Presented by : Presented by :
HERTO DWI ARIESYADY HERTO DWI ARIESYADY
Ecophysiological
Studies
on
Biodiversity
of
Fatty
Acids
Ecophysiological
Studies
on
Biodiversity
of
Fatty
Acids
‐‐
Utilizing
Utilizing
B
Bacteria
acteria
and
and
A
Archaea
rchaea
in
in
Anaerobic
Anaerobic
Digester
Digester
Treating
Treating
Domestic
Domestic
Wastewater
Analyzed
by
Molecular
Biological
Techniques
Wastewater
Analyzed
by
Molecular
Biological
Techniques
Ecophysiological
Studies
on
Biodiversity
of
Fatty
Acids
Ecophysiological
Studies
on
Biodiversity
of
Fatty
Acids
‐‐
Utilizing
Utilizing
B
Bacteria
acteria
and
and
A
Archaea
rchaea
in
in
Anaerobic
Anaerobic
Digester
Digester
Treating
Treating
Domestic
Domestic
Wastewater
Analyzed
by
Molecular
Biological
Techniques
Wastewater
Analyzed
by
Molecular
Biological
Techniques
Academic Advisor : Prof.
Academic Advisor : Prof. YoshimasaYoshimasa WATANABEWATANABE Research Supervisor : Assoc. Prof. Satoshi OKABE Research Supervisor : Assoc. Prof. Satoshi OKABE
Water Quality Control Engineering Laboratory Water Quality Control Engineering Laboratory Urban Environmental Engineering Division Urban Environmental Engineering Division
Graduate School of Engineering Graduate School of Engineering
•
•ReuseReuse‐‐recyclingrecycling
•
•Land disposalLand disposal
Power consumption for WWTP : 1% Power consumption for WWTP : 1%
30
30‐‐50%50% isis forfor sludgesludge treatmenttreatment
Bio
Bio
‐‐
process
process
sludge
sludge
management
management
(in
(in
Japan)
Japan)
Bio
Bio
‐‐
process
process
sludge
sludge
management
management
(in
(in
Japan)
Japan)
Image is adopted from : Image is adopted from : www.veoliawater.com www.veoliawater.com
p p
• •CompostingComposting
•
•AnaerobicAnaerobic‐‐digestiondigestion
40 40‐‐50%50%
to reuse to reuse
<20% to disposal <20% to disposal
2
30 30‐‐40%40% toto ADAD
Wastewater Treatment System Wastewater Treatment System
Wastewater Generation
Wastewater Generation WaterWater DischargeDischarge & Land Disposal & Land Disposal BUILT AND NATURAL ENVIRONMENT
BUILT AND NATURAL ENVIRONMENT
Application
of
anaerobic
digester
(AD)
Application
of
anaerobic
digester
(AD)
Application
of
anaerobic
digester
(AD)
Application
of
anaerobic
digester
(AD)
AD AD
Problems :
Problems : OutcomeOutcome ::
• •SludgeSludge volumevolume
& its characteristics & its characteristics •
•EnergyEnergy consumptionconsumption •
•LimitationLimitation ofof naturalnatural resourcesresources
•
•SmallSmall amountamount disposeddisposed
sludge sludge •
•AlternativeAlternative energyenergy sourcesource •
•ConservationConservation ofof naturalnatural
resources resources
3
Obstacles of AD application : Obstacles of AD application : •
•LowLow growthgrowth raterate ofof microbesmicrobes •
•LongLong startingstarting‐‐up/recoveryup/recovery periodperiod •
•LongLong SolidSolid RetentionRetention TimeTime •
•HighHigh interdependencyinterdependency amongamong microbial groups
microbial groups •
•susceptiblesusceptible toto pHpH depletiondepletion
Problems
of
AD
application
Problems
of
AD
application
Problems
of
AD
application
Problems
of
AD
application
4 Some of operating AD Some of operating AD
performed poor performed poor
Evaluated by monitoring Evaluated by monitoring onlyonly
the
the physicophysico‐‐chemicalchemicalpropertiesproperties
Accumulation
Accumulationofof fattyfatty acidsacids
Propionate Propionate
Significance of propionate Significance of propionate‐‐ degradation : degradation :
•
•SulfateSulfate concentrationconcentration
•
•HH partial pressurepartial pressure
Anaerobic
digestion
processes
Anaerobic
digestion
processes
Anaerobic
digestion
processes
Anaerobic
digestion
processes
CH
CH33CHCH22COOCOO––+ 3+ 3HH22O CHO CH33COOCOO––+ + HCOHCO33––+ 3+ 3HH22+ H+ H++
ΔG
ΔGo o = +76 kJ/mol= +76 kJ/mol
5
We want to optimize We want to optimize
the performance the performance and stability of AD and stability of AD
By monitoring and controlling By monitoring and controlling fattyfatty
acids
acids‐‐oxidizingoxidizing bacteriabacteriainin ADAD •
•HH22partialpartial pressurepressure
•
•SyntrophicSyntrophic associationassociation
1.
1. thethe functionalfunctional communitycommunity structuresstructures ofof fattyfatty‐‐acidsacids (propionate(propionate‐‐,, butyrate
butyrate‐‐andand acetateacetate‐‐)) utilizingutilizing microbialmicrobial communitiescommunitiesasas wellwell asas glucose
glucose‐‐degradingdegrading bacteriabacteria asas majormajor trophictrophic groupsgroups inin aa realreal plantplant
AD AD
Through analyzing and characterizing : Through analyzing and characterizing :
GOAL : Optimizing the performance and stability of AD by
GOAL : Optimizing the performance and stability of AD by
controlling
controlling ‘key‘key‐‐players’players’microbesmicrobes
The
objectives
The
objectives
The
objectives
The
objectives
AD AD,,
2.
2. TheThe comparisoncomparisonofof thethe diversitydiversity ofof fattyfatty acidsacids‐‐utilizingutilizingandand othersothers
microbial community
microbial communityinin aa realreal plantplantandandaa modelmodel laboratorylaboratory‐‐scalescale ADs
ADsphylogenetically,phylogenetically,
3.
3. thetheabundanceabundance andand diversitydiversity ofof syntrophicsyntrophic propionatepropionate‐‐oxidizingoxidizing bacteria (POB) populations
bacteria (POB) populationsandand itsits dynamicsdynamics towardstowards thetheeffecteffect ofof propionate concentration
propionate concentrationonon thosethose populationspopulations,, inin aa modelmodel
laboratory laboratory‐‐scalescale ADAD..
Chapter 1
General General IntroductionIntroduction
Chapter 2
Functional
Functional Bacterial and Archaeal Community Bacterial and Archaeal Community StructuresStructuresof Majorof Major Trophic Groups in a Full
Trophic Groups in a Full--Scale Anaerobic Sludge DigesterScale Anaerobic Sludge Digester
Chapter 3
The
outline
of
the
thesis
The
outline
of
the
thesis
The
outline
of
the
thesis
The
outline
of
the
thesis
p
Assessment of Shift
Assessment of Shiftin Phylogenetic Microbial Diversity in Responsein Phylogenetic Microbial Diversity in Response to a Substrate Perturbation of a Mesophilic Anaerobic Digester to a Substrate Perturbation of a Mesophilic Anaerobic Digester
Chapter 4
Phylogenetic and Functional
Phylogenetic and Functional Diversity of PropionateDiversity of Propionate--Oxidizing Oxidizing Bacteria
Bacteriain an Anaerobic Digester Sludgein an Anaerobic Digester Sludge
Chapter 5
Conclusions
Conclusionsand Recommendationsand Recommendations
7
Milk Added Anaerobic Milk Added Anaerobic H
A B C
M S G
S H
A B C
M S G
S H
A B C
M S G
S H
A B C
M S G
S H
A B C
M S G
S H
A B C
M S G
S H
A B C
M S G
S H
A B C
M S G
S
Ebetsu City Anaerobic Ebetsu City Anaerobic Digester Plant Sludge Digester Plant Sludge
--Semi Batch Feeding Semi Batch Feeding -- Temp. = 37 Temp. = 37 ooCC
--Volume = 0.8 L Volume = 0.8 L -- pH = 6.5 pH = 6.5 –– 7.57.5
--SRT = 30 d SRT = 30 d
--C load = 1.5 gLC load = 1.5 gL--11dd--11
Digester Digester Digester Digester
Operation Condition Operation Condition
Research
design
Research
design
Research
design
Research
design
Phylogenetic Phylogenetic Analysis Analysis
Milk Added Anaerobic Milk Added Anaerobic
Digester Sludge Digester Sludge
MAR
MAR--DAPI analysisDAPI analysis MAR
MAR--FISH analysisFISH analysis
Micro Micro--manipulation manipulation
8
Functional community structure/substrate
uptake patterns
Phylogeny identity of intriguing cell
Digester Digester Performance Performance Digester Digester Performance Performance
Biodiversity and phylogeny affiliation
Samples Samples
Confocal Laser Scanning Microscopy
CLSM
Fluorescence Transmission [14C] Substrates
3 h, 37oC Incubation
DAPI/FISH
MAR
MAR
MAR
‐‐
DAPI/FISH
DAPI/FISH
technique
technique
MAR
MAR
‐‐
DAPI/FISH
DAPI/FISH
technique
technique
Counting Counting Washing
Fixation
DAPI/FISH
DAPI/FISH
Microautoradiography
Microautoradiography
Making Film Exposure Development
Silver grain by MAR
9
Functional
Bacterial
and
Archaeal
Community
Structures
of
Functional
Bacterial
and
Archaeal
Community
Structures
of
Major
Trophic
Groups
in
a
Full
Major
Trophic
Groups
in
a
Full
‐‐
Scale
Scale
Anaerobic
Anaerobic
Sludge
Sludge
Digester
Digester
(Water Research, 2007, doi:10.1016/j.watres.2006.12.036)
Chapter
Chapter
2
2
Chapter
Chapter
2
2
Discussion Topic: Discussion Topic:
the community structures (diversity and relative abundance) the community structures (diversity and relative abundance)of of major bacterial and archaeal trophic communities groups in major bacterial and archaeal trophic communities groups in anaerobic digester sludge
anaerobic digester sludge
11
Functional
Microbial
Groups
of
AD
Functional
Microbial
Groups
of
AD
Functional
Microbial
Groups
of
AD
Functional
Microbial
Groups
of
AD
Lactose
G alactose G lucose
Propionate
hydrolytic bacteria
Polym er
G alactose G lucose
Propionate
ferm entative bacteria
Lactose
G alactose G lucose
Propionate
hydrolytic bacteria
Polym er
G alactose G lucose
Propionate
ferm entative bacteria
C H4 C O2
H2, C O2 A cetate
C H4 C O2
B utyrate
fatty
acids-oxidizing bacteria m ethanogens
C H4 C O2
H2, C O2 A cetate
C H4 C O2
B utyrate
fatty
acids-oxidizing bacteria m ethanogens
The most susceptible members :
The most susceptible members : propionatepropionate‐‐,, butyratebutyrate‐‐,, acetateacetate‐‐utilizingutilizing microbesmicrobes
Their diversity and population sizes Their diversity and population sizes
are
are still unknownstill unknown
Information is
Information is neededneededtoto enhanceenhance the performance & stability of AD the performance & stability of AD
The
objectives
The
objectives
The
objectives
The
objectives
p y
p y
13
• Functional community structure(diversity & abundance)
of major trophic groups of propionate-, butyrate-,
acetate-andglucose-utilizing microbes To characterize, quantify :
Milk Added Anaerobic Milk Added Anaerobic
H
Ebetsu City Anaerobic Ebetsu City Anaerobic Digester Plant Sludge Digester Plant Sludge
--Semi Batch Feeding Semi Batch Feeding
Operation Condition Operation Condition
•
• mesophilic (40ºC) twomesophilic (40ºC) two‐‐phase ADphase AD •
• intermittent substrate of excess sludge from WWTP intermittent substrate of excess sludge from WWTP for 120,000 p.e.
• C load = 2.5 kg mC load = 2.5 kg m‐‐33dayday‐‐11 •
• phosphate phosphate ≈≈4 mM4 mM •
• Gas production = 1 Gas production = 1 ××101066mm33yearyear‐‐11, with 55% CH, with 55% CH 4
Phylogenetic Phylogenetic Analysis Analysis
Milk Added Anaerobic Milk Added Anaerobic
Digester Sludge Digester Sludge
MAR
MAR--DAPI analysisDAPI analysis MAR
MAR--FISH analysisFISH analysis
Micro Micro--manipulation manipulation
•Group-specific FISH probes.
•[14C]glucose,[14C]propionate, [14C]butyrate,[14C]acetate.
Most active MAR-positive cells Digester Digester Performance Performance
Universal Bacteriaand
Archaeaprimer sets
14
Microbial
diversity
in
AD
(clones
library)
Microbial
diversity
in
AD
(clones
library)
Microbial
diversity
in
AD
(clones
library)
Microbial
diversity
in
AD
(clones
library)
Most frequent
Most frequentBacteriaBacteriaclones : clones : BacteroidetesBacteroidetes> > FirmicutesFirmicutes> > ChloroflexiChloroflexi Most frequent
Most frequentArchaeaArchaeaclones : clones : MethanosaetaMethanosaeta> > MethanospirillumMethanospirillum
QUANTIFICATION
QUANTIFICATION ÆÆFISHFISHusingusing groupgroup‐‐specificspecific probesprobes
15
otal DA
P
I
(%) TotalTotal specificspecific BacteriaBacteria probesprobes Total DAPI
Total DAPI Tot.Tot. specificspecific ArchaeaArchaea probesprobes Total DAPI Total DAPI = 37%37%
= 13%13%
Total DAPI = 1.2 ×1010cells g‐VSS‐1
Microbial
diversity
in
AD
(FISH
analysis)
Microbial
diversity
in
AD
(FISH
analysis)
Microbial
diversity
in
AD
(FISH
analysis)
Microbial
diversity
in
AD
(FISH
analysis)
0 2 4
Name of probe
FISH-positiv
e
Bacteria Bacteria‐‐targetedtargeted probesprobes Archaea Archaea‐‐targetedtargeted probesprobes
16
Lactose
G alactose G lucose
Propionate
hydrolytic bacteria
Polym er
G alactose G lucose
Propionate
ferm entative bacteria
Lactose
G alactose G lucose
Propionate
hydrolytic bacteria
Polym er
G alactose G lucose
Propionate
ferm entative bacteria
Samples Samples
Confocal Laser Scanning Microscopy
CLSM
Fluorescence Transmission [14C] Substrates
3 h, 37oC Incubation
WashingMicroautoradiographyMicroautoradiography
DAPI/FISH MAR Samples
Samples
Confocal Laser Scanning Microscopy
CLSM CLSM CLSM
Fluorescence Transmission [14C] Substrates
3 h, 37oC Incubation
WashingMicroautoradiographyMicroautoradiography
DAPI/FISH MAR
Cross
Cross
‐‐
feeding
feeding
in
in
MAR
MAR
‐‐
FISH
FISH
experiment
experiment
Cross
Cross
‐‐
feeding
feeding
in
in
MAR
MAR
‐‐
FISH
FISH
experiment
experiment
C H4 C O2
H2, C O2 A cetate
C H4 C O2
B utyrate
fatty
acids-oxidizing bacteria m ethanogens
C H4 C O2
H2, C O2 A cetate
C H4 C O2
B utyrate
fatty
acids-oxidizing bacteria m ethanogens CountingCounting
Washing Fixation
DAPI/FISH
DAPI/FISH Making Film
Exposure Development
Silver grain by MAR
DAPI/FISH Making Film
Exposure Development
Silver grain by MAR
All of the process
All of the process proceed simultaneouslyproceed simultaneously
Substrate cross
Substrate cross‐‐feedingfeeding mightmight occuroccur atat thethe prolonged incubation time prolonged incubation time
17
Time
course
analysis
at
different
incubation
period
Time
course
analysis
at
different
incubation
period
Time
course
analysis
at
different
incubation
period
Time
course
analysis
at
different
incubation
period
9
9‐‐hh incubationincubation timetime waswas appropriateappropriateto prevent crossto prevent cross‐‐feedingfeeding
Green : GNSB Green : GNSB‐‐941941
Red : EUB338 Red : EUB338
Green : SmiSR354
Green : SmiSR354
Red : EUB338 Red : EUB338
Substrate
uptake
patterns
of
microbes
Substrate
uptake
patterns
of
microbes
Substrate
uptake
patterns
of
microbes
Substrate
uptake
patterns
of
microbes
Green : BET42a
Green : BET42a
Red : EUB338 Red : EUB338
Green : MX825
Green : MX825
Red : ARC915 Red : ARC915
19
Butyrate 3% Propionate 4%
Acetate 6% Glucose
10%
Functional
community
composition
(of
total
cells)
Functional
community
composition
(of
total
cells)
Functional
community
composition
(of
total
cells)
Functional
community
composition
(of
total
cells)
Others 77%
Glucose
Glucose--fermenting bacteriafermenting bacteria : 10%: 10%
Propionate
Propionate--utilizing bacteria utilizing bacteria : 4: 4%%
Butyrate
Butyrate--utilizing bacteriautilizing bacteria : 3% : 3% Acetate
Acetate--utilizing microbesutilizing microbes : 6%: 6% 20
27% GNSB-941
1%
TM7905 4%
Others
6% GAM42a
5% CFB719 <1% Spiro1400
6%
GNSB
GNSB--941941: : HGC69AHGC69A =
=33::11
Glucose
Glucose
‐‐
utilizing
utilizing
community
community
composition
composition
Glucose
Glucose
‐‐
utilizing
utilizing
community
community
composition
composition
13% HGC69A
GNSB 941
LGC354
39%
BET42a BET42a BET42a : : BetaproteobacteriaBetaproteobacteria
GNSB
GNSB‐‐941 : 941 : ChloroflexiChloroflexi
HGC69A
HGC69A : : ActinobacteriaActinobacteria
Spiro1400 : Spiro1400 : SpirochaetaSpirochaeta
TM7905
TM7905 : TM7 candidatus : TM7 candidatus Hitherto unknown function Hitherto unknown function
Spirochaeta
Spirochaeta&& TM7TM7 candidatuscandidatuswere were found to be
found to be glucoseglucose‐‐utilizersutilizers
21
48% 12%
Synbac824 10% Others
SmiSR354
SmiSR354: : Synbac824Synbac824 =
=33: : 11
Smithella sp. >> Syntrophobacter Smithella sp. >> Syntrophobacter
Propionate
Propionate
‐‐
utilizing
utilizing
community
community
composition
composition
Propionate
Propionate
‐‐
utilizing
utilizing
community
community
composition
composition
48% BET42a
30% SmiSR354
SmiSR354 :
SmiSR354 : SmithellaSmithellasp. SR sp. SR Synbac824 :
Synbac824 : SyntrophobacterSyntrophobactersp.sp. To be related with To be related with
sulfate concentration sulfate concentration
22
11% LGC354
7%
Others Synm700Synm700: : LGC354LGC354
= =33: : 11
h h
Butyrate
Butyrate
‐‐
utilizing
utilizing
community
community
composition
composition
Butyrate
Butyrate
‐‐
utilizing
utilizing
community
community
composition
composition
48% BET42a
35% Synm700
Synm700 :
Synm700 : SyntrophomonasSyntrophomonassp.sp. LGC354
LGC354 : Low: Low‐‐G+C bacteriaG+C bacteria Syntrophomonas Syntrophomonasgroup was group was confirmed to be most important confirmed to be most important
butyrate butyrate‐‐oxidizeroxidizer
23
5% GAM42a
10% LGC354
1%
Syn773 3%
Others Bacteria
18% MX825
Bacteria Bacteria: : ArchaeaArchaea
= =11: : 11
Hitherto unknown function
Hitherto unknown function SynergistesSynergisteswere were found to be
found to be acetateacetate‐‐utilizersutilizers
Acetate
Acetate
‐‐
utilizing
utilizing
community
community
composition
composition
Acetate
Acetate
‐‐
utilizing
utilizing
community
community
composition
composition
6% Others Archaea 55%
BET42a
MX825
1% MS821
GAM42a :
GAM42a : GammaproteobacteriaGammaproteobacteria
Syn773 :
Syn773 : SynergistesSynergistes groupgroup MX825 :
MX825 : MethanosaetaMethanosaeta
MS821 :
MS821 : MethanosarcinaMethanosarcina Methanosaeta
Methanosaeta sp. sp. ÆÆmost important most important ‐‐
acetoclastic methanogen acetoclastic methanogen
Betaproteobacteria Betaproteobacteria
was also identified as was also identified as
fatty
fatty‐‐acidsacids utilizerutilizer
This group
This group isis notnot affiliatedaffiliated
with syntrophic
with syntrophic
association association
Identification
of
active
Betaproteobacteria
Identification
of
active
Betaproteobacteria
Identification
of
active
Betaproteobacteria
Identification
of
active
Betaproteobacteria
MAR+ MAR+ BET42a BET42a
Micromanipulation, Micromanipulation, FISH
FISH usingusing specificspecific probe,probe,
& DAPI & DAPI‐‐stainingstaining
25
association association
•• MARMAR--FISHFISH andand micromanipulationmicromanipulation analysisanalysis cancan bebe appliedapplied
successfully
successfully forfor identificationidentification andand characterizationcharacterization ofof functionalfunctional community
community structurestructure ofof majormajor trophictrophic groupsgroups inin ADAD..
•• TheThe fattyfatty acidsacids-- (esp(esp.. propionatepropionate-- && butyratebutyrate--)) utilizingutilizing
microorganisms
microorganismshadhad lowlow abundanceabundance andand wereweremoremore specializedspecialized
to
to aa fewfew phylogeneticphylogenetic groupsgroups comparedcompared toto glucoseglucose--degradingdegrading bacteria
bacteria..
Conclusions
Conclusions
Conclusions
Conclusions
•• MembersMembers ofof ChloroflexiChloroflexi,, SmithellaSmithella,, SyntrophomonasSyntrophomonas andand Methanosaeta
Methanosaeta groupsgroups dominateddominated thethe glucoseglucose--,, propionatepropionate--,, butyrate
butyrate-- andand acetateacetate--utilizingutilizing microorganismmicroorganism communitycommunity.
•• DespiteDespite thethe lowlow abundance,abundance, thethe hithertohitherto unknownunknown metabolicmetabolic functions
functions ofof microbesmicrobes representedrepresented byby nono oror fewfew cultivatedcultivated
representatives
representatives werewere identifiedidentified toto bebemembersmembers ofof thesethese groupsgroups..
27
Assessment of Shift in Phylogenetic Microbial Diversity in
Assessment of Shift in Phylogenetic Microbial Diversity in
Response to a Substrate Perturbation of a Mesophilic
Response to a Substrate Perturbation of a Mesophilic
Anaerobic Digester
Anaerobic Digester
Chapter
Chapter
3
3
Chapter
Chapter
3
3
Discussion Topic : Discussion Topic :
The
The comparisoncomparisonof of the the diversity ofdiversity of fatty acidsfatty acids--utilizingutilizingandand others microbial community
others microbial communityin a real plantin a real plantandanda model a model laboratory
laboratory--scale ADsscale ADsphylogeneticallyphylogenetically
28
COMPLEX Anaerobic Digester Plant
Substrate
variation
vs
microbial
diversity
Substrate
variation
vs
microbial
diversity
Substrate
variation
vs
microbial
diversity
Substrate
variation
vs
microbial
diversity
SIMPLE
L/ S Gas Collection Bag
Magnetic Stirrer 37 oC 0.8 L
Lab-scale Anaerobic Digester
29
• The phylogenetic diversity of functional groups
especially fatty acids-utilizing microbial community in
real AD plant sludgeand amodel laboratory-scale AD
sludge
To compare :
The
objectives
The
objectives
The
objectives
The
objectives
sludge
By application of :
Full
Full--length
length 16S rRNA
cloning analysis
Milk Added Anaerobic Milk Added Anaerobic
H
Ebetsu City Anaerobic Ebetsu City Anaerobic Digester Plant Sludge Digester Plant Sludge
(EADS)
Digester Digester Digester Digester
Operation Condition Operation Condition
Methodology
Methodology
Methodology
Methodology
Phylogenetic Phylogenetic Analysis Analysis
Digester Sludge Digester Sludge
(MADS) (MADS)
MAR
MAR--DAPI analysisDAPI analysis MAR
MAR--FISH analysisFISH analysis
Micro
Universal Bacteriaand
Archaeaprimer sets
• •FAFA concentrationconcentration
• •GasGas compositioncomposition
•
•CC contentcontent (as(as COD)COD)
• •SolidSolid contentcontent
31
Diversity
of
bacterial
and
archaeal
domain
Diversity
of
bacterial
and
archaeal
domain
Diversity
of
bacterial
and
archaeal
domain
Diversity
of
bacterial
and
archaeal
domain
0 10 20 30
Alphap rote
obac teria
Betapr oteob
OTUs number
Major group of Major group of BacteriaBacteria ::
1.
1. BacteroidetesBacteroidetes 2.
2. FirmicutesFirmicutes 3. 3. ChloroflexiChloroflexi 4.
4. ProteobacteriaProteobacteria
0 5 10 rillum Meth
ano
OTUs number
Major group of Major group of ArchaeaArchaea ::
1.
1. MethanosaetaMethanosaeta 2.
2. MethanospirillumMethanospirillum 3.
3. MethanoculleusMethanoculleus
32
Desulfotomaculumthermoacetoxidans Pelotomaculumthermopropionicum
EADS18 (1/521) EADS19 (1/521)
Thermoanaerobacteriumsp. EADS20 (2/521)
Thermoanaerobactermathranii
Uncultured bacterium SJA-143
Clostridium quercicolum
Uncultured bacterium SJA-112 MADS8 (1/133) Uncultured bacterium AA01 EADS21 (5/521) EADS22 (4/521)
EADS23 (4/521) MADS9 (2/133)
Syntrophomonassapovorans Syntrophomonasflectens
EADS24 (4/521) EADS25 (7/521)
Syntrophomonassp. MGB-C1 EADS26 (4/521) 74
EADS18 (1/521) EADS19 (1/521)
Thermoanaerobacteriumsp. EADS20 (2/521)
Thermoanaerobactermathranii
Uncultured bacterium SJA-143
Clostridium quercicolum
Uncultured bacterium SJA-112
MADS8 (1/133)
Uncultured bacterium AA01 EADS21 (5/521) EADS22 (4/521)
EADS23 (4/521) MADS9 (2/133)
Syntrophomonassapovorans Syntrophomonasflectens
EADS24 (4/521) EADS25 (7/521)
Syntrophomonassp. MGB-C1 EADS26 (4/521) 74
Syntrophomonassp. sp. ÆÆbutyratebutyrate oxidationoxidation
Diversity
of
Firmicutes
phylum
Diversity
of
Firmicutes
phylum
Diversity
of
Firmicutes
phylum
Diversity
of
Firmicutes
phylum
EADS26 (4/521) EADS27 (3/521) EADS28 (4/521)
EADS29 (4/521) MADS10 (1/133)
Clostridium lituseburense
EADS30 (4/521)
Clostridium sporosphaeroides
EADS31 (3/521) EADS32 (2/521)
EADS33 (2/521) EADS34(3/521)
Ruminococcusflavefaciens
EADS35 (2/521) EADS36 (2/521) MADS11 (1/133) Uncultured bacterium R6b7
EADS37 (2/521) EADS38 (3/521)
Uncultured bacterium ZZ12C1 EADS39 (2/521)
Clostridium cellobioparum
MADS12 (2/133) EADS40 (6/521)
Clostridium thermocellum
EADS41 (5/521)
Clostridium sp. JC3 EADS42 (5/521) 100
EADS26 (4/521) EADS27 (3/521) EADS28 (4/521)
EADS29 (4/521) MADS10 (1/133) Clostridium lituseburense
EADS30 (4/521)
Clostridium sporosphaeroides
EADS31 (3/521) EADS32 (2/521)
EADS33 (2/521) EADS34(3/521)
Ruminococcusflavefaciens
EADS35 (2/521) EADS36 (2/521) MADS11 (1/133)
Uncultured bacterium R6b7 EADS37 (2/521) EADS38 (3/521)
Uncultured bacterium ZZ12C1 EADS39 (2/521)
Clostridium cellobioparum MADS12 (2/133) EADS40 (6/521)
Clostridium thermocellum
EADS41 (5/521)
Clostridium sp. JC3 EADS42 (5/521) 100
Clostridiagroup group ÆÆto be responsible in to be responsible in
cellulose & sugar fermentation cellulose & sugar fermentationdowns to downs to fatty acids
ndance (%
)
u
ndance (%
) GlucoseGlucose
Propionate
Abundances
vs
specific
rates
Abundances
vs
specific
rates
Abundances
vs
specific
rates
Abundances
vs
specific
rates
Ab
u
Ab
u PropionatePropionate
Acetate
Specific Rate (
Specific Rate (x 10x 10--44mol gmol g--VSSVSS--1 1 hh--11))
1.4
Propionate oxidation
Propionate oxidation is is “bottle neck”“bottle neck”
Limiting factor
Limiting factorin anaerobic degradationin anaerobic degradation Glc
Glc : : PropProp: : AceAce
= =1212: : 11::22
37
•• TheThe phylogenyphylogeny analysisanalysis basedbased onon 1616SS rRNArRNA cloningcloning analysisanalysis elucidated
elucidated thatthat thethe substratesubstrate simplificationsimplification willwill simplifiedsimplified thethe structure
structure ofof thethe anaerobicanaerobic microbialmicrobial communitycommunity inin termterm ofof species
species oror genusgenus levellevelbutbut notnot phylaphyla oror groupgroup level,level, allowedallowed more
more effectiveeffective utilizationutilizationofof perturbedperturbed substratesubstrate..
Conclusions
Conclusions
Conclusions
Conclusions
•• DueDue toto itsits lowlow abundanceabundance andand degradationdegradation rate,rate, propionate propionate--oxidizing
oxidizing bacteriabacteriawerewere expressedexpressed toto bebe aalimitinglimiting factorfactorinin ADAD processes
processes..
Phylogenetic and Functional Diversity of Propionate
Phylogenetic and Functional Diversity of
Propionate--Oxidizing Bacteria (POB) in an Anaerobic
Oxidizing Bacteria (POB) in an Anaerobic
Digester Sludge
Digester Sludge
(Applied Microbiology and Biotechnology, 2007, doi:10.1007/s00253‐007‐0842‐y)
Chapter
Chapter
4
4
Chapter
Chapter
4
4
Discussion Topics : Discussion Topics :
1.
1. community structure of community structure of activeactivePOB population under different POB population under different propionate concentrations
propionate concentrations
2.
2. comprehensive comprehensive identification of active POBidentification of active POBto explore their to explore their phylogeny identity
phylogeny identity
39
-- Smithella propionicaSmithella propionica
--Syntrophobacter fumaroxidansSyntrophobacter fumaroxidans
Under Methanogenic Condition :
Acetate organic sludge organic sludge
CH
Syntrophobacter fumaroxidans Syntrophobacter fumaroxidans
--Syntrophobacter pfennigiiSyntrophobacter pfennigii
--Syntrophobacter woliniiSyntrophobacter wolinii
--Syntrophobacter sulfatireducensSyntrophobacter sulfatireducens
--Pelotomaculum schinkiiPelotomaculum schinkii
Diversity, abundance, and
Diversity, abundance, and in situin situactivity activity of these bacteria group of these bacteria group have
haveNOTNOTbeen demonstrated yetbeen demonstrated yet
40
• the effect of propionate concentration on the active
community composition of POB
To investigate, identify, characterize :
• the community structure (abundance&diversity) of POB
The
objectives
The
objectives
The
objectives
The
objectives
By application of : By application of :
rRNA cloning analysis,
rRNA cloning analysis, MARMAR--FISHFISHÆÆcommunity structurecommunity structure Micromanipulation
Micromanipulation ÆÆphylogeny identification of active POBphylogeny identification of active POB
41
Milk Added Anaerobic Milk Added Anaerobic H
Ebetsu City Anaerobic Ebetsu City Anaerobic Digester Plant Sludge Digester Plant Sludge
--Semi Batch Feeding Semi Batch Feeding
Operation Condition Operation Condition
Methodology
Methodology
Methodology
Methodology
Phylogenetic Phylogenetic Analysis Analysis
Milk Added Anaerobic Milk Added Anaerobic
Digester Sludge Digester Sludge
MAR
MAR--DAPI analysisDAPI analysis MAR
MAR--FISH analysisFISH analysis
Micro Micro--manipulation manipulation
Active MAR- positive POB cells
Digester Digester Performance Performance Digester Digester Performance Performance
Universal Bacteria
primer sets
•POB-specific FISH probes.
•[14C]propionate.
• •FAFA concentrationconcentration
• •GasGas compositioncomposition
•
•CC contentcontent (as(as COD)COD)
• •SolidSolid contentcontent
42
Feeding substrate (milk) Feeding substrate (milk)
Fate
of
fatty
acids
during
AD
operation
Lactate Formate
0
Lactate Formate
‐‐[Sulfate] [Sulfate] ≈≈0.01 mM0.01 mM ‐‐HH22partial pressure < 10partial pressure < 10‐‐44atmatm ‐‐[CH[CH44] = 60] = 60‐‐65 mol%65 mol%
‐‐[CO[CO22] = 35] = 35‐‐40 mol%40 mol% 43
alkanes -degrading methanogenic consortium clone B2 (AJ133795) alkanes -degrading methanogenic consortium clone B1 (AJ133794)
OTU 1 (2 clones) OTU 74 (1 clones)
anaerobic trichlorobenzene consortium clone SJA -63 (AJ009471) contaminated aquifer clone WCHB1 -12 (AF050534)
OTU 13 (8 clones)
municipal anaerobic digester clone (CR933198)
Smithella propionica(AF126282) granular sludge clone (AF482441)
alkanes -degrading methanogenic consortium clone B3 (AJ133796) landfill leachate clone (AJ853548)
Micromanipulated long rod bacterium clone
alkanes -degrading methanogenic consortium clone B2 (AJ133795) alkanes -degrading methanogenic consortium clone B1 (AJ133794)
OTU 1 (2 clones) OTU 74 (1 clones)
anaerobic trichlorobenzene consortium clone SJA -63 (AJ009471) contaminated aquifer clone WCHB1 -12 (AF050534)
OTU 13 (8 clones)
municipal anaerobic digester clone (CR933198)
Smithella propionica Smithella propionica(AF126282)(AF126282)
granular sludge clone (AF482441)
alkanes -degrading methanogenic consortium clone B3 (AJ133796) landfill leachate clone (AJ853548)
Micromanipulated
Micromanipulated long rod bacterium clonelong rod bacterium clone
Propionate Propionate‐‐
Oxidizing
Oxidizing
Bacteria Bacteria
Diversity
of
propionate
Diversity
of
propionate
‐‐
oxidizing
oxidizing
bacteria
bacteria
group
group
Diversity
of
propionate
Diversity
of
propionate
‐‐
oxidizing
oxidizing
bacteria
bacteria
group
group
0.02
OTU 14 (2 clones)
terephthalate degrading anaerobic hybrid reactor clone TTA H101 (AY661418)
Syntrophus gentianae(X85132)
OTU 11 (1 clones)
Syntrophobacter wolinii(X70906)
Pelotomaculum thermopropionicum(AB035723)
Pelotomaculum schinkii(X91169)
Desulfotomaculum thermobenzoicum(Y11574)
Syntrophobotulus glycolicus(X99706)
Syntrophothermus lipocalidus(AB021305)
OTU 18 (1 clones)
Syntrophomonas sapovorans(AF022249)
Syntrophomonas sp. TB-6 (AB098336)
Syntrophomonas wolfei (AF022248)
Syntrophospora bryantii(M26491)
Syntrophomonas sp. MGB-C1 (AB021306)
0.02 0.02
OTU 14 (2 clones)
terephthalate degrading anaerobic hybrid reactor clone TTA H101 (AY661418)
Syntrophus gentianae(X85132)
OTU 11 (1 clones)
Syntrophobacter Syntrophobacter woliniiwolinii(X70906)(X70906) Pelotomaculum thermopropionicum(AB035723)
Pelotomaculum schinkii(X91169)
Desulfotomaculum thermobenzoicum(Y11574)
Syntrophobotulus glycolicus(X99706)
Syntrophothermus lipocalidus(AB021305)
OTU 18 (1 clones)
Syntrophomonas sapovorans(AF022249)
Syntrophomonas sp. TB-6 (AB098336)
Syntrophomonas wolfei (AF022248)
Syntrophospora bryantii(M26491)
Syntrophomonas sp. MGB-C1 (AB021306)
Butyrate Butyrate‐‐ Oxidizing Oxidizing Bacteria Bacteria