• Tidak ada hasil yang ditemukan

MENENTUKAN KRITERIA PRIMA BERDASARKAN KONGRUEN LUCAS. Nani Anugrah Putri S 1, Sri Gemawati 2 ABSTRACT

N/A
N/A
Protected

Academic year: 2021

Membagikan "MENENTUKAN KRITERIA PRIMA BERDASARKAN KONGRUEN LUCAS. Nani Anugrah Putri S 1, Sri Gemawati 2 ABSTRACT"

Copied!
11
0
0

Teks penuh

(1)

MENENTUKAN KRITERIA PRIMA BERDASARKAN KONGRUEN LUCAS

Nani Anugrah Putri S1, Sri Gemawati 2

1,2Program Studi S1 Matematika Jurusan Matematika

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya, Pekanbaru 28293

nanianugrahputri@gmail.com

ABSTRACT

This article discusses the determination of primality criterion based on Lucas congruence. The result of the primality criterion based on Lucas congruence is determined by using coefficient binomial and Lucas theorem.

Keywords: Prime numbers, congruences, coefficient binomial, Lucas theorem ABSTRAK

Artikel ini membahas tentang menentukan kriteria prima berdasarkan kongruen Lucas. Hasil dari kriteria prima berdasarkan kongruen Lucas ini ditentukan dengan menggunakan koefisien binomial dan teorema Lucas.

Kata kunci: Bilangan prima, kekongruenan, koefisien binomial, teorema Lucas

1. PENDAHULUAN

Salah satu aspek penting dalam teori bilangan adalah bilangan prima. Burton [1, h. 39] menjelaskan bahwa bilangan prima adalah sebuah bilangan bulat positif yang lebih besar dari 1 yang hanya mempunyai faktor pembagi 1 dan dirinya sendiri. Banyak cara untuk menentukan bilangan prima salah satunya adalah Saringan Eratosthenes. Pada zaman Yunani kuno terdapat seorang ilmuan yang bernama Eratosthenes yang menemukan suatu cara untuk menentukan bilangan prima yang disebut dengan Saringan Eratosthenes, cara ini merupakan cara yang paling sederhana dan paling tepat untuk menemukan bilangan prima.

Terdapat beberapa bilangan prima, salah satunya adalah kriteria prima. Kriteria prima juga terdapat banyak cara untuk menentukannya, salah satunya adalah dengan menggunakan kongruen Lucas. Mestrovic [4] mengatakan bahwa terdapat kriteria prima berdasarkan kongruen Lucas yang ditentukan dengan menggunakan koefisien binomial dan teorema Lucas. Artikel ini membahas kriteria prima yang ditentukan dengan menggunakan koefisien binomial dan teorema Lucas, yang juga

(2)

menerapkan teorema binomial. Artikel ini merupakan tinjauan sepenuhnya dari artikel yang ditulis oleh Mestrovic [4].

2. TEORI PENDUKUNG

Pada bagian ini diuraikan beberapa teori pendukung yang berkaitan dengan pembahasan kriteria prima berdasarkan kongruen Lucas.

Definisi 1 [1, h. 39] Bilangan bulat p > 1 dikatakan prima jika hanya mempunyai pembagi p dan 1.

Definisi 2 [1, h. 20] Bilangan bulat b dikatakan habis dibagi oleh bilangan bulat a jika a ̸= 0, dinotasikan dengan a|b yang dibaca a membagi b, jika terdapat suatu bilangan bulat c sehingga b = ac. Ditulis a - b untuk menunjukkan bahwa b tidak habis dibagi oleh a.

Definisi 3 [1, h. 63] Misalkan m ≥ 0. Dua buah bilangan bulat positif a dan b dikatakan kongruen terhadap modulo m yang dinotasikan dengan

a≡ b (mod m),

jika m|a − b, sehingga a − b = km untuk setiap bilangan bulat k.

Selanjutnya setelah didefinisikan pengertian bilangan prima, keterbagian dan kekongruenan didefinisikan koefisien binomial, teorema Pascal dan teorema binomial sebagai berikut.

Definisi 4 [3, h. 33] Misalkan n dan r adalah bilangan bulat tidak negatif. Koefisien binomial (nr) didefinisikan oleh (nr) = n!

r!(n−r)! jika r ≤ n, dan 0 untuk

yang lainnya.

