• