tekanan aksial konsentris.

2.6.3. Perubahan Geometri

Bentuk dan dimensi isolator merupakan aspek yang turut menentukan besar biaya sistem isolator karet dan biasanya didefinisikan sebagai faktor bentuk /shape factor. Rasio luas penampang karet A terhadap tebal satu lapisan karet tr disebut sebagai faktor bentuk pertama S1. Untuk isolator berbentuk lajur, S1 setara dengan rasio setengah lebar strip, b/2 dan tr (J. M. Kelly & Konstantinidis, 2011). Nilai S1 untuk isolator berbentuk lajur, isolator berpenampang lingkaran dan yang memiliki lubang di tengahnya ditentukan menggunakan persamaan (1) sampai (4). Faktor bentuk kedua atau second shape factor, S2, atau sering disebut aspek rasio

(14)

8 adalah rasio lebar isolator B atau panjang L yang sejajar dengan arah pembebanan terhadap total ketebalan karet ttr seperti dalam persamaan (4) (Toopchi-nezhad et al., 2018) di mana D adalah diameter penampang lingkaran, sedangkan D2 and D1 adalah diameter luar dan diameter dalam penampang isolator yang berlubang.

𝑆𝑆1=4𝑡𝑡𝐷𝐷𝑟𝑟=𝐷𝐷24𝑡𝑡−𝐷𝐷𝑟𝑟1 (1)

𝑆𝑆2=𝐿𝐿= 𝑡𝑡 𝐵𝐵

𝑡𝑡𝑡𝑡 (2)

Sistem isolasi dengan nilai S1 besar yakni berkisar antara 15-30 menghasilkan kekakuan vertikal yang lebih besar sehingga mampu mengurangi besarnya goncangan tanah (Soleimanlo & Barkhordar, 2013). Penelitian lainnya (J. M. Kelly & Takhirov, 2001; Russo & Pauletta, 2013) mengungkapkan bahwa kekakuan horizontal FRRI dengan S1 antara 20,53 sampai 25,7 meningkat sejalan dengan meningkatnya tegangan desak. Namun, perbedaan signifikan antara kekakuan vertikal Kv dengan kekakuan horisontal Kh menyebabkan sistem isolasi karet hanya bekerja secara efektif pada arah horisontal (Warn & Ryan, 2012). Di sisi lain, lapisan karet yang lebih tebal yang memperkecil nilai S1 menyebabkan timbulnya tonjolan horisontal/horizontal bulging lapisan karet karena pengekangan oleh lapisan serat hanya terjadi dalam jumlah kecil (Ahmadipour & Alam, 2015). Perangkat isolator karet konvensional pada umumnya menggunakan nilai S2 sebesar 2,5. Referensi (A. Calabrese et al., 2019) melakukan kajian dengan nilai S2 antara 1,2-1,75 dan untuk mempertinggi nilai S2 dapat dilakukan dengan menggunakan karet dengan modulus geser lebih yang rendah seperti yang direkomendasikan oleh (Taniwangsa & Kelly, 1996).

Variasi ketebalan lempeng baja pada SFRRI menghasilkan variasi kekakuan vertikal yang tidak signifikan. Ini mendukung gagasan tentang kemungkinan untuk mengganti lempeng baja dengan tulangan serat yang dapat meregang selama pembebanan vertikal isolator (J. M. Kelly & Konstantinidis, 2011). Ketebalan total karet kemudian ditentukan dengan persamaan (3) dengan G adalah modulus geser karet, Th adalah desain periode isolator, dan m menunjukkan massa total bangunan.

𝑡𝑡𝑡𝑡𝑡𝑡= (𝐺𝐺 ∑ 𝐴𝐴)

𝑚𝑚 �2𝑇𝑇𝜋𝜋

ℎ�

2 (3)

Usaha untuk mengurangi berat sistem isolasi juga dapat dilakukan dengan meggunakan karet perforasi yaitu karet dengan lubang-lubang vertikal. Keberadaan lubang pada isolator karet mempengaruhi kinerja bantalan dalam arah vertikal dan horisontal. Keberadaan lubang tidak hanya mengurangi modulus kompresi tetapi juga meningkatkan regangan geser isolator (Pinarbasi & Okay, 2011). Hasil ini selaras dengan hasil temuan (Ahmadipour & Alam, 2015)

(15)

9 bahwa semakin tinggi jari-jari inti timah, semakin tinggi kekakuan horisontal pada LRI. Model isolator persegi panjang dalam bentuk lajur dianggap sebagai teknik yang menguntungkan untuk mengurangi dampak seismik pada bangunan gedung berdinding pasangan bata dibandingkan model lingkaran dan bujur sangkar karena perpindahan lateral telah ditahan oleh dinding bangunan (J. M. Kelly & Konstantinidis, 2011; Toopchi-Nezhad et al., 2011) dan lebih bergantung pada beban tekan vertikal (J. M. Kelly & Takhirov, 2001). Persentase panjang ikatan Bmax yang tidak mengalami efek guling pada isolator setempat berpenampang lingkaran, bujur sangkar dan persegi ditentukan dengan persamaan (4) (Van Engelen et al., 2015). Untuk mencegah terjadinya rollout atau dengan kata lain Bmax = 0% maka diperlukan nilai S2 sebesar 3,33.

𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = �1−310𝑆𝑆

2� 𝑥𝑥100 (4)

2.6.4. Modifikasi Perkuatan

Usaha untuk mereduksi berat total dan biaya sistem isolasi dengan mengganti lempeng baja/steel shim dengan serat penguat adalah metode yang paling populer dan menarik minat banyak peneliti. Peran lempeng baja pada SLRI adalah mencegah “bulging effect” namun tetap memungkinkan terjadinya deformasi geser dan tahanan momen lentur isolator karet. Efek tonjolan karet dapat dibatasi dengan menyelipkan serat penguat antar lapisan karet karena S1 meningkat (Osgooei et al., 2014). Jika peningkatan S1 ini mencapai nilai maksimumnya, tonjolan karet akan sepenuhnya ditahan oleh lapisan serat ini sehingga modulus kompresi karet mendekati nilai modulus curahnya (Engelen, 2019; Naeim & Kelly, 1999). Ketika lapisan perkuatan serat pengganti pelat baja dalam volume yang sesuai, sistem isolasi yang dimodifikasi ini menawarkan redaman gesekan tambahan terhadap energi gempa (J. M. Kelly & Takhirov, 2001; Russo et al., 2013; Toopchi-Nezhad et al., 2011). Sehingga, dengan dimensi atau faktor bentuk yang setara, karet dalam FRRI membutuhkan kapasitas redaman yang lebih sedikit sehingga biaya yang dibutuhkan menjadi lebih sedikit.

Pengurangan berat dapat dicapai karena material serat seperti serat-kaca lebih ringan dengan kekakuan elastis yang sebanding dengan baja (Engelen, 2019),harga dapat dikurangi karena proses yang lebih sederhana di mana tahap vulkanisasi dapat dilakukan dengan pemanasan microwave (J. M. Kelly & Konstantinidis, 2011; Toopchi-Nezhad et al., 2011). Fleksibilitas penguat serat memiliki efek minor pada kekakuan geser isolator. Kekakuan FRRI berkurang menjadi sekitar 80-85% dibandingkan dengan isolator yang diperkuat baja dengan ukuran dan ketebalan elastomer yang sama (J. M. Kelly & Takhirov, 2001).

(16)

10 Berbagai jenis serat yang disebutkan dalam pendahuluan telah diselidiki secara luas. Sebuah penelitian (Mordini & Strauss, 2008) berupaya menggantikan pelat baja dengan perkuatan serat gelas (gFRRI) dan mengadopsi model hiperastik Ogden untuk mengamati perilaku isolator dalam berbagai ukuran dan jumlah lapisan melalui serangkaian tes eksperimental dan simulasi elemen hingga. Penelitian ini menggunakan modulus curah K = 2000 MPa dan modulus geser yang berbeda G = 0,45 dan 1,02 MPa dengan asumsi terjadi ikatan sempurna antara serat dan karet. Tekanan vertikal sebesar 8,3 MPa diterapkan sebelum deformasi lateral 150% untuk gFRRI. Distribusi serat menentukan homogenitas atau keseragaman sistem material. Semakin tidak seragam distribusi serat, semakin heterogen material dan semakin tinggi kemungkinan terjadinya kegagalan.

2.6.5. Jenis Pengekangan

Kondisi pengekangan tepi atas dan bawah isolator karet pada pelat atau pada struktur bangunan secara substansial tidak hanya mempengaruhi karakteristik teknis isolator karet tetapi juga biaya per unit. Para peneliti telah mendalilkan tiga jenis pengekangan: terikat/bonded, tidak terikat/unbonded dan terikat sebagian/partial bonded seperti yang ditunjukkan pada Gambar 1. Tipe bonded dan unbonded telah dikaji secara luas oleh para ilmuwan dan hanya beberapa makalah (Van Engelen et al., 2015) memperkenalkan mekanisme partial bonded. Hasil investigasi terhadap kondisi batas ini dibahas lebih jauh pada sub-sub bab berikutnya.

Gambar 1. Jenis pengekangan pada isolator karet

3.2 Pengaruh Mekanisme Tumpuan Bonded

Isolator karet dengan kondisi terjepit sempurna pada bagian atas dan bawahnya menghasilkan momen tidak seimbang tegangan desak vertikal dan deformasi lateral setelahnya. Beban vertikal dipikul oleh irisan massa (overlapping area) vertikal berbentuk seperti kolom sedangkan beban lateral menimbulkan tegangan tarik di seluruh area di luar irisan tadi seperti yang ditunjukkan dalam Gambar 2Error! Reference source not found. (J. M. Kelly & Konstantinidis, 2011; Toopchi-Nezhad et al., 2011). Oleh karena itu, perlu adanya

(17)

11 ikatan/bonding yang cukup antara lapisan karet dengan lapisan perkuatan untuk mengimbangi momen yang terjadi selama proses penambahan dan pengurangan beban. Luas daerah irisan pada isolator berpenampang persegi, bujur sangkar dan lingkaran pada Gambar 2 ditentukan dengan persamaan (5), (6) dan (7).

𝐴𝐴𝑜𝑜𝑡𝑡 =𝐵𝐵(𝐿𝐿 − 𝑑𝑑) (5) 𝐴𝐴𝑜𝑜𝑜𝑜= 𝐿𝐿(𝐿𝐿 − 𝑑𝑑) (6) 𝐴𝐴𝑜𝑜𝑜𝑜 = 𝐷𝐷 2 2 � 1 𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑 𝐷𝐷⁄ )− 𝑐𝑐𝑠𝑠𝑠𝑠 �𝑐𝑐𝑐𝑐𝑐𝑐(2𝑑𝑑 𝐷𝐷⁄ )�� (7) Beban vertikal tereduksi P’cr yang bekerja tegak lurus daerah irisan dapat ditentukan dengan persamaan (8).

𝑃𝑃′𝑜𝑜𝑡𝑡 =𝑃𝑃𝑜𝑜𝑡𝑡(𝐴𝐴𝑜𝑜⁄𝐴𝐴) (8)

Gambar 2. Overlapping area of rubber bearing without core

Namun terdapat argumentasi bahwa metode overlapping area ini menggambarkan estimasi dengan tingkat perbedaan tertentu antara analisis dan data eksperimen karena metode ini menghasilkan estimasi kapasitas beban yang berubah-ubah saat perpindahan horisontal setara dengan diameter isolator (Buckle et al., 2002).

1. Kekakuan Horisontal

Respons lateral isolator karet yang diperkuat serat (bFRRI) dan terjepit sempurna pada ujungnya mendekati linier sehingga kriteria desainnya dapat disederhanakan dengan menentukan perpindahan rencana yang bergantung pada periode isolator dan redaman di lokasi gempa (J. M. Kelly & Konstantinidis, 2011). Kekakuan lateral bFRRI dapat dihitung menggunakan persamaan (13) (Toopchi-Nezhad et al., 2011). Dengan demikian kekakuan

(18)

12 isolator meningkat dan rasio redaman berkurang ketika pelat atas dalam kondisi jepit. Hal ini wajar karena pengekangan tambahan akan meningkatkan kekakuan isolator (Kalfas et al., 2017). Berbeda dengan penggunaan karet alam dalam bFRRI, kekakuan horizontal dari bFRRI yang menggunakan karet daur ulang, sedikit berkurang karena adanya peningkatan suhu di dalam karet yang disebabkan oleh deformasi besar (A. Calabrese et al., 2019).

2. Kekakuan Vertikal

Fleksibilitas lapisan perkuatan antar lapisan karet memberi pengaruh yang mendasar pada kekakuan vertikal FRRI pada nilai S1 yang besar (Osgooei et al., 2014). Kekakuan vertikal model bonded FRRI 400% lebih tinggi daripada kekakuan horisontalnya (Engelen, 2019) dan diperbesar secara proporsional selaras dengan peningkatan beban vertikal yang diterapkan pada isolator. Penggunaan model konstitutif nonlinier Neo-Hookean dan penonjolan horisontal maksimum, yang juga bersifat nonlinier akibat beban vertikal pada isolator dengan nilai S1 yang lebih rendah, mempengaruhi perilaku pengerasan karet isolator (Osgooei et al., 2014). Meskipun kekakuan efektif FRRI 20% lebih rendah daripada isolator konvensional dengan perkuatan lempeng baja, pada dimensi yang sama kekakuan vertikal FRRI relatif setara dan stabil pada regangan geser 150% (J. M. Kelly & Takhirov, 2001). Penelitian tentang perilaku nonlinear isolator seismik (Ramli & Adnan, 2015) menyimpulkan bahwa penggantian tersebut menurunkan nilai kekakuan vertikal sebesar 6 kali lipat dan meningkatkan kekakuan horisontal sebesar 2,5 kali.