Fungsi Pembangkit biasa untuk koefisien binomial

Misalkan terdapat bilangan bulat positif n dari barisan koefisien binomial

k=0 ( n k ) xk = ( n 0 ) , ( n 1 ) x, ( n 2 ) x2, . . . ,

sehingga fungsi pembangkit biasa dari barisan tersebut adalah (1 + x)n.

Teorema 5 [3, h. 34] Jika n dan r adalah bilangan bulat positif, dengan r ≤ n, maka (nr)=(nr−1−1)+(n−1r ).

Bukti. Dengan menyederhanakan ruas kanan dapat ditunjukkan bahwa ruas kanan sama dengan ruas kiri.

(3)

( n− 1 r− 1 ) + ( n− 1 r ) = (n− 1)! (r− 1)!(n − r)! + (n− 1)! r!(n− r − 1)!, ( n− 1 r− 1 ) + ( n− 1 r ) = r(n− 1)! r(r− 1)!(n − r)!+ (n− r)(n − 1)! r!(n− r)(n − r − 1)!, ( n− 1 r− 1 ) + ( n− 1 r ) = r(n− 1)! r!(n− r)! + (n− r)(n − 1)! r!(n− r)! , ( n− 1 r− 1 ) + ( n− 1 r ) = (n− 1)![r + (n − 1)] r!(n− r)! , ( n− 1 r− 1 ) + ( n− 1 r ) = (n− 1)!n r!(n− r)!, ( n− 1 r− 1 ) + ( n− 1 r ) = n! r!(n− r)!, ( n− 1 r− 1 ) + ( n− 1 r ) = ( n r ) .

Oleh karena itu terbukti bahwa ruas kanan sama dengan ruas kiri. 2 Teorema 6 [3, h. 37] Misalkan x dan y adalah bilangan real, dan n adalah bilangan bulat tidak negatif. Kemudian

(x + y)n = nr=0 ( n r ) xn−ryr.

Bukti. (Dengan Induksi Lemah) Untuk n = 0, ruas kiri = (x + y)0 ruas kiri = 1, ruas kanan = 0 ∑ r=0 ( r 0 ) x0−ryr ruas kanan = x0y0 ruas kanan = 1, sehingga benar untuk n = 0.

Untuk n = 1,

ruas kiri = (x + y)1 ruas kiri = (x + y),

(4)

ruas kanan = 1 ∑ r=0 ( r 1 ) x1−ryr ruas kanan = ( 0 1 ) x1y0+ ( 1 1 ) x0y1 ruas kanan = (x + y),

sehingga benar.untuk n = 1.

Asumsikan benar untuk n = k, yaitu

(x + y)k = kr=0 ( k r ) xk−ryr. (1)

Akan dibuktikan benar juga untuk n = k + 1, yaitu (x + y)k+1 = (x + y)k(x + y), (x + y)k+1 = [ kr=0 ( k r ) xk−ryr ]

(x + y), oleh persamaan (1)

(x + y)k+1 = kr=0 ( k r ) xk+1−ryr+ kr=0 ( k r ) xk−ryr+1, (x + y)k+1 = [( k 0 ) xk+1+ kr=1 ( k r ) xk+1−ryr ] + [k−1r=0 ( k r ) xk−ryr+1+ ( k k ) yk+1 ] , (x + y)k+1 = ( k + 1 0 ) xk+1+ kr=1 ( k r ) xk+1−ryr+ kr=1 ( k r− 1 ) xk+1−ryr + ( k + 1 k + 1 ) yk+1, (x + y)k+1 = ( k + 1 0 ) xk+1+ kr=1 [( k r ) + ( k r− 1 )] xk+1−ryr+ ( k + 1 k + 1 ) yk+1, (x + y)k+1 = ( k + 1 0 ) xk+1+ kr=1 ( k + 1 r ) xk+1−ryr, + ( k + 1 k + 1 ) xk+1, oleh Teorema 5 (x + y)k+1 = k+1r=0 ( k + 1 r ) xk+1−ryr.

(5)

Oleh karena itu, dengan induksi (x + y)k = kr=0 ( k r ) xk−ryr,

benar untuk setiap bilangan bulat n ≥ 0. 2

Teorema 7 [2] Jika n = n0 + n1p + ... + nsps dan m = m0 + m1p + ... + msps

merupakan pengembangan sistem bilangan alternatif dari bilangan bulat n dan m dengan 0 ≤ mi, ni ≤ p − 1 untuk setiap i = 0, 1, ..., s, maka

( n m ) si=o ( ni mi ) (mod p).

Bukti. Jika p adalah bilangan prima dan n adalah bilangan bulat tidak negatif dengan 1 ≤ n ≤ p − 1, maka penyebut dari koefisien binomial

( p n ) = p· (p − 1) · · · (p − n + 1) n· (n − 1) · · · 1 , (2) habis dibagi oleh n tapi pembilangnya tidak. Oleh karena itu n membagi (np).

Persamaan (2) menghasilkan fungsi pembangkit biasa, yaitu (1 + X)p ≡ 1 + Xp (mod p).

Kemudian untuk setiap bilangan bulat tidak negatif i diperoleh (1 + X)pi ≡ 1 + Xpi (mod p).

Jika n adalah bilangan bulat tidak negatif dan p adalah bilangan prima, maka n adalah basis dari p sehinggaki=0nipi untuk semua bilangan bulat tidak negatif k

dan bilangan bulat ni dengan 0≤ ni ≤ p − 1, sehingga diperoleh nm=0 ( n m ) xm = (1 + x)n, nm=0 ( n m ) xm = si=0 {(1 + x)pi}ni , nm=0 ( n m ) xm si=0 (1 + xpi)ni (mod p), nm=0 ( n m ) xm = si=0 { n iyi=0 ( ni yi ) xyipi } ,

(6)

nm=0 ( n m ) xm = ny=0 { ∑∏s i=0 ( ni yi )} xm. (3)

Jika penjumlahan dalam pada persamaan (3) diambil dari himpunan (y0, y1,· · · , ys),

maka

s

i=0

yipi = m.

Karena 0 ≤ yi ≤ ni < p, sehingga terdapat satu himpunan jika mi ≤ ni diberikan

oleh yi = mi (0 ≤ i ≤ s) , tetapi jika mi ≥ ni maka penjumlahannya adalah nol.

Samakan teorema di atas dengan koefisien dari xm, karena (

ni

mi

)

= 0 untuk mi > ni.

Dalam hasil akhir n, digit ke-i adalah basis dari representasi p ke-n. 2

3. MENENTUKAN KRITERIA PRIMA BERDASARKAN KONGRUEN LUCAS

Pada bagian ini dibahas kriteria prima berdasarkan kongruen Lucas, dalam pembahasan ini digunakan salah satu materi pendukung yang disebut dengan teorema Lucas. Karena materi yang akan digunakan tersebut berbentuk binomial sehingga juga akan digunakan koefisien binomial dan berserta teorema binomial. Untuk menunjukkan kegunaan dari beberapa teori yang telah disebutkan, seperti teorema Lucas, koefisien binomial, dan teorema binomial, terlebih dahulu akan dipaparkan proposisi. Selanjutnya lema dan teorema beserta contohnya diberikan sebagai berikut.

Proposisi 1 [4] Jika p adalah bilangan prima dan f adalah bilangan bulat positif, maka berlaku ( pf − 1 k ) ≡ (−1)k (mod p), untuk setiap k {0, 1,· · · , pf − 1}.

Bukti. Misalkan k =fi=0−1kipidengan 0≤ ki ≤ p−1 untuk semua i = 0, 1, · · · , f−

1, kemudian dengan cara yang sama pf − 1 =f−1

i=0(p− 1)pi, dengan menggunakan

(7)

( pf − 1 k ) = (∑f−1 i=0(p− 1)pif−1 i=0 kipi ) , ( pf − 1 k ) f−1i=o ( p− 1 ki ) (mod p), ( pf − 1 k ) f−1i=o (−1)ki, ( pf − 1 k ) = (−1)fi=0−1ki, ( pf − 1 k ) ≡ (−1)k (mod p). (4)

Pada persamaan (4) telah diketahui jika p adalah bilangan prima ganjil maka k dan jumlah ∑fi=0−1ki mempunyai nilai paritas yang sama, sedangkan untuk p = 2 adalah

1≡ −1 (mod 2) terpenuhi. 2

Lema 8 [4] Jika p adalah bilangan prima dan f adalah bilangan bulat positif yang lebih besar dari 1, maka

( pf − 1 pf−1 ) { p− 1 (mod p2) jika p≥ 3, 3 (mod 4) jika p = 2. (5)

Bukti. Untuk pembuktian ini dibagi dalam tiga kasus. Kasus 1 : Untuk p = 2

Jika p = 2 maka 2if ≡ 0 (mod 4) untuk setiap i = 1, 2, · · · , 2f−1 − 1, selanjutnya diperoleh ( 2f − 1 2f−1 ) = 2f−1−1 i=1 2f − i i , ( 2f − 1 2f−1 ) = 2f−1−1 i=1 (2 f i − 1), ( 2f − 1 2f−1 ) ≡ (−1)2f−1−1 (mod 4), ( 2f − 1 2f−1 ) =−1 ≡ 3 (mod 4). (6)

Persamaan (6) terbukti untuk bagian kedua dari persamaan (5). Kasus 2 : Untuk p = 3

(8)

( 3f − 1 3f−1 ) = 2 3f−1−1 i=1 3f − i i , ( 3f − 1 3f−1 ) = 2 3f−1−1 i=1 (3 f i − 1), ( 3f − 1 3f−1 ) ≡ 2(−1)3f−1−1 (mod 9), ( 3f − 1 3f−1 ) = 2 (mod 9). (7) Kasus 3 : Untuk p > 3 Misalkan ( pf − 1 pf−1 ) = p− 1 p ( pf pf−1 ) , (8) dan ( pf pf−1 ) ( pf−1 pf−2 ) , ( pf pf−1 ) ( p 1 ) , ( pf pf−1 ) = p (mod p3), (9)

dengan p > 3 adalah bilangan prima dan m≥ n ≥ 0 bilangan bulat. Dari persamaan (8) dan persamaan (9) diperoleh

( pf − 1

pf−1

)

≡ p − 1 (mod p2). (10)

Persamaan (7) dan persamaan (10) terbukti untuk bagian pertama dari persamaaan

(5). 2

Teorema 9 [4] Jika n > 1 dan q > 1 adalah bilangan bulat sehingga (

n− 1 k

)

≡ (−1)k (mod q), (11)

untuk setiap bilangan bulat k ∈ {0, 1, ..., n − 1}, maka q adalah bilangan prima dan n adalah pangkat dari bilangan prima q.

(9)

Bukti. Misalkan k = 1 pada persamaan (11), lalu diperoleh ( n− 1 1 ) ≡ (−1)1 (mod q), (n− 1)! 1!(n− 1 − 1)! ≡ (−1) 1 (mod q), (n− 1)! 1!(n− 2)! ≡ −1 (mod q), (n− 1)(n − 2)(n − 3)(n − 4) · · · 1! (n− 2)(n − 3)(n − 4) · · · ≡ −1 (mod q), (n− 1) 1 ≡ −1 (mod q), n− 1 ≡ −1 (mod q), n≡ 0 (mod q).

Oleh karena n≡ 0 (mod q), jika p adalah pembagi utama q, maka n dapat dinyatakan sebagai n = spf, dimana f dan s adalah bilangan bulat positif sehingga s tidak habis

dibagi p. Oleh karena itu pembuktiannya dibagi dalam tiga kasus yaitu: Kasus 1 : s = f = 1.

Kemudian n = p, karena n≡ 0 (mod q) maka q = p. Kasus 2 : s = 1 dan f ≥ 2.

Kemudian n = pf, dan oleh karena itu kongruen n ≡ 0 (mod q) berikut bahwa

q = pe dengan 1≤ e ≤ f. Dengan menggunakan persamaan (5) diperoleh

( n− 1 pf−1 ) = ( pf − 1 pf−1 ) { p− 1 (mod p2) jika p≥ 3, 3 (mod 4) jika p = 2. (12) Misalkan terdapat e ≥ 2 pada persamaan (11), dengan k = pf−1 mengurangi hasil modulo p2 sehingga diperoleh

( n− 1 pf−1 ) = ( pf − 1 pf−1 ) { −1 (mod p2) jika p≥ 3, 1 (mod 4) jika p = 2. (13) Perbandingan persamaan (12) dan persamaan (13) didapat p ≡ 0(mod p2). Kontradiksi ini menunjukkan e = 1 atau ekuivalen q = p.

Kasus 3 : s≥ 2. Misalkan s = ti=o sipi,

(10)

Teorema Lucas, ( n− 1 pf ) = ( spf − 1 pf ) , ( n− 1 pf ) = (∑t i=0sip i+f + (s 0− 1)pf + ∑f−1 i=0(p− 1)p i pf ) , ( n− 1 pf ) ( s0− 1 1 ) = s0− 1, ( n− 1 pf ) ≡ s − 1 (mod p). (14)

Persamaan (14) dan persamaan (11) dengan k = pf berarti bahwa s − 1 ≡ (−1)pf(mod p). Ini menunjukkan bahwa s≡ 0 (mod p), yang merupakan kontradiksi

dengan (14). Sehingga hal ini tidak mungkin. 2

4. CONTOH PENERAPAN

Misalkan p = 5 dan f = 2, dengan menggunakan koefisien binomial dapat ditunjukkan bahwa hasil kongruennya adalah p− 1 (mod p2).

( 52− 1 5 ) = ( 25− 1 5 ) , ( 52− 1 5 ) = ( 24 5 ) , ( 52− 1 5 ) = 24! 5!(24− 5)!, ( 52− 1 5 ) = 24! 5!19!, ( 52− 1 5 ) = 6, 204484017× 10 23 1, 459741205× 1019, ( 52− 1 5 ) = 4, 250399999× 104, ( 52− 1 5 ) = 42504.

Karena 42504 ≡ 4 (mod 25), maka (

52− 1 5

)

(11)

5. KESIMPULAN

Berdasarkan hasil pembahasan pada bab-bab sebelumnya, dapat disimpulkan bahwa kriteria prima berdasarkan kongruen Lucas diperoleh dari kongruen binomial sisa hasil bagi dari bilangan prima yang ditentukan dengan menggunakan koefisien binomial dan Teorema Lucas serta juga dengan menerapkan Teorema binomialnya. Salah satu kriteria yang diperoleh adalah

( n− 1

k )

≡ (−1)k (mod q),

jika n dan q adalah bilangan bulat yang lebih besar dari satu dan untuk setiap bilangan bulat k ∈ {0, 1, ..., n − 1} maka q merupakan bilangan prima dan n adalah pangkat dari bilangan prima.

DAFTAR PUSTAKA

[1] D. M. Burton, Elementary Number Theory, Allyn and Bacon, Boston, 1980. [2] N. J. Fine, Binomial coefficient modulo a prime, The American Math Monthly,

54 (1947), 589-59.

[3] T. Koshy, Elementary Number Theory with Applications, Second Edition, Elsevier Academic Press, London, 2007.

[4] R. Mestrovic, A primality criterion based on Lucas’ congruence, International Journal of Number Theory, 12 (2015) 1-5.

Referensi

Dokumen terkait

Teradu I s.d Teradu IV mengatakan bahwa tidak melakukan pembukaan kotak suara dan melakukan penghitungan surat suara ulang di Kantor KPU Kabupaten Manokwari karena berdasarkan

Penelitian hukum berjudul “Implementasi Negosiasi Tingkat Keuntungan terhadap Akad Murabahah Pada Bank Syariah (Studi terhadap Nasabah Debitur pada BRI Syariah

Penggunaan kata zhīhòu 'setelah', meskipun memiliki kesamaan makna dengan kata yǐhòu 'setelah', tetapi penggunaan kedua kata tersebut sedikit berbeda, yaitu kata

Hasil uji One way anova diperoleh nilai p value 0.001 (&lt; α 0.05), hal ini diisimpulkan bahwa ada pengaruh yang signifikan antara getah jarak cina

Sebagai upaya konkrit untuk mewujudkan transparansi dan akuntabilitas pengelolaan keuangan negara / daerah adalah penyampaian laporan pertanggungjawaban keuangan

Konektivitas terkait jalur sirkulasi, imaji yang terbentuk memberi kesan stadion sebagai bagian yang terhubung dengan lingkungan sekitar, selanjutnya menghadirkan

8. melaksanakan ketentuan sesuai piranti lunak penerimaan materiil yang diterbitkan Pengguna Barang atau Kuasa Pengguna Barang atau Pembantu Pengguna Barang Eselon