• Tidak ada hasil yang ditemukan

PROSIDING. Peranan Matematika dan Statistika dalam Menyikapi Perubahan Iklim VOLUME 2/NO.1/2014 ISN : X

N/A
N/A
Protected

Academic year: 2021

Membagikan "PROSIDING. Peranan Matematika dan Statistika dalam Menyikapi Perubahan Iklim VOLUME 2/NO.1/2014 ISN : X"

Copied!
22
0
0

Teks penuh

(1)

PROSIDING

Peranan Matematika dan Statistika dalam

Menyikapi Perubahan Iklim

VOLUME 2/NO.1/2014

ISN : 2337-392X

SEMINAR NASIONAL MATEMATIKA,

STATISTIKA, PENDIDIKAN MATEMATIKA,

DAN KOMPUTASI

Jurusan Matematika

Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Sebelas Maret Surakarta

Jl. Ir. Sutami 36 A Solo - Jawa Tengah

(2)

ii

Tim Prosiding

Editor

Purnami Widyaningsih, Respatiwulan, Sri Kuntari, Nughthoh Arfawi Kurdhi, Putranto Hadi Utomo, dan Bowo Winarno Tim Teknis

Hamdani Citra Pradana, Ibnu Paxibrata, Ahmad Dimyathi, Eka Ferawati, Meta Ilafiani, Dwi Ardian Syah, dan Yosef Ronaldo Lete B.

Layout & Cover

(3)

iii

Tim Reviewer

Drs. H. Tri Atmojo Kusmayadi, M.Sc., Ph.D. Dr. Sri Subanti, M.Si.

Dr. Dewi Retno Sari Saputro, MKom. Drs. Muslich, M.Si.

Dra. Mania Roswitha, M.Si.

Dra. Purnami Widyaningsih, M.App.Sc. Drs. Pangadi, M.Si.

Drs. Sutrima, M.Si. Drs. Sugiyanto, M.Si. Dra Etik Zukhronah, M.Si. Dra Respatiwulan, M.Si. Dra. Sri Sulistijowati H., M.Si. Irwan Susanto, DEA

Winita Wulandari, M.Si. Sri Kuntari, M.Si.

Titin Sri Martini, M.Kom. Ira Kurniawati, M.Pd.

(4)

iv

Steering Committee

Prof. Drs.Tri Atmojo Kusmayadi, M.Sc., Ph.D. Prof. Dr. Budi Murtiyasa, M.Kom.

Prof. Dr. Dedi Rosadi, M.Sc.

Prof. Dr. Ir. I Wayan Mangku, M.Sc. Prof. Dr. Budi Nurani, M.S.

Dr. Titin Siswantining, DEA Dr. Mardiyana, M.Si.

(5)

v

KATA PENGANTAR

Puji syukur dipanjatkan kepada Tuhan Yang Maha Esa sehingga prosiding seminar nasional Statistika, Pendidikan Matematika dan Komputasi ini dapat diselesaikan.

Prosiding ini bertujuan mendokumentasikan dan mengkomunika-sikan hasil presentasi paper pada seminar nasional dan terdiri atas 95 paper dari para pemakalah yang berasal dari 30 perguruan tinggi/politeknik dan institusi terkait. Paper tersebut telah dipresentasikan di seminar nasional pada tanggal 18 Oktober 2014. Paper didistribusikan dalam 7 kategori yang meliputi kategori Aljabar 14%, Analisis 9%, Kombinatorik 8%, Matematika Terapan 14%, Komputasi 7%, Statistika Terapan 27%, dan Pendidikan Matematika 19%.

Terima kasih disampaikan kepada pemakalah yang telah berpartisipasi pada desiminasi hasil kajian/penelitian yang dimuat pada prosiding ini. Terimakasih juga disampaikan kepada tim reviewer, tim prosiding, dan steering committee.

Semoga prosiding ini bermanfaat.

(6)

vi DAFTAR ISI

Halaman

Halaman Judul ………..……….. i

Tim Prosiding ………..…………. ii

Tim Reviewer ………..…………. iii

Steering Committee ………..…… iv

Kata Pengantar ………... v

Daftar Isi ………..………. vi

BIDANG ALJABAR 1 Bentuk-Bentuk Ideal pada Semiring (DDian Winda Setyawati ………..nxn(Z+), +, ) 1 2 Penentuan Lintasan Kapasitas Interval Maksimum dengan Pendekatan Aljabar Max-Min Interval M. Andy Rudhito dan D. Arif Budi Prasetyo ...………. 8

3 Karakterisasi Aljabar Pada Graf Bipartit Soleha, Dian W. Setyawati ………..………. 18

4 Semigrup Bentuk Bilinear Terurut Parsial Reguler Lengkap dalam Batasan Quasi-Ideal Fuzzy Karyati, Dhoriva Urwatul Wutsqa ………... 26

5 Syarat Perlu dan Cukup Ring Lokal Komutatif Agar Ring Matriksnya Bersih Kuat (-Regular Kuat) Anas Yoga Nugroho, Budi Surodjo ……….. 34

6 Sifat-sifat Modul Komultiplikasi Bertingkat Putri Widi Susanti, Indah Emilia Wijayanti ……….. 42

7 Ideal dari Ring Polinomial F2n[x] mod(xn-1) untuk Kontrol Kesalahan dalam Aplikasi Komputer Komar Baihaqi dan Iis Herisman ……….……… 49

9 Submodul Hampir Prima Dyana Patty, Sri Wahyuni ….………….……….………. 55

Subgrup Normal suatu Grup Perkalian dari Ring Pembagian yang Radikal atas Subring Pembagian Sejati Juli Loisiana Butarbutar dan Budi Surodjo ……….. 64

Sifat dan Karakterisasi Submodul Prima Lemah S(N) Rosi Widia Asiani, Sri Wahyuni ……….. 73

Modul Distributif dan Multiplikasi Lina Dwi Khusnawati, Indah Emilia Wijayanti ……… 83

(7)

vii

Penjadwalan Keberangkatan Kereta Api di Jawa Timur dengan Menggunakan Model Petrinet dan Aljabar Max-plus

Ahmad Afif, Subiono ……… 92

\

Minimalisasi Norm Daerah Hasil dari Himpunan Bayangan Matriks Aljabar Maks-Plus dengan Sebagian Elemen Ditentukan

Antin Utami Dewi, Siswanto, dan Respatiwulan ……… 107

Himpunan Bayangan Bilangan Bulat Matriks Dua Kolom dalam Aljabar Maks-Plus

Nafi Nur Khasana, Siswanto, dan Purnami Widyaningsih .……… 112

BIDANG ANALISIS Ruang 2-Norma Selisih

Sadjidon, Mahmud Yunus, dan Sunarsini …….……….. 120

Teorema Titik Tetap Pemetaan Kontraktif pada Ruang C[a,b]-Metrik (ℓp ,

dC[a,b])

Sunarsini, Sadjidon, Mahmud Yunus ………..……….. 124

Generalisasi Ruang Barisan Yang Dibangkitkan Oleh Fungsi Orlicz

Nur Khusnussa’adahdan Supaman ………..……….. 132

Gerakan Kurva Parameterisasi Pada Ruang Euclidean

Iis Herisman dan Komar Baihaqi …….……….. 141

Penggunaan Metode Transformasi Diferensial Fraksional dalam

Penyelesaian Masalah Sturm-Liouville Fraksional untuk Persamaan Bessel Fraksional

Marifatun, Sutrima, dan Isnandar Slamet……….……….. 148

Konsep Topologi Pada Ruang C[a,b]

Muslich ……….……….. 155

Kekompakan Terkait Koleksi Terindeks Kontinu dan Ruang Topologis Produk

Hadrian Andradi, Atok Zulijanto

……….……….. 162

A Problem On Measures In Infinite Dimensional Spaces

Herry Pribawanto Suryawan ..……….. 171

Masalah Syarat Batas Sturm-Liouville Singular Fraksional untuk Persamaan Bessel

Nisa Karunia, Sutrima, Sri Sulistijowati H ……… 179

BIDANG KOMBINATORIK

Pelabelan Selimut (a,d)-H-Anti Ajaib Super pada Graf Buku

(8)

viii

Digraf Eksentrik Dari Graf Hasil Korona Graf Path Dengan Graf Path

Putranto Hadi Utomo, Sri Kuntari, Tri Atmojo Kusmayadi ……… 193

Super (a, d)-H-Antimagic Covering On Union Of Stars Graph

Dwi Suraningsih, Mania Roswitha, Sri Kuntari ……… 198

Dimensi Metrik pada Graf Umbrella

Hamdani Citra Pradana dan Tri Atmojo Kusmayadi ……… 202

Dimensi Metrik pada Graf Closed Helm

Deddy Rahmadi dan Tri Atmojo Kusmayadi . ……….. 210

Pelabelan Selimut (a,b)-Cs+2-Anti Ajaib Super pada Graf Generalized

Jahangir

Anna Amandha, Mania Roswitha, dan Bowo Winarno ……… 215

Super (a,d)-H-Antimagic Total Labeling On Sun Graph

Marwah Wulan Mulia, Mania Roswitha, and Putranto Hadi Utomo …… 223

Maksimum dan Minimum Pelabelan pada Graf Flower

Tri Endah Puspitosari, Mania Roswitha, Sri Kuntari …………...……….. 231

BIDANG MATEMATIKA TERAPAN

2 Penghitungan Volume Konstruksi dengan Potongan Melintang

Mutia Lina Dewi ………... 238

4 Pola Pengubinan Parabolis

Theresia Veni Dwi Lestari dan Yuliana Pebri Heriawati ……….. 247

5 Analisis Kestabilan Model Mangsa Pemangsa Hutchinson dengan Waktu Tunda dan Pemanenan Konstan

Ali Kusnanto, Lilis Saodah, Jaharuddin……….. 257

6 Susceptible Infected Zombie Removed (SIZR) Model with Quarantine and Antivirus

Lilik Prasetiyo Pratama, Purnami Widyaningsih, and Sutanto ………. 264

7 Model Endemik Susceptible Exposed Infected Recovered Susceptible (SEIRS) pada Penyakit Influenza

Edwin Kristianto dan Purnami Widyaningsih ………... 272

9 Churn Phenomenon Pengguna Kartu Seluler dengan Model Predator-Prey

Rizza Muamar As-Shidiq, Sutanto, dan Purnami Widyaningsih ………… 279

Pemodelan Permainan Flow Colors dengan Integer Programming

Irfan Chahyadi, Amril Aman, dan Farida Hanum ……….. 283

Optimasi Dividen Perusahaan Asuransi dengan Besarnya Klaim Berdistribusi Eksponensial

(9)

ix

Permasalahan Kontrol Optimal Dalam Pemodelan Penyebaran Penyakit

Rubono Setiawan ……….. 300 Model Pengoptimuman Dispatching Bus pada Transportasi Perkotaan:

Studi Kasus pada Beberapa Koridor Trans Jakarta

Farida Hanum, Amril Aman, Toni Bakhtiar, Irfan Chahyadi ……….. 306

Model Pengendalian Epidemi dengan Vaksinasi dan Pengobatan

Toni Bachtiar dan Farida Hanum ……….. 315

How Realistic The Well-Known Lotka-Volterra Predator-Prey Equations Are

Sudi Mungkasi ……….. 323 Aplikasi Kekongruenan Modulo pada Algoritma Freund dalam

Penjadwalan Turnamen Round Robin

Esthi Putri Hapsari, Ira Kurniawati ……….. 334

BIDANG KOMPUTASI

Aplikasi Algoritma Enkripsi Citra Digital Berbasis Chaos Menggunakan Three Logistic Map

Suryadi MT, Dhian Widya ……… 344

Implementasi Jaringan Syaraf Tiruan Untuk Mengklasifikasi Kualitas Citra Ikan

Muhammad Jumnahdi ……….…. 352

Sistem Pengkonversi Dokumen eKTP/SIM Menjadi Suatu Tabel Nurul Hidayat, Ikhwan Muhammad Iqbal, dan Muhammad Mushonnif

Junaidi ………... 360

Kriptografi Kurva Eliptik Elgamal Untuk Proses Enkripsi-Dekripsi Citra Digital Berwarna

Daryono Budi Utomo, Dian Winda Setyawati dan Gestihayu Romadhoni F.R 373

Penerapan Assosiation Rule dengan Algoritma Apriori untuk Mengetahui Pola Hubungan Tingkat Pendidikan Orang Tua terhadap Indeks Prestasi Kumulatif Mahasiswa

Kuswari Hernawati ………... 384

Perancangan Sistem Pakar Fuzzy Untuk Pengenalan Dini Potensi Terserang Stroke

Alvida Mustika R., M Isa Irawan dan Harmuda Pandiangan……….. 394

Miniatur Sistem Portal Semiotomatis Berbasis Sidik Jari pada Area Perpakiran

(10)

x BIDANG STATISTIKA

1 Uji Van Der Waerden Sebagai Alternatif Analisis Ragam Satu Arah Tanti Nawangsari……….. 417

2

Analisis Faktor-Faktor Yang Mempengaruhi Keberhasilan Mahasiswa Politeknik (Studi Kasus Mahasiswa Polban)

Euis Sartika………...….. 425 3

Distribusi Prior Dirichlet yang Diperumum sebagai Prior Sekawan dalam Analisis Bayesian

Feri Handayani, Dewi Retno Sari Saputro …………...……… 439 5

Pemodelan Curah Hujan Dengan Metode Robust Kriging Di Kabupaten Sukoharjo

Citra Panindah Sari, Dewi Retno Sari S, dan Muslich ……… 444

6

Premi Tunggal Bersih Asuransi Jiwa Endowment Unit Link Dengan Metode Annual Ratchet

Ari Cahyani, Sri Subanti, Yuliana Susanti……….………. 453 7

Uji Siegel-Tukey untuk Pengujian Efektifitas Obat Depresan pada Dua Sampel Independen

David Pratama dan Getut Pramesti ………..……… 462 8

Aplikasi Almost Stochastic Dominance dalam Evaluasi Hasil Produksi Padi di Indonesia

Kurnia Hari Kusuma, Isnandar Slamet, dan Sri Kuntari ……….. 470

9

Pendeteksian Krisis Keuangan Di Indonesia Berdasarkan Indikator Nilai Tukar Riil

Dewi Retnosari, Sugiyanto, Tri Atmojo ……….... 475 Pendekatan Cross-Validation untuk Pendugaan Data Tidak Lengkap pada

Pemodelan AMMI Hasil Penelitian Kuantitatif

Gusti Ngurah Adhi Wibawa dan Agusrawati……… 483

11

Aplikasi Regresi Nonparametrik Menggunakan Estimator Triangle pada Data Meteo Vertical dan Ozon Vertikal, Tanggal 30 Januari 2013

Nanang Widodo, Tony Subiakto, Dian Yudha R, Lalu Husnan W ………. 493

12 Pemodelan Indeks Harga Saham Gabungan dan Penentuan Rank Correlation dengan Menggunakan Copula

Ika Syattwa Bramantya, Retno Budiarti, dan I Gusti Putu Purnaba …….. 502

13

Identifikasi Perubahan Iklim di Sentra Produksi Padi Jawa Timur dengan Pendekatan Extreme Value Theory

Sutikno dan Yustika Desi Wulan Sari……….. 513

15

Analisis Data Radiasi Surya dengan Pendekatan Regresi Nonparametrik Menggunakan Estimator Kernel Cosinus

(11)

xi

16

Pengujian Hipotesis pada Regresi Poisson Multivariate dengan Kovariansi Merupakan Fungsi dari Variabel Bebas

Triyanto, Purhadi, Bambang Widjanarko Otok, dan Santi Wulan Purnami 533

17

Perbandingan Metode Ordinary Least Squares (OLS), Seemingly

Unrelated Regression (SUR) dan Bayesian SUR pada Pemodelan PDRB Sektor Utama di Jawa Timur

Santosa, AB, Iriawan, N, Setiawan, Dohki, M ……… 544

19 Studi Model Antrian M/G/1: Pendekatan Baru

Isnandar Slamet ……… 557

20

Pengaruh Pertumbuhan Ekonomi dan Konsumsi Energi Terhadap Emisi CO2 di Indonesia: Pendekatan Model Vector Autoregressive (VAR)

Fitri Kartiasih ………...………. 567

21

Estimasi Parameter Model Epidemi Susceptible Infected Susceptible (SIS) dengan Proses Kelahiran dan Kematian

Pratiwi Rahayu Ningtyas, Respatiwulan, dan Siswanto .………….……… 578

22

Pendeteksian Krisis Keuangan di Indonesia Berdasarkan Indikator Harga Saham

Tri Marlina, Sugiyanto, dan Santosa Budi Wiyono ………. 584

23

Pemilihan Model Terbaik untuk Meramalkan Kejadian Banjir di Kecamatan Rancaekek, Kabupaten Bandung

Gumgum Darmawan, Restu Arisanti, Triyani Hendrawati, Ade Supriatna 592

24

Model Markov Switching Autoregressive (MSAR) dan Aplikasinya pada Nilai Tukar Rupiah terhadap Yen

Desy Kurniasari, Sugiyanto, dan Sutanto ………. 602

25

Pendeteksian Krisis Keuangan di Indonesia Berdasarkan Indikator Pertumbuhan Kredit Domestik

Pitaningsih, Sugiyanto, dan Purnami Widyaningsih ……… 608

26 Pemilihan Model Terbaik untuk Meramalkan Kejadian Banjir di Bandung dan Sekitarnya

Gumgum Darmawan, Triyani Hendrawati, Restu Arisanti ……… 615

27 Model Probit Spasial

Yuanita Kusuma Wardani, Dewi Retno Sari Saputro ……… 623

28

Peramalan Jumlah Pengunjung Pariwisata di Kabupaten Boyolali dengan Perbandingan Metode Terbaik

Indiawati Ayik Imaya, Sri Subanti ………..……... 628

29

Pemodelan Banyaknya Penderita Demam Berdarah Dengue (DBD) dengan Regresi Kriging di Kabupaten Sukoharjo

(12)

xii

Ekspektasi Durasi Model Epidemi Susceptible Infected (SI)

Sri Kuntari, Respatiwulan, Intan Permatasari………. 646

BIDANG PENDIDIKAN

3

Konsep Pembelajaran Integratif dengan Matematika Sebagai Bahasa Komunikasi dalam Menyongsong Kurikulum 2013

Surya Rosa Putra, Darmaji, Soleha, Suhud Wahyudi, ………. 653

4

Penerapan Pendidikan Lingkungan Hidup Berbasis Pendidikan Karakter dalam Pembelajaran Matematika

Urip Tisngati ………. 664

5

Studi Respon Siswa dalam Menyelesaikan Masalah Matematika

Berdasarkan Taksonomi SOLO (Structure of Observed Learned Outcome) Herlin Widia, Urip Tisngati, Hari Purnomo Susanto ……….. 677

7 Desain Model Discovery Learning pada Mata Kuliah Persamaan Diferensial

Rita Pramujiyanti Khotimah, Masduki ……….. 684

8 Efektivitas Pembelajaran Berbasis Media Tutorial Interaktif Materi Geometri

Joko Purnomo, Agung Handayanto, Rina Dwi Setyawati ……… 693

10

Pengembangan Modul Pembelajaran Matematika Menggunakan

Pendekatan Problem Based Learning (PBL) Pada Materi Peluang Kelas VII SMP

Putri Nurika Anggraini, Imam Sujadi, Yemi Kuswardi ……… 703

11 Pengembangan Bahan Ajar Dalam Pembelajaran Geometri Analitik Untuk Meningkatkan Kemandirian Mahasiswa

Sugiyono\, Himmawati Puji Lestari ………..……… 711

13

Pengembangan Strategi Pembelajaran Info Search Berbasis PMR untuk Meningkatkan Pemahaman Mata Kuliah Statistika Dasar 2

Joko Sungkono, Yuliana, M. Wahid Syaifuddin ……… 724

14

Analisis Miskonsepsi Mahasiswa Program Studi Pendidikan Matematika Pada Mata Kuliah Kalkulus I

Sintha Sih Dewanti ………..………..……. 731 Kemampuan Berpikir Logis Mahasiswa yang Bergaya Kognitif Reflektif

vs Impulsif

Warli ………. 742 Model Pembelajaran Berbasis Mobile

(13)

xiii

Profil Gaya Belajar Myers-Briggs Tipe Sensing-Intuition dan Strateginya Dalam Pemecahan Masalah Matematika

Rini Dwi Astuti, Urip Tisngati, Hari Purnomo Susanto ……….. 760 Penggunaan Permainan Matematika Berbasis Lingkungan Hidup untuk

Menningkatkan Minat dan Keterampilan Matematis Peserta Didik

Rita Yuliastuti ……….. 772

Tingkat Pemahaman Peserta PLPG Matematika Rayon 138 Yogyakarta Tahun 2014 Terhadap Pendekatan Saintifik Pada Kurikulum 2013 Berdasarkan Kuesioner Awal dan Akhir Pelatihan

Beni Utomo, V. Fitri Rianasari dan M. Andy Rudhito ……….. 784

Pengembangan Perangkat Pembelajaran Matematika Melalui Pendekatan RME dengan CD Interaktif Berbasis Pendidikan Karakter Materi Soal Cerita Kelas III

Sri Surtini, Ismartoyo, dan Sri Kadarwati ………. 791

E-Learning Readiness Score Sebagai Pedoman Implementasi E-Learning

Nur Hadi Waryanto ……….. 805 Pengembangan Lembar Kerja Siswa (LKS) Matematika Realistik di SMP

Berbasis Online Interaktif

Riawan Yudi Purwoko, Endro Purnomo ……….. 817 IbM APE Matematika Bagi TK Pinggiran Di Kota Malang

(14)

Marwah Wulan Mulia, Mania Roswitha, and Putranto Hadi Utomo

Department of Mathematics

Faculty of Mathematics and Natural Sciences Sebelas Maret University

Abstract. A simple graph G = (V (G), E(G)) admits an H-covering if every edge in

E(G) belongs to a subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total

la-beling of G is a bijective function ξ : V (G)∪E(G) → {1, 2, ..., |V (G)+E(G)|} such that for all subgraph H′ isomorphic to H, the weight w(H′) = Σv∈V (H′)ξ(v) + Σe∈E(H′)ξ(e)

con-stitute an arithmetic progression a, a + d, a + 2d, ..., a + (t−1)d where a and d are positive integers and t is the number of subgraph of G isomorphic to H. Additionally, the labeling

ξ is called a super (a, d)-H-antimagic total labeling, if ξ(V (G)) ={1, 2, ..., |V (G)|}.

This research has found (a, d)-H-antimagic total labeling of wheel graph Wn, sun

graph Sn and Cn⊙ Km graph.

Keywords: (a, d)-H-antimagic total labeling, wheel graph, sun graph, Cn⊙ Km graph

1. Introduction

Graph labeling is an interested topic in graph theory. According to Wallis [13], a labeling of a graph is a map that carries graph elements (vertex, edge or vertex and edge) to numbers (usually to the positive or non-negative integers). The most common choices of domain are the set of all vertices and edges (total labeling), the vertex-set alone (vertex labeling), or the edge-set alone (edge labeling).

One type of graph labeling is a magic labeling which was formulated by Kotzig and Rosa [7]. The most simple magic labeling is edge magic total labeling, which is a one-to-one map λ from V (G)∪ E(G) → 1, 2, ..., |V (G)| + |E(G)|, with the property that, given any edge xy, λ(x) + λ(xy) + λ(y) = k for some constant k. In 2005, Guti´errez and Llad´o [1] defined H-magic labeling which is a generalization of Kotzig and Rosa’s edge-magic total labeling [7]. According to Llad´o and Moragas [8], let G = (V, E) be finite simple graph. An edge covering on Graph G is the family of different subgraphs H1, H2, ..., Hk such that for any kind of edge of E belongs to at

least one of subgraphs Hi for 1≤ i ≤ k. If every Hi is isomorphic to a given graph

H, the we say that G admits an H-covering.