3. Deformasi

Perpindahan horisontal mengontrol perilaku tegangan tarik isolator bonded. Tegangan tarik maksimum akan meningkat drastis selaras dengan peningkatan perpindahan lateral (Toopchi-Nezhad et al., 2011). Apabila terdapat lubang pada sistem, lempeng baja mengalami tekanan yang lebih besar sehingga pelat berdeformasi ke arah luar sehingga seolah-olah penampang melintangnya menjadi lebih besar. Jika ketebalan pelat dikurangi, kemampuan deformasi ini dan deformasi keseluruhan isolator juga akan berkurang (Takayama & Morita, 2000). Seperti yang ditunjukkan dalam Gambar 3, terdapat eksentrisitas antara pusat pelat baja dan pusat deformasi geser sebesar 50% yang berarti bahwa deformasi geser tidak berubah dan tidak bergantung pada dari momen guling yang disebabkan oleh beban vertikal (Angeli et al., 2013; Takayama & Morita, 2000).

(19)

13 Gambar 3. Pengaruh lubang dan tekanan vertikal pada model bonded FRRI

4. Modulus Kompresi dan Modulus Geser

Besaran modulus kompresi Ec untuk isolator strip berlubang dengan perkuatan lempeng baja dan dapat dihitung dengan persamaan (1) (J. M. Kelly & Takhirov, 2002) dan dijabarkan secara terperinci dalam (Pinarbasi & Okay, 2011) khusus untuk isolator berpenampang lingkaran. Sedangkan modulus kompresi efektif, Efc , ditentukan dengan persamaan (9) (J. M. Kelly & Takhirov, 2001).

𝐸𝐸𝑜𝑜𝑓𝑓 4𝐺𝐺𝑆𝑆2 = 3 𝛼𝛼2�1− tanh𝛼𝛼 𝛼𝛼 � (9)

Parameter tanpa dimensi α ditentukan berdasarkan modulus elastis tarik fiber Ef, ketebalan lapisan fiber tf , dan setengah lebar strip b sesuai persamaan (10) (J. M. Kelly & Konstantinidis, 2011).

𝛼𝛼2 = 12𝐺𝐺𝑏𝑏2

𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 (10)

Penentuan modulus kompresi FRRI berpenampang lingkaran, bujur sangkar dan berlubang menggunakan formulasi persamaan (11), (12) dan (13) (Engelen et al., 2016).

1 𝐸𝐸𝑜𝑜 = 1 6𝐺𝐺𝑆𝑆12+ 4 3𝐾𝐾+ 7𝑡𝑡𝑡𝑡𝑡𝑡 3𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓 (11) 1 𝐸𝐸𝑜𝑜 = 1 6.748𝐺𝐺𝑆𝑆12+ 7 5𝐾𝐾+ 14𝑡𝑡𝑡𝑡𝑡𝑡 5𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓 (12) 1 𝐸𝐸𝑜𝑜= 1 4𝐺𝐺𝑆𝑆12+ 6 5𝐾𝐾+ 6𝑡𝑡𝑡𝑡𝑡𝑡 5𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓 (13)

Namun perlu diperhatikan bahwa dalam menentukan modulus kompresi perlu mempertimbangkan kompresibilitas dan ekstensibilitas sehingga tidak terjadi perbedaan yang signifikan antara pengujian dan solusi analitis, terutama pada nilai faktor bentuk yang besar (Engelen et al., 2016). Adanya lubang pada model bonded FRRI yang menggunakan serat karbon menyebabkan karakteristik tekan isolator ditentukan oleh kapasitas ekstensi serat, dimensi lubang, aspek rasio dan modulus curah karet (Pinarbasi & Okay, 2011). Peneliti (J. M. Kelly & Takhirov, 2001) merekomendasikan untuk menggunakan karet dengan modulus geser rendah meskipun kapasitas redaman yang dihasilkan lebih kecil.

(20)

14 Penggunaan sistem isolasi strip sebagai pengganti sistem isolasi konvensinal sangat dianjurkan untuk hasil yang lebih dapat diandalkan.

5. Redaman

Redaman viskos mempengaruhi besarnya serapan energi selama pembebanan dinamis dan energi elastis tersimpan seperti ditentukan dalam persamaan (17). Luas daerah histeresis Aloop model sLRB 5% lebih tinggi dari LRB dan nilainya berubah secara linear terhadap perubahan deformasi (Govardhan & Paul, 2016). Gambar 4 menunjukkan bahwa HDRI memberikan kinerja redaman yang lebih tinggi diikuti oleh LRI dan LDRI (Hedayati Dezfuli & Alam, 2017). Garis putus-putus dan garis utuh mewakili versi bilinear dan hasil uji kurva histeresis.

Gambar 4. Kurva histeresis LDNRI, HDRI dan LRI Sumber: (Hedayati Dezfuli & Alam, 2017)

Sebuah penelitian oleh (A. Calabrese et al., 2019) menunjukkan bahwa perilaku disipasi energi isolator karet daur ulang setara dengan HDRI tanpa degradasi yang berarti pasca pembebanan siklik. Namun, tidak ada perbedaan kinerja redaman yang signifikan ketika beban horisontal berubah dari 0o ke 45o (Das et al., 2012). Faktor bentuk S1 berbanding terbalik dengan rasio redaman (Russo et al., 2013). Sifat karet seperti daya lekat biasanya berkurang seiring dengan usianya. Pada isolator karet, berkurangnya ikatan dan deformasi memperburuk perilaku gesekan serta membutuhkan pembebanan vertikal yang lebih tinggi untuk mencegah penggelinciran. Sehingga untuk difungsikan sebagai karet isolator diperlukan uji ikatan atau bond test spesimen karet berusia lebih tua sebelum penggunaan dan mengaplikasikan beban tambahan sekitar 50% dari beban yang biasa digunakan (Russo & Pauletta, 2013). Gambar 5 menunjukkan isolator unbonded berusia tua yang dipasang di dasar gedung Sekolah Pestalozzi, Skopje Makedonia dan penggantinya berupa isolator bonded.

(21)

15 Gambar 5. Isolator usang dan penggantinya terpasang di dasar gedung

(Garevski, 2012; M Kelly, 2018)

3.3 Design

Tujuan perencanaan sistem isolasi dasar berbasis karet umumnya melibatkan aspek-aspek berikut: daya dukung beban gravitasi, peningkatan periode fundamental dengan pengurangan kekakuan lateral, meminimalkan efek goncangan dengan peningkatan kekakuan vertikal, kinerja redaman yang tepat dan kekakuan awal yang memadai terhadap angin atau getaran gempa kecil.

Gambar 6. Tata cara umum desain base isolator karet

Prototipe sistem isolasi karet sesuai persyaratan ASCE 7, harus diuji dalam skala penuh dan disahkan oleh insinyur bersertifikat resmi sebelum digunakan pada bangunan (Govardhan & Paul, 2016). Dalam kebanyakan kasus, parameter isolator seperti kekakuan vertikal, kekakuan lateral dan rasio redaman diperkirakan pada tahap desain awal. Tujuan estimasi adalah untuk memverifikasi kelayakan frekuensi vertikal dan lateral isolator yang mengendalikan fenomena goncangan dan perpindahan lateral (Toopchi-Nezhad et al., 2011). Pedoman desain iteratif

Old bearing

Old bearing New installed

(22)

16 untuk isolator karet dengan inti timah akibat gerakan gempa berdasarkan BS 5400, UBC dan AASHTO umumnya dibagi menjadi lima langkah utama seperti diilustrasikan dalam Gambar 6 (T. E. Kelly, 2001).

3.4 State of the Art Penelitian

Berdasarkan kajian pustaka atas hasil penelitian terdahulu dan pertimbangan tentang kebutuhan akan base isolator murah dan terjangkau bagi banyak orang dalam usaha mengurangi dampak gempa bumi pada bangunan dan keselamatan jiwa manusia maka dijumpai beberapa gap dan pendekatan yang dituangkan dalam konsep pada Tabel 1. Pendekatan-pendekatan tersebut akan diimplementasikan dalam rangkaian kajian dan analisis dalam penelitian ini.

Tabel 1. State of the art penelitian

Modifikasi sifat karet Hardness/G Efek Pendekatan

ShoreA/MPa

Moon et al., 2002 35-NR/0,4 Penurunan kekakuan vertikal dan performa geser tidak optimal pada nilai hardness lebih kecil dari 55-60 sehingga redaman ekivalen tidak optimal

Pengaruh hardness pada

Kv lebih besar daripada

Kh, modifikasi

dilakukan untuk mengimbangi penurunan Kv.

Menggunakan karet dengan modulus geser rendah

Osgooei, Tait, &

Konstantinidis, 2014a 45-65 NR/0,5 Russo & Pauletta,

2013a

55-HDNR/0,8 60-LDNR/1,5 Buckle, Nagarajaiah, &

Ferrell, 2002 70-NR/0,9

Kumar et al., 2015 35-40 LDNR/0,4 60-65 LDNR/0,8

Penelitian ini 60-80 NR/0,7 Biaya meningkat Perforasi

Geometri Penampang Satu Lubang/S1/S2 Efek Pendekatan

Moon et al., 2002

(lingkaran) circular/8/2 Kekakuan horisontal menurun sehingga terjadi pengurangan kapasitas disipasi energi 15%-20%. Kekakuan vertikal ikut menurun dan peningkatan tegangan puncak pada model berlubang.

Perlu pengisi lubang dengan material berkemampuan redam namun dengan harga murah. Tinggi lubang < tinggi isolator sehingga karet berfungsi sebagai confinement agar kekakuan meningkat. Kumar et al., 2015 (lingkaran) circular/10-18/1,5-2 Ohsaki et al., 2015 (lingkaran) circular/21/1,5 Kalfas, Mitoulis, &

Katakalos, 2017

(lingkaran) circular/42/3 Osgooei et al., 2014b

(bujur sangkar) circular/10-17,5/2-3 Van Engelen, Osgooei,

Tait, & Konstantinidis,

2014a (segi empat) circular/4/3-4

Penelitian ini Berlubang dengan S1 besar dan S2 maximum 2,5

Studi parametrik

(23)

17 Tabel 1. State of the art penelitian (lanjutan)

Modifikasi reinforcement

Bidirectional

Efek Pendekatan

fiber Osgooei et al., 2014a

Steel

Terjadi perbedaan signifikan pada nilai kekakuan horisontal jika ukuran fiber diperkecil

Tebal serat ≥ 1 mm Karimzadeh Naghshineh et al., 2015 Moon et al., 2002 Carbon Penurunan kekakuan 5,4% dan damping berkurang 61%

Diperlukan mekanisme adaptasi dua arah saat terjadi pergeseran lateral melalui core atau reinforcement

Russo & Pauletta, 2013b, Russo et al., 2013

Nilai damping setara dengan isolator konvensional

menggunakan steel shim,

Kh berkurang jika

regangan geser diperbesar, harga tinggi.

Osgooei et al., 2014a

Kh menurun akibat

rollover, terjadi "hardening" jika arah beban lateral berubah dari 0 ke 45o. Adanya

peningkatan tegangan tarik pada reinforcement jika perpindahan horisontal diperbesar

Rollover menyebabkan reinforcement

horisontal mengalami peralihan menjadi tegak lurus saat full rollover, perlu daya dukung ekstra saat terjadi displacement vertikal dan kapasitas redam yang setara

Karimzadeh

Naghshineh et al., 2015

Tidak terjadi perbedaan signifikan pada nilai damping yang dihasilkan Van Engelen et al.,

2016

Fenomena pengerasan akibat rollover berperan dalam mempertahankan stabilitas horisontal

Pergerakan horisontal tetap berlangsung dan tidak dibatasi

Moon et al., 2002

Glass

Kekakuan vertikal hanya 53% dari kekakuan vertikal isolator dengan serat karbon

Adanya inti/core dapat menutupi penurunan kekakuan vertikal

Osgooei et al., 2014a

Kekakuan vertikal lebih rendah 28%-47% dibandingkan isolator menggunakan steel fiber, harga relatif tinggi Moon et al., 2002 Aramid, Nylon, Polyester

Kekakuan vertikal tertinggi pada serat nilon namun lebih rendah dari serat baja

(24)

18 3.5 Road Map Penelitian

(25)

19

BAB 4.

METODE

Penelitian ini mencoba menerapkan pendekatan yang telah dibahas untuk menghasilkan isolator karet yang efektif dari segi fungsi namun dengan harga yang terjangkau bagi masyarakat. Pendekatannya adalah pemanfaatan karet alam dengan karakteristik damping yang memadai serta memodifikasi shape factor dengan penerapan sistem perforasi, menggunakan perkuatan dengan light wiremesh serta mengganti lead core dengan filler. Tampak visual material uji dalam penelitian ini disajikan dalam Gambar 8.

4.1. Material

4.1.1. Karet

Kompoun karet alam pada Gambar 8 yang digunakan diproduksi oleh Pusat Penelitian Karet, Bogor sesuai SNI 3966:2012 dan SNI 3697:2013 (AASHTO M251). Pada tingkat regangan yang lebih besar, karet dengan tingkat kekerasan tinggi akan menghasilkan kemampuan disipasi energi yang lebih besar (Wijaya & Tavio, 2019). Dalam penelitian ini akan diuji sampel karet dengan tiga tingkat kekerasan yang berbeda dalam rentang Shore A 50-85.

Gambar 8. Material uji 4.1.2. Galvanized square mesh

Sebagai pengganti steel shim, digunakan perkuatan berupa galvanized square mesh (GSM) dengan 64 lubang dalam 1 cm2 dan tebal 1 mm yang tersedia dengan harga murah di pasaran. Selain ringan dan murah, flexibilitas perkuatan memberi pengaruh minor pada kekakuan geser isolator karet (Warn & Ryan, 2012) namun tetap diperlukan guna memperkuat ikatan antar lapisan karet. Sifat lentur GSM memungkinkan pengembalian gaya/restoring force pasca rollover sehingga dapat mencegah kerusakan pada free stress zone (A. B. Habieb et al., 2018) dan daerah sudut (Toopchi-Nezhad et al., 2011) isolator dengan sistem unbonded.

GSM Kompoun karet alam

(26)

20

4.2. Geometri Isolator dan Notasi

Jumlah lapisan karet mempengaruhi kekakuan vertikal sistem isolator karena makin besar S1 makin tinggi pula kekakuan horisontal sistem. Penelitian ini menggunakan model bonded dengan dimensi dan geometri seperti pada Tabel 2 dan Gambar 9 serta diberi nama “bonded Mesh Rubber Isolator” (bMRI).

Gambar 9. Geometri bMRI

Dimensi bMSRI mengadopsi hasil penelitian (Toopchi-Nezhad et al., 2011) dan (A. B. Habieb et al., 2017b) sebagai rencana awal dan akan dilakukan penyesuaian berdasarkan hasil uji material karet dan GSM yang mempengaruhi penentuan S1 dan S2.

4.3. Metode Pengujian Material

Karet dan GSM 1. Sifat fisik karet

Pengujian sifat fisik karet dilakukan uji kekerasan/hardness Shore A, ketahanan sobek/tear strength, kepadatan/density, kuat desak/compressive strength, perubahan volume/volume change pada suhu 25oC selama 48 jam dan pengusangan/ageing pada

(27)

21 suhu 70oC selama 192 jam sesuai EN 1337-3. Notasi spesimen disajikan dalam Tabel 3. Seluruh pengujian ini dilaksanakan di Pusat Penelitian Karet, Bogor.

Tabel 2. Dimensi rencana isolator karet

Parameter bMSRI

Shape factor, S1 10.00

Aspect ratio, S2 2.50

Lebar karet, L = B = D(mm) 200 Tebal total karet, ttr (mm) 118

Tebal karet, tr (mm) 5.00

Jumlah napisan karet, nr 24

Jumlah napisan mesh, nf 23

Tebal wiremesh, tf 0.8

Tebal total mesh, ttf (mm) 18.08

Lebar pelat, p (mm) 250

Tebal pelat, tp(mm) 5

Tebal total isolator, ti (mm) 146.08

Diameter lubang dh (mm) 56.5

Tinggi lubang hh (mm) 126.08 Tabel 3. Notasi Spesimen Uji

Sifat Fisik Karet GSM Isolator

Hardness Density Compressive Change Vol. Ageing Uniaxial Uniaxial Compr.-Shear RH-h1 RH-d1 RH-c1 RH-v1 RH-a1 RH1u GH1u bHI-1

RH-h2 RH-d2 RH-c2 RH-v2 RH-a2 RH2u GH2u bMI-1

RH-h3 RH-d3 RH-c3 RH-v3 RH-a3 RH3u GH3u bLI-1

RM-h1 RM-d1 RM-c1 RM-v1 RM-a1 RM1u GM1u bHL-1

RM-h2 RM-d2 RM-c2 RM-v2 RM-a2 RM2u GM2u bLH-1

RM-h3 RM-d3 RM-c3 RM-v3 RM-a3 RM3u GM3u RL-h1 RL-d1 RL-c1 RL-v1 RL-a1 RL1u GL1u RL-h2 RL-d2 RL-c2 RL-v2 RL-a2 RL2u GL2u RL-h3 RL-d3 RL-c3 RL-v3 RL-a3 RL3u GL3u

2. Uji tarik uniaksial

Dimensi spesimen uji tarik material karet sesuai standar ISO 37:2011 dengan ketebalan 2 mm seperti ditunjukkan dalam Gambar 10. Spesimen karet dengan nilai kekerasan 75-85, 65-75 dan 40-65 diberi notasi sesuai Tabel 3. Tiga sampel untuk masing-masing tipe bertujuan untuk mencegah kemungkinan terjadinya kesalahan pengujian yaitu failure pada daerah sayap spesimen. Tiap spesimen diberi beban tarik

(28)

22 dengan kecepatan 500 mm/menit (Wijaya & Tavio, 2019). Output pengujian ini adalah kuat tarik karet (MPa), elongation at break (%) dan kurva tegangan regangan. Pengujian tarik karet akan dilaksanakan di Puslit Karet Bogor. Dengan cara yang sama dilakukan pengujian untuk GSM dengan notasi seperti pada Tabel 3. Khusus GSM uji tarik uniaxial dilakukan berdasarkan standar ASTM D3039 dan D638 yang akan dilaksanakan di Laboratorium Metalurgi Fakultas Teknik Mesin ITS Surabaya.

Gambar 10. Dumbbell specimen uji tarik uniaksial

3. Curve Fitting

Berdasarkan hasil uji sifat fisik material karet, selanjutnya dilakukan pencocokan kurva antara hasil uji material dengan model-model konstitutif karet dengan bantuan aplikasi FEM.

Shape Factor dan Simulasi FEM

Optimalisasi konfigurasi bentuk dan dimensi model isolator yang tersusun atas karet dan square mesh dilakukan dengan simulasi FEM isolator karet dan GSM menggunakan parameter pada Tabel 2 dan konfigurasi pada Gambar 11 dan notasi pada Tabel 3.

(29)

23

4.4. Desain Isolator

Desain isolator dengan skala penuh mengacu pada tata cara pada Gambar 6.Error! Reference source not found. dan mempertimbangkan beban rencana yang sesuai. Dalam penelitian ini, desain base isolator mengacu pada ASCE 7-10 2013 dan EN 1337-3 2005.

4.5. Manufakturisasi

Isolator diproduksi menggunakan cetakan dari bentuk yang diinginkan sesuai dengan ukuran dari hasil desain seperti contoh pada Gambar 12. Lapisan karet diletakan bergantian dengan lapisan jaring kawat GSM satu di atas yang lainnya. Untuk mencegah terjadinya delaminasi dini, satu lapis karet setebal 5 mm ditempatkan pada bagian atas dan bawah isolator serta tebal selimut isolator 4 mm. Setelah tersusun sesuai urutan berdasarkan jumlah lapisan pada tahap desain, karet dan kawat GSM disatukan melalui proses vulkanisasi dengan temperatur tinggi sesuai ISO 2393: 2014. Suatu alat tekan dikondisikan memberi tekanan lebih besar dari 3,5 Mpa selama 60 menit pada bagian atas permukaan pelat dan suhu pemanasan dipertahankan secara merata sebesar 150 oC selama 20 menit

Gambar 12. Mold dan proses vulkanisasi (Wijaya, 2019)

4.6. Pengujian Base Isolator

1. Uji kompresi vertikal

Analisis statis menggunakan universal testing machine dengan menerapkan beban vertikal sebesar 66 kN dalam 3 siklus loading dan unloading seperti pada Gambar 13(a). Setelah beban maksimum diaplikasikan pada isolator, pembebanan vertikal susunan dilakukan secara bertahap dengan peningkatan beban sebesar 5 ± 0,5 MPa per menit dan

(30)

24 pengukuran defleksi pada 1/3 pembebanan untuk mengetahui kekakuan vertikal Kv berdasarkan BS-EN 1337: 2005. Pengujian akan dilakukan di G-TACR Laboratory, Lembaga Getah Malaysia.

2. Uji beban lateral

Sampel yang digunakan pada pengujian vertikal bersama pasangan sampelnya kemudian digunakan pada pengujian lateral seperti ilustrasi dalam Gambar 13(b). Dalam pengujian ini dilakukan kombinasi aplikasi beban yakni beban vertikal tetap sebesar 15 kN serta perpindahan horisontal maksimum sebesar 0,10 – 0,25 – 0,50 – 0,60 terhadap tinggi total karet ttr = 118 mm dengan kecepatan 90 mm/detik untuk memperoleh grafik hubungan gaya-perpindahan untuk selanjutnya digunakan dalam menentukan kekakuan horisontal Kh dari nilai rerata kekakuan pasangan isolator sesuai BS EN 15129:2009. Pengujian akan dilakukan di G-TACR Laboratory, Lembaga Getah Malaysia.

Gambar 13. Pengujian vertikal (tekan) dan horisontal (Wijaya, 2019)

3. Redaman Efektif

Output pengujian laboratorium berupa kurva histeresis gaya versus perpindahan. Digunakan untuk menghitung luas kurva histeresis Aloop menggunakan prinsip

Unequal-segmen Trapezoidal Rule dengan bantuan MS Excel. Luas Aloop juga digunakan untuk

memperkirakan kekakuan horisontal, kekakuan vertikal dan kapasitas redaman sistem isolator menggunakan persamaan relevan yang telah dibahas sebelumnya.

(31)

25

4.7. Alur Penelitian

(32)

26

4.8. Organisasi Tim

Tabel 4. Tanggungjawab tim peneliti

No Nama dan NIP Jabatan dalam Tim, Alokasi Waktu (jam/minggu) Rincian tugas dalam Penelitian 1 Prof. Tavio, M.Eng., PhD.

NIP: 197203271997021001 Ketua Tim Peneliti, 16 jam/minggu

Koordinator & penanggungjawab umum penelitian, kajian teori dan pustaka, review instrumen penelitian, penyusunan laporan penelitian.

2 Windiani, S.Sos., M.Si.

NIP: 197105131998022001 Anggota Tim(1); 8 jam / minggu Bertanggungjawab terhadap kegiatan administrasi, anggaran biaya dan laporan biaya penelitian.

3 Sandy I. Yansiku, ST., M.Eng.

NRPM: 03111960010001 Anggota Tim(2); 12 jam / minggu Bertanggungjawab terhadap seluruh kegiatan operasional penelitian, pelaporan dan penyusunan publikasi

(33)

27

BAB 5.

JADWAL

Tabel 5. Jadwal penelitian

No Kegiatan & ruang lingkup penelitian Mar Apr Mei Jun Jul Agu Sep Okt Nop Des

1 Kontrak penelitian

2 Pengadaan material dan persiapan sampel uji 3 Uji laboratorium 4 Penulisan laporan kemajuan penelitian 5 Laporan kemajuan dan Monev I (70%) 6 Desain dan simulasi FEM 7 Analisis dan diskusi hasil penelitian 8 Penulisan laporan akhir 9 Penulisan artikel dan publikasi

10 Laporan akhir

(34)

28

BAB 6.

DAFTAR PUSTAKA

Ahmadipour, M., & Alam, M. S. (2015). Effect of number of rubber layers, core radius and lead type on lead-core rubber bearings’ performance. The 11th Canadian Conference on Earthquake Engineering (11CCEE), April 2016.

Angeli, P., Russo, G., & Paschini, A. (2013). Carbon fiber-reinforced rectangular isolators with compressible elastomer: Analytical solution for compression and bending. International Journal of Solids and Structures, 50(22–23), 3519–3527.

https://doi.org/10.1016/j.ijsolstr.2013.06.016

Bijarimi, M., Zulkafli, H., & Beg, M. D. H. (2010). Mechanical properties of industrial tyre rubber compounds. In Journal of Applied Sciences (Vol. 10, Issue 13, pp. 1345–1348). https://doi.org/10.3923/jas.2010.1345.1348

Buckle, I., Nagarajaiah, S., & Ferrell, K. (2002). Stability of Elastomeric Isolation Bearings: Experimental Study. 2(January), 3–11.

Calabrese, A., Losanno, D., Spizzuoco, M., Strano, S., & Terzo, M. (2019). Recycled Rubber Fiber Reinforced Bearings (RR-FRBs)as base isolators for residential buildings in developing countries: The demonstration building of Pasir Badak, Indonesia. Engineering Structures. https://doi.org/10.1016/j.engstruct.2019.04.076

Calabrese, Andrea, Serino, G., Strano, S., & Terzo, M. (2015). Experimental investigation of a low-cost elastomeric anti-seismic device using recycled rubber. Meccanica, 50(9), 2201–2218. https://doi.org/10.1007/s11012-015-0155-7

Das, A., Deb, S. K., & Dutta, A. (2016). Shake table testing of un-reinforced brick masonry building test model isolated by U-FREI [John Wiley & Sons, Ltd]. In Earthquake Engineering & Structural Dynamics (Vol. 45, Issue 2). https://doi.org/10.1002/eqe.2626 Das, A., Dutta, A., & Deb, S. K. (2012). Modeling of Fiber-Reinforced E. 15th World

Conference on Earthquake Engineering (15WCEE).

Engelen, N. C. Van. (2019). Fiber-reinforced elastomeric isolators : A review. 125(March). https://doi.org/10.1016/j.soildyn.2019.03.035

Engelen, N. C. Van, J. M. Tait, & Konstantinidis, D. (2016). Development of Design Code Oriented Formulas for Elastomeric Bearings Including Bulk Compressibility and Reinforcement Extensibility. Journal of Engineering Mechanics, 142(6), 4016024. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001015

Garevski, M A. (2012). Replacement of the Old Rubber Bearings of the First Base Isolated Building in the World. 15th World Conference on Earthquake Engineering (15WCEE). Govardhan, & Paul, D. K. (2016). Effect of Lead in Elastomeric Bearings for Structures

Located in Seismic Region. Procedia Technology, 25, 146–153. https://doi.org/https://doi.org/10.1016/j.protcy.2016.08.091

Habieb, A. (2017). A two-story masonry building isolated with low-cost rubber seismic isolators. https://doi.org/10.13140/RG.2.2.15904.89604

Habieb, A. B., Milani, G., Tavio, & Milani, F. (2017a). Low cost rubber seismic isolators for masonry housing in developing countries. AIP Conference Proceedings, 1906(1), 90012. https://doi.org/10.1063/1.5012369

Habieb, A. B., Milani, G., Tavio, T., & Milani, F. (2017b). A Possibility to Build Isolated Masonry Housing in High Seismic Zones Using Rubber Seismic Isolators. IPTEK Journal of Proceedings Series, 593–602.

https://doi.org/10.12962/j23546026.y2017i6.3309

Habieb, A. B., Milani, G., Tavio, T., & Milani, F. (2018). An abaqus user element for the structural implementation of low-cost rubber seismic isolators in masonry buildings. AIP Conference Proceedings, 2040(April), 10–15. https://doi.org/10.1063/1.5079148

(35)

29 Hedayati Dezfuli, F., & Alam, M. S. (2017). Effect of different steel-reinforced elastomeric

isolators on the seismic fragility of a highway bridge. Structural Control and Health Monitoring, 24(2). https://doi.org/10.1002/stc.1866

Jie, S. W., Tong, S. Y., Kasa, A., & Osman, S. A. (2016). Effect of recycle tire isolator as earthquake resistance system for low rise buildings in Malaysia. Journal of Engineering Science and Technology, 11(8), 1207–1220.

Kalfas, K. N., Mitoulis, S. A., & Katakalos, K. (2017). Numerical study on the response of steel-laminated elastomeric bearings subjected to variable axial loads and development of local tensile stresses. Engineering Structures, 134(March), 346–357.

https://doi.org/10.1016/j.engstruct.2016.12.015

Kelly, J. M., & Konstantinidis, D. (2011). Seismic Isolation For Housing, Schools and Hospitals in the Urban Environment. July, 19–20.

Kelly, J. M., & Takhirov, S. M. (2001). Analytical and Experimental Study of Fiber-Reinforced Elastomeric Isolators. In Rep. No. PEER 2001/11, Pacific Earthquake Engineering Research Center, University of California, Berkeley (Issue September). Kelly, J. M., & Takhirov, S. M. (2002). Analytical and Experimental Study of

Fiber-Reinforced Strip Isolators. Rep. No. PEER 2002/11, Pacific Earthquake Engineering Research Center, University of California, Berkeley, September.

Kelly, T. E. (2001). Base Isolation of Structures: Design Guidlines. July, 229. https://doi.org/10.1002/eqe.31

M Kelly, J. (2018). Vertical Flexibility in Isolation Systems. Civil Engineering Research Journal, 4(1), 1–11. https://doi.org/10.19080/cerj.2018.04.555629

Mishra, H. K. (2012). Experimental and Analytical Studies on Scrap Tire Rubber Pads for Application to Seismic Isolation of Structures.

Moon, B. Y., Kang, G. J., Kang, B. S., & Kelly, J. M. (2002). Design and manufacturing of fiber reinforced elastomeric isolator for seismic isolation. Journal of Materials

Processing Technology, 130–131, 145–150. https://doi.org/10.1016/S0924-0136(02)00713-6

Mordini, A., & Strauss, A. (2008). An innovative earthquake isolation system using fibre reinforced rubber bearings. 30, 2739–2751.

https://doi.org/10.1016/j.engstruct.2008.03.010

Naeim, F., & Kelly, J. M. (1999). Design of seismically isolated structures: from theory to practice. John Wiley & Sons.

Ogden, R. W., Saccomandi, G., & Sgura, I. (2004). Fitting hyperelastic models to experimental data. Computational Mechanics, 34(6), 484–502.

https://doi.org/10.1007/s00466-004-0593-y

Osgooei, P. M., Tait, M. J., & Konstantinidis, D. (2014). Three-dimensional finite element analysis of circular fiber-reinforced elastomeric bearings under compression. Composite Structures, 108(1), 191–204. https://doi.org/10.1016/j.compstruct.2013.09.008

Pinarbasi, S., & Okay, F. (2011). Compression of hollow-circular fiber-reinforced rubber bearings. Structural Engineering and Mechanics, 38(3), 361–384.

https://doi.org/10.12989/sem.2011.38.3.361

Ramli, M. Z., & Adnan, A. (2015). Performance of Isomeric and Spiral Plate Rubber Bearing Base Isolator System in Bridges. July.

https://www.researchgate.net/publication/279861712%0APerformance Rivlin, R. S. (1948). Large Elastic Deformations of Isotropic Materials-Further

Developments of The General Theory (Issue October).

Russo, G., & Pauletta, M. (2013). Sliding instability of fiber-reinforced elastomeric isolators in unbonded applications. Engineering Structures, 48, 70–80.

(36)

30 Russo, G., Pauletta, M., & Cortesia, A. (2013). A study on experimental shear behavior of

fiber-reinforced elastomeric isolators with various fiber layouts, elastomers and aging conditions. Engineering Structures, 52, 422–433.

https://doi.org/10.1016/j.engstruct.2013.02.034

Soleimanlo, H. S., & Barkhordar, M. A. (2013). Effect of Shape Factor and Rubber Stiffness of Fiber-reinforced Elastomeric Bearings on the Vertical Stiffness of Isolators. In Trends in Applied Sciences Research (Vol. 8, Issue 1, pp. 14–25).

https://doi.org/10.3923/tasr.2013.14.25

Spizzuoco, M., Calabrese, A., & Serino, G. (2014). Innovative low-cost recycled rubber–fiber reinforced isolator: Experimental tests and Finite Element Analyses. Engineering

Structures, 76, 99–111. https://doi.org/https://doi.org/10.1016/j.engstruct.2014.07.001 Sugihardjo, H., Tavio, & Lesmana, Y. (2018). FE Model of Low Grade Rubber for Modeling

Housing’s Low-Cost Rubber Base Isolator. Civil Engineering Journal, 4(1). www.CivileJournal.org%0ACivil

Takayama, M., & Morita, K. (2000). Finite element analysis focused on the flange plates and connecting bolts of rubber bearings. Proc. of 12WCEE, New Zealand, 1–9.

Taniwangsa, W., & Kelly, J. M. (1996). Experimental dan Analytical Studies of Base Isolation Applications for Low-cost Housing.

Toopchi-nezhad, H., Karaji, M., & Mohammad Reza, G. (2018). An Efficient Horizontal Stiffness Solution for Unbonded-Frebs. Proceedings of Academics World 103 Rd International Conference, Toronto, Canada, 1, 3–8.

Toopchi-Nezhad, H., Tait, M., & Drysdale, R. (2008). Testing and modeling of square carbon fiber‐reinforced elastomeric seismic isolators. Structural Control and Health Monitoring, 15, 876–900. https://doi.org/10.1002/stc.225

Toopchi-Nezhad, H., Tait, M. J., & Drysdale, R. G. (2011). Bonded versus unbonded strip fiber reinforced elastomeric isolators: Finite element analysis. Composite Structures, 93(2), 850–859. https://doi.org/10.1016/j.compstruct.2010.07.009

Tsompanakis, Y., Psarropoulos, P. N., & Drosos, V. (2011). Low-Cost Seismic Base Isolation using Recycled Tire Cushions. 13th International Conference on Civil, Structural and Environmental Engineering Computing.

Turer, A., & Özden, B. (2008). Seismic base isolation using low-cost Scrap Tire Pads (STP). Materials and Structures, 41(5), 891–908. https://doi.org/10.1617/s11527-007-9292-3 Van Engelen, N. C., Osgooei, P. M., Tait, M. J., & Konstantinidis, D. (2015). Partially

bonded fiber-reinforced elastomeric isolators (PB-FREIs). Structural Control and Health Monitoring, 22(3), 417–432. https://doi.org/10.1002/stc.1682

Warn, G. P., & Ryan, K. L. (2012). A Review of Seismic Isolation for Buildings: Historical Development and Research Needs. 300–325. https://doi.org/10.3390/buildings2030300 Wijaya, B. T. W. (2019). Behavior of low-cost rubber base isolation using glass fiber based

reinforcement. ITS Surabaya.

Wijaya, B. T. W., & Tavio. (2019). Mechanical properties of Indonesian rubber for low-cost base isolation. International Journal of Civil Engineering and Technology, 10(1), 884– 890.

(37)

31

BAB 7.

LAMPIRAN

Lampiran A. Biodata Tim Peneliti

1. Ketua tim

a. Nama Lengkap : Prof. Tavio, M.Eng., PhD. b. Jenis Kelamin Pria

c. NIP : 197203271997021001

f. Bidang Keahlian : Base isolation system

g. Departemen/Fakultas : Teknik Sipil/ FTSLK – ITS Surabaya h. Alamat Rumah dan Telp. : 0816537135

i. Riwayat Penelitian relevan :

1. Inovasi dan Aplikasi Lanjutan Peredam Dasar Sederhana dan Murah untuk Perumahan Rakyat di Daerah Rawan Bencana Gempa Bumi 2018 (PU ITS-Ketua)

2. Inovasi Lanjut dan Aplikasi Low-Cost Base Isolation untuk Perumahan Rakyat di Wilayah Resiko Gempa Tinggi 2017 (PU ITS-Ketua)

j. Publikasi Relevan :

1. Low cost rubber seismic isolators for masonry housing in developing

countries

2. Comparative behavior of local hyperelastic lowgrade rubbers for low-cost

base isolation k. Paten Terakhir

Perangkat Simulator Gempa dari Karet untuk Peredam Gempa Bumi (draft Paten).

i. Tugas Akhir Relevan yang telah selesai dibimbing Thesis

1. Behavior of low-cost rubber base isolation using glass fiber based

reinforcement

2. Kajian data eksperimental penggunaan Low Cost Rubber Base Isolator-Strip pada rumah sederhana di daerah rawan gempa

Disertasi:

Development of low-cost base isolation system for residential housing in high seismic zones

2. Anggota1

a. Nama Lengkap : Dr. Windiani, S.Sos., M.Si.

b. NIP : 197105131998022001

d. Bidang Keahlian Sosial Budaya, Lingkungan dan Kebencanaan e. Departemen/Fakultas : Studi Pembangunan/ FBMT - ITS Surabaya f. Alamat Rumah dan Telp : Surabaya. HP: 082231357382

(38)

32

3. Anggota

a. Nama Lengkap : Sandy I. Yansiku, ST., M.Eng. b. Jenis Kelamin : Pria

c. NRP : 03111960010001

d. Bidang Keahlian Teknik Sipil Struktur

e. Departemen/Fakultas : Teknik Sipil/ FTSLK - ITS Surabaya f. Alamat Rumah dan Telp : Jln. Sutorejo Selatan IV – 32, Mulyosari,

(39)
(40)

Gambar

Gambar  1. Jenis pengekangan pada isolator karet
Gambar  2. Overlapping area of rubber bearing without core
Gambar  4. Kurva histeresis LDNRI, HDRI dan LRI
Gambar  6. Tata cara umum desain base isolator karet
+7

Referensi

Dokumen terkait

Pengukuran kinerja pegawai pada Dinas Perindustrian dan Perdagangan Kabupaten Tasikmalaya selanjutnya didasarkan pada ketetapan waktu kerja, dengan parameter

Puisi-puisi dari orang yang baru belajar menjadi penyair biasanya adalah puisi diafan.. Namun kadang-kadang juga kita jumpai

Pemanfaatan ruang (space use) belum optimal. Area yang paling ramai adalah yang di bagian tengah koridor Pasar Semawis. Pada bagian kedua ujung jalan tersebut relative lebih sepi

Volume udara yang masuk alveoli (ventilasi) adalah sama dengan darah dalam kapiler di sekitar perfusi.[39] Rasio ini menurun pada kontusio paru, alveoli terisi cairan, tidak

Kepala Sudin Pemuda dan Olahraga Jakarta Pusat, Ahmad Zulfi, menambahkan kegiatan tersebut juga merupakan bagian dari pembinaan untuk menjadikan Jakarta Sehat..

aturan keimigrasian. Sedangkan penegakan hukum untuk Warga Negara Asing ditujukan untuk permasalahan yang menyangkut permalsuan identitas Warga Negara Asing,

Skala Likert tidak terdiri dari hanya satu stimulus atau satu pernyataan saja melainkan selalu berisi banyak item (multiple item measure). 19 Skala psikologi

Abstrak: Program Pengabdian Kepada Masyarakat di Kabupaten Sungai Penuh Kerinci memberikan Sosialisasi terhadap pembentukan Badan Usaha Milik Desa menurut Undang-Undang Nomor 6