According to Inayah et al. [4], an (a, d)-H-antimagic total labeling of G is bijective function ξ : V (G) ∪ E(G) → {1, 2, ..., |V (G) + E(G)|} such that for all subgraphs H′ isomorphic to H, the weight w(H′) = Σv∈V (H′)ξ(v) + Σe∈E(H′)ξ(e) constitutes an arithmetic progression a, a + d, a + 2d, ..., a + (t− 1)d where a and d are positive integers and t is the number of subgraphs of G isomorphic to H. Such a labeling is called super if the smallest possible labels appear on the vertices and G is super (a, d)-H-antimagic. Inayah [3] developed (a, d)-Cn-antimagic total labeling of

wheel graph. Furthermore, Karyanti [6] provided (a, d)-K1,3-antimagic total labeling of sun graph Snwhere n is odd. This research aims to determine (a, d)-Fn-antimagic

total labeling of wheel graph, (a, d)-K1,3-antimagic total labeling of sun graph where

n is even and (a, d)-G + e-antimagic total labeling of Cn⊙ Km graph. In section

(15)

2 and 3 we introduced a technique of partitioning a multiset that will be used to prove our new results.

2. k-balanced (k, δ)-Anti Balanced Multiset

Maryati et al. [10] defined k-balanced multiset as follows. Multiset is a set that allows the existence of the same elements in it. Let k ∈ N and Y be a multiset that contains positive integers. Y is said to be k-balanced if there exist k subsets of Y , say Y1, Y2, ..., Yk, such that for every i ∈ [1, k], |Yi| = |Y |k ,

Yi = ∑ Y k ∈ N, and ⊎k

i=1Yi = Y . If this is the case for every i ∈ [1, k], then Yi is called a balanced

subset of Y . Roswitha et al. [11] have proved a lemma that refers to Maryati [9] and Maryati et al. [10]. Lemma 2.1 has proved by Roswitha et al. [11].

Lemma 2.1. Let x and y be non-negative integers. Let X = [x + 1, x(y + 1)] with |X| = xy and Y = [x(y + 2), 2x(y + 1) − 1] where |Y | = xy. Then, the multiset

K = X ⊎ Y is xy-balanced with all its subsets are 2-sets.

Then, we have the following lemma.

Lemma 2.2. Let x,y be positive integers. If X = [1, x(y + 1)] and Y = [x(y + 1) + 1, 2x(y + 1)] with |X| = |Y | = xy. Then, the multiset K = X ⊎ Y is 2xy-balanced with all its subsets are 2-sets.

Proof. For every i ∈ [1, 2xy], we define Ki ={i, 2x(y + 1) + 1 − i}. Then,

Ki =

2x(y + 1) + 1 for every i ∈ [1, 2xy] and K is 2xy-balanced with all its subsets are

2-sets. 

Lemma 2.3. Let x and y be positive integers. If X = {1, 3, ..., 2x(y + 1) − 1} and

Y ={2, 4, 6, ..., 2x(y + 1)} with |X| = |Y | = 2xy. Then, the multiset K = X ⊎ Y is

2xy-balanced with all its subsets are 2-sets.

Proof. For every i∈ [1, 2xy], we define Ki ={2i − 1, 2x(y + 1) + 1 − (2i − 1)}. Then,

Ki = 2x(y + 1) + 1 for every i∈ [1, 2xy] and K is 2xy-balanced with all its subsets

are 2-sets. 

Let k ∈ N and let X be a multiset containing positive integers. Then X is said to be (k, δ)-anti balanced if there exist k subsets of X, say X1, X2, ..., Xk, such that

for every i ∈ [1, k], |Xi| = |X|k , ⊎ki=1Xi = X, and for i∈ [1, k − 1],

Xi+1− Xi = δ

is satisfied [see Inayah et al. [5]].

Lemma 2.4. Let x and y be positive integers. Then, the set A = [x + 1, x(y + 1)] with |A| = xy is (xy, 1)-anti balanced.

(16)

Proof. For i ∈ [1, xy], we define set Ai = {x + i}. Then,

Ai = x + i for every

i ∈ [1, xy] andAi+1−

Ai = 1 for every i ∈ [1, xy − 1] and A is (xy, 1)-anti

balanced. 

Lemma 2.5. Let x and y be positive integers with x ≥ 3. Then, the set A =

[1, x(y + 1)]\ {2i − 1} for i = [1, xy]] with |A| = xy is (xy, 2)-anti balanced. Proof. For i∈ [1, xy], we define set Ai ={2i}. Then,

Ai = 2i for every i∈ [1, xy]

and ∑Ai+1−

Ai = 2 for every i∈ [1, xy − 1] and A is (xy, 2)-anti balanced. 

Lemma 2.6. Let x≥ 3 be positive integers. Then, the multiset X = [2x + 2, 3x + 1] where |X| = x − 1 is (x, 1)-anti balanced.

Proof. For j = [1, x] define Aj = {2x + 1 + j} and for every i = [1, x] define

Xi = Aj \ {3x + 1 − i}. Then,Xi = 12(5x2 − 3x) − 2 + i for i ∈ [1, x] andXi+1−

Xi = 1 for i = [1, x− 1] and X is (x, 1)-anti balanced. 

Lemma 2.7. Let x ≥ 3 be positive integers. Then, the multiset X = [x + 2i, 3x + 1] \ {x + 2i} where |X| = x − 1 is (x, 2)-anti balanced.

Proof. For j = [1, x] define Aj = {x + 1 + 2j} and for every i = [1, x] define

Xi = Aj \ {3x + 1 − 2i}. Then,Xi = 2x2 − x − 3 + 2i for i ∈ [1, x] andXi+1−

Xi = 2 for i = [1, x− 1] and X is (x, 2)-anti balanced. 

Lemma 2.8. Let x ≥ 3 be positive integers. Then, the multiset X = [4, 7, ..., 3x+1] where |X| = x − 1 is (x, 3)-anti balanced.

Proof. For j = [1, x] define Aj = {3x + 4 − 3j} and for every i = [1, x] define

Xi = Aj \ {3x + 1 − 2i}. Then,Xi = 12(3x2 − x) − 4 + 3i for i ∈ [1, x] andXi+1−

Xi = 3 for i = [1, x− 1] and X is (x, 3)-anti balanced. 

Lemma 2.9. Let x, y be positive integers with x ≥ 3 and y = {1, 2}. Let X =

{1, 3, ..., 2xy − 1} and Y = [x(y + 2) + 1, 2x(y + 1)] with |X| = |Y | = xy. Then, multiset K = X ⊎ Y is (xy, δ) anti balanced with all its subsets are 2-sets.

Proof. (i) For every i ∈ [1, xy], we define Ki = {2i − 1, 2x(y + 1) + 1 − i}. Then

Ki = 2x(y + 1) + i for every i = [1, xy] and

Ki+1−

Ki = 1 for i = [1, xy− 1]

and K is (xy, 1)-anti balanced with all its are 2-sets.

(ii) For every i ∈ [1, xy], we define Ki = {2i − 1, x(y + 2) + i}. Then

Ki =

x(y + 2)− 1 + 3i for every i = [1, xy] andKi+1−

Ki = 3 for i = [1, xy− 1]

andK is (xy, 3)-anti balanced with all its are 2-sets. 

(17)

Lemma 2.10. Let x, y be positive integers with x ≥ 3. If X = [1, xy] and Y = [x(y + 2) + 1, 2n(m + 1)] then K = X⊎ Y is (xy, 2)-anti balanced with all its subsets are 2 sets.

Proof. Let x, y be positive integers with x ≥ 3. For i ∈ [1, xy], we define Ki =

{i, x(y +2)+i} and |Ki| = 2. Then

xy

i=1Ki = x(y + 2) + 2i and

Ki+1−

Ki = 2

for every i ∈ [1, xy − 1]. Then K is (xy, 2)-anti balanced with all its subsets are 2

sets. 

Lemma 2.11. Let x, y be positive integers with x≥ 3. If X = [1, x(y + 3)] then X is (xy, 4)-anti balanced with all its subsets are 2 sets.

Proof. Let x, y be positive integers with x ≥ 3. For i ∈ [1, xy], we define Xi =

{2i−1, 2i} and |Xi| = 2. Then

xy i=1Xi = 4i−1 andXi+ 1Xi = 4 for every

i∈ [1, xy − 1]. Then X is (xy, 4)-anti balanced with all its subsets are 2 sets. 

3. (a, d)-K1,3-Anti Magic Total Labeling of Sun Graph

Sun graph is Cn⊙ K1 graph. It obtained by taking one copy of Cn and n copy

of K1 and joining the ith vertex of Cn with an edge to every vertex in the ith copy

of Cn [see corona definition by Harary [2]]. Let {u1, u2, ..., un} be vertices on cycle

graph Cn. Sun graph Sn has a set vertices V (G) = {u1, u2, ..., un, v1, v2, ..., vn}

and edges E(G) = {(u1, v1), (u2, v2), ..., (un, vn), (u1, u2), ...(un−1, un), (un, u1)} and

|V (G)| + |E(G)| = 2n and H be a complete bipartite graph K1,3 called also star

graph S4.

Lemma 3.1. If G is (a, d)-H-antimagic then d ≤ ⌊32(nn−2−1)⌋.

Proof. Let G ∼= Sn and H ∼= K1,3. Let |V (G)| = vG, |E(G)| = eG,|V (H)| = vH and

|E(H)| = eH. The maximum possible H-weight is vG+(vG−1)+(vG−2)+...+(vG−

vH+ 1) + (vG+ eG) + (vG+ eG−1)+...+(vG+ eG−eH+ 1) or a + (n−1)d ≤ 4(8n−7).

On the other hand, the least possible H-weight is 1 + 2 + ... + (vG+ eH) or a≥ 36.

Then we have, d≤ 32(nn−2−1). Since d is positive integer, so d≤ ⌊32(nn−2−1)⌋. 

Theorem 3.2. Let G be a sun graph Sn where n ≥ 3. Then, there is a super

(a, d)-K1,3-anti magic total labeling for d ={1, 2}.

Proof. Let G be a sun graph Sn where n ≥ 3. Let R = [1, 4n].Partition R into 4

sets, namely R = X∪ A ∪ B ∪ Y where X = [1, n], A = [n + 1, 2n], B = [2n + 1, 3n] and Y = [3n + 1, 4n]. Now define a total labeling ξ on G as follows. Label edges {(u1, u2), ..., (ui, ui+1), (un, u1)} by elements of B and edges (ui, vi) by elements of

(18)

Y from right to left (counter-clockwise). Then, label vertices vi by elements of X

start from v2 and label vertices ui by elements of B start from u2 from left to right (clockwise). Define K = X ⊎ Y , by Lemma 2.2 where x = n and y = 1, K is (2n)-balanced andKi = 4n + 1. Apply Lemma 2.4, where x = n and y = 1, then

A is (n, 1)-anti balanced andAi = n + i. Let H = K1,3, for i = [1, n], ω(K1,3i ) = 3∑ni=1Ki+

n

i=1A = 13n + 3 + i. Then we have, d = ω(K

i+1

1,3 )− ω(K1,3i ) = 1 and

a = ω(K1

1,3) = 13n + 4. Sun graph Sn admits a super (13n + 4, 1)-K1,3-anti magic total labeling. For d = 2 is similar to proof of d = 1. So we obtain, sun graph Sn

admits a super (12n + 5, 2)-K1,3-anti magic total labeling.  4. (a, d)-Fn-Anti Magic Total Labeling of Wheel Graph Wn

A wheel graph Wn is a graph that obtained by joining n vertices of Cn with one

vertex in central (Wallis et al [12]). Let v1, v2, ..., vnbe vertices of Cnand c be central

vertex of wheel graph. A wheel graph has a set of vertices V (G) ={c, v1, v2, ..., vn}

and edges E(G) = {(c, v1), ..., (c, vn), (v1, v2), ..., (vn−1, vn), (vn, v1)} and |V (G)| =

n + 1 and |E(G)| = 2n and H be a fan graph Fn.

Lemma 4.1. If G is (a, d)-H-antimagic then d ≤ ⌊ 3n

n−1⌋.

Proof. Let G ∼= Wn and H ∼= Fn. Let |V (G)| = vG, |E(G)| = eG, |V (H)| = vH

and |E(H)| = eH. The maximum possible H-weight is vG + (vG − 1) + (vG

2) + ... + (vG− vH + 1) + (vG+ eG) + (vG + eG− 1) + ... + (vG+ eG− eH + 1) or

a + (n− 1)d ≤ 12(3n)(3n + 3). On the other hand, the least possible H-weight is

1 + 2 + ... + (vG + eH) or a 12(3n)(3n + 1). Then we have, d n3n−1. Since d is

positive integer, so d≤ ⌊n3n−1⌋. 

Theorem 4.2. Let G be a wheel graph Wn. Then, there is (32(3n2 + n), d)-Fn-anti

magic total labeling for d = [1, 3].

Proof. Let G be a wheel graph Wn where n≥ 3. Let C = 1 and R = [2, 3n + 1].

(i) Partition R into 3 sets, namely R = A∪ B ∪ X, where A = [2, n + 1], B = [n + 2, 2n + 1] and X = [2n + 2, 3n + 1]. Then, for i = [1, x] by Lemma 2.6 where x = n we have|Xi| = n−1, X is (n, 1)-anti balanced and

Xi = 12(5n2−3n)−2+i.

Next, we define a total labeling ξ on graph G as follows. Label the vertex center of wheel with C ={1} and vertices vi with elements of A. Then label the edges (c, vi)

with elements of B. Label edges {(v1, v2), ..., (vi, vi+1), (vn, v1)} with elements of X

(19)

in counter-clockwise. For i = [1, n], ω(Fni) = 32(3n2 + n)− 1 + i. Then we have, d = ω(Fni+1)− ω(Fni) = 1 and a = ω(Fn1) = 32(3n2+ n). Wheel graph Wn admits a

super (32(3n2+ n), 1)-F

n-antimagic total labeling.

(ii) Partition R into 2 sets, namely R = A∪ X, where A = [2, n + 1] and X = [n + 2, 3n + 1]. Then, for i = [1, x] by Lemma 2.7 where x = n we have|Xi| = n − 1,

X is (n, 2)-anti balanced andXi = 12(5n2− 3n) − 2 + 2i. Next, we define a total

labeling ξ on graph G as follows. Label the vertex center of wheel with C ={1} and vertices vi with elements of A. For n is odd, label the edges (c, vi) with odd numbers

of elements of X and edges (vi, vi+1) with even numbers of elements of X in

counter-clockwise. For n is even, label the edges (c, vi) with even numbers of elements of X

and edges {(v1, v2), ..., (vi, vi+1), (vn, v1)} with odd numbers of elements of X. For

i = [1, n], ω(Fi

n) =

3

2(3n

2 + n)− 2 + 2i. Then we have, d = ω(Fi+1

n )− ω(Fni) = 2 and a = ω(F1 n) = 3 2(3n 2 + n). Wheel graph W n admits a super (32(3n2 + n), 2)-Fn

-antimagic total labeling.

(iii) Partition R into 3 sets, namely R = A∪ B ∪ X, where A = {2, 5, 3n − 1}, B ={3, 6, ..., 3n}and X = [4, 7, ..., 3n + 1]. Then, for i = [1, x] by Lemma 2.8 where x = n we have|Xi| = n−1, X is (n, 2)-anti balanced and

Xi = 12(3n2−n)−4+3i.

Next, we define a total labeling ξ on graph G as follows. Label the vertex center of wheel with C = {1} and vertices vi with elements of A. Label the edges (c, vi)

with elements of B and edges {(v1, v2), ..., (vi, vi+1), (vn, v1)} with even numbers of elements of X in counter-clockwise. For i = [1, n], ω(Fi

n) =

3

2(3n

2 + n)− 3 + 3i.

Then we have, d = ω(Fi+1

n )− ω(Fni) = 3 and a = ω(Fn1) =

3

2(3n

2+ n). Wheel graph

Wn admits a super (32(3n2+ n), 3)-Fn-antimagic total labeling. 

5. (a, d)-G + e-Anti Magic Total Labeling of Cn⊙ Km Graph

Let G′ ∼= Cn ⊙ Km graph where n ≥ 3 and m ∈ N. Cn ⊙ Km graph

ob-tained by taking one copy of Cn and n copy of Km and joining the ith vertex

of Cn with an edge to every vertex in the ith copy of Cn [see corona definition

by Harary [2]]. Let ui where i ∈ [1, n] be vertices on Cn and Cn ⊙ Km graph

has a set of vertices V (G′) = {ui, vj} where j ∈ [1, mn] and edges E(G′) =

{(u1, u2), ..., (un−1, un), (un, u1), (u1, v1), ..., (u1, vm), (u2, vm+1), ..., (u2, v2m), (un, vnm)}

and |V (G′)| = |E(G′)| = n(m + 1) and H be a G + e graph. Lemma 5.1. If G is (a, d)-H-antimagic then d ≤ 4(n + 1).

(20)

Proof. Let G′ ∼= Cn ⊙ Km and H ∼= G + e. Let |V (G′)| = vG′, |E(G′)| = eG′,

|V (H)| = vH and |E(H)| = eH. The maximum possible H-weight is vG′ + (vG′

1)+(vG′−2)+...+(vG′−vH+1)+(vG′+eG′)+(vG′+eG′−1)+...+(vG′+eG′−eH+1)

or a + (nm− 1)d ≤ (n + 1)(4nm + 2n − 1). On the other hand, the least possible

H-weight is 1+2+...+(vG′+eH) or a ≥ (n+1)(2n+3). So we have, d ≤ 4(n+1). 

Theorem 5.2. Let n and m be positive integers with n≥ 3, there is (a, d)-G+e-anti magic total labeling on graph Cn⊙ Km.

Proof. Let G′ be Cn⊙ Km graph where n≥ 3 and m ∈ N. Let Z = [1, 2n(m + 1)].

Partition Z into 4 sets, namely Z = A ∪ B ∪ C ∪ D where A = [1, nm], B = [nm+1, n(m+1)], C = [n(m+1)+1, n(m+2)] and D = [n(m+2)+1, 2n(m+1)]. We define K = A∪D. Apply Lemma 2.10 where x = n and m = y,Xi = n(m+1)+2i,

so X is (mn, 2)-anti balanced. Next, we define a total labeling ξ on graph G as follows. Label the vertices vj with elements of A from right to left and edges (ui, vj)

with elements of D. Then, label the edges (ui, vj) with elements of C and edges

(ui, ui+1) with elements of C in any manner. Let H is G + e, for i ∈ [1, nm],

ω(G+ei) = 2n2m+nm+2n2+3n+2i. Then we have, d = ω(G+ei+1)−ω(G+ei) = 2

and a = ω(G + e1) = 2n2m + nm + 2n2+ 3n + 2 so Cn⊙ Km graph admits a super

(2n2m + nm + 2n2+ 3n + 2, 2)-G + e-anti magic total labeling. For d = 4 is similar to proof of d = 2. So we obtain, Cn⊙ Km graph admits a (2n2m + 8n2+ n + 3,

4)-G + e-anti magic total labeling. 

Theorem 5.3. Let n and m be positive integers with n ≥ 3 and m = {1, 2}, there is (a, d)-G + e-anti magic total labeling on graph Cn⊙ Km for d ={1, 3}.

Proof. Let G′ be CnKm graph where n ≥ 3 and m ∈ N. Let Z = [1, 2n(m + 1)].

Partition Z into 4 sets, namely Z = A∪ B ∪ C ∪ D where A = {1, 3, ..., 2nm − 1}, B = [n(m + 2) + 1, 2n(m + 1)], C = {2, 4, ..., 2n}. Partition D into 2 sets, for m = 1,

d1 = {2n + j} and for m = 2, d2 ={2n + 2j} where j = [1, n]. Apply Lemma 2.9

where x = n and m = y,Ki = 2n(m + 1) + i, so X is (mn, 4)-anti balanced. Next,

we define a total labeling ξ on graph G as follows. Label the vertices vj with odd

numbers of elements of A from left to right and edges (ui, vj) with even numbers of

elements of D from left to right. Then, label the vertices (ui) with elements of B

and edges {(u1, u2, ..., (ui, ui+1), (un, u1)} with elements of C in any manner. Let H

(21)

is G + e, for i ∈ [1, nm], ω(G + ei) = 3n2 + 12n2m + 52 + 3n2 + i. Then we have,

d = ω(G + ei+1)− ω(G + ei) = 1 and a = ω(G + e1) = 3n2+ 12n2m + 52 + 3n + 1, so Cn⊙ Km graph admits an super (3n2+ 12n2m + 52 + 3n + 1, 1)-G + e-anti magic

total labeling. For d = 3 is similar to proof of d = 1. So we obtain, Cn⊙ Km graph

admits a (3n2+1 2n

2m + 3

2nm + 3n + 2, 3)-G + e-anti magic total labeling 

6. Conclusion

This research has conclusions as follows. There are super (a, d)-K1,3-anti magic total labeling on sun graph Sn for d ={1, 2}, (a, d)-Fn-anti magic total labeling on

wheel graph Wn for d = [1, 3] and (a, d)-G + e-anti magic total labeling on Cn⊙ Km

graph for d = [1, 4]. Moreover, this research can be developed for other covers or d values for all graphs.

References

1. Gutierrez, A and A.Llado, Magic Coverings, J. Combin. Math. Combin. Comput 55 (2005), 43–46.

2. Harary, J. A., Graph Theory, Addison-Wesley Publishing Company Inc., Canada, 1969. 3. Inayah, N., Pelabelan (a, d)− H−Anti Ajaib Super Pada Beberapa Kelas Graf, Disertasi, ITB,

Bandung, 2013.

4. Inayah, N., A. N. M.Salman, and R. Simanjuntak, On (a, d)−h−antimagic coverings of graphs, J. Combin. Math. Combin. Comput 71 (2009), 273–281.

5. Inayah, N., A.N.M. Salman, and K.I.A Syuhada, Super (a, d)-H-Antimagic Total Labeling for

Shackles of a Connected Graph H, Australasian Journal of Combinatorics 57 (2013), 127–138.

6. Karyanti, Pelabelan Selimut (a, d)−h−Anti Ajaib Super Pada graf Fan, Sun, dan Generalized

Petersen, Skripsi, UNS, Surakarta, 2012.

7. Kotzig, A and A. Rosa, Magic Valuation of Finite Graph, Canada Math Bull 13 (1970), 451–461.

8. Llado, A. and J. Moragas, Cycle Magic Graphs, (2006).

9. Maryati, T.K., Karakteristik Graf H-Ajaib and Graf H-Ajaib Super, Disertasi, ITB, Bandung, 2011.

10. Maryati, T.K. , A. N. M. Salman, E. T. Baskoro, J. Ryan, and M. Miller, On H-Supermagic

Labelings for Certain Shackles and Amalgations of a Connected graph, Utilitas Mathematica

83 (2010), 333–342.

11. Roswitha, M. and E.T. Baskoro, H-Magic Covering om Some Classes of Graphs, AIP Confer-ence Proceeding on ICREM5 1450 (2012), 135–138.

12. Wallis, W.D., E.T. Baskoro, M. Miller and Slamin, Edge Magic Total Labelings, Australasian J. Combin 22 (2000), 177–190.

13. WallisW. D. , Magic Graph, Birkh¨auser Boston, New York, 2001.

(22)

Referensi

Dokumen terkait

Pada penelitian selanjutnya, dilakukan langkah-langkah berikut: (1) Mengembangkan rancangan perkuliahan berdasarkan hasil yang diperoleh pada langkah-langkah sebelumnya

Dalam hal penjualan kembali Unit Penyertaan REKSA DANA SYARIAH BNP PARIBAS PESONA SYARIAH dilakukan oleh Pemegang Unit Penyertaan melalui media elektronik, maka Formulir

Bila tetap masih terjadi perdarahan intrakranial, hindarkan pemberian Citicoline dengan dosis tinggi (lebih dari 500 mg sekaligus), karena dapat mempercepat aliran darah

Desember 2016, yang telah diaudit oleh Kantor Akuntan Publik Anwar & Rekan serta memberikan pembebasan dan pelunasan tanggung jawab (acquit et de charge) sepenuhnya kepada

Elektroda pembanding merupakan elektroda yang mempunyai potensial elektrokimia konstan sepanjang tidak ada arus yang mengalir dan sama sekali tidak peka terhadap komposisi larutan

penyebab kegagalan yang dapat menimbulkan High Temperature pada Turbine Guide Bearingdisebabkan oleh beberapa komponen kritisyaitu clearance bantalan pada guide bearing tidak

Disamping itu penambahan sumber makanan yang banyak mengandung a s a m l e ma k ω-3 tersebut juga lebih banyak mempengaruhi kandungan asam lemak dalam kuning telur dibandingkan

Dari data hasil penelitian yang diperoleh dapat ditarik kesimpulan sebagai berikut: Mutu alum yang dihasilkan sangat tergantung oleh beberapa faktor antara lain: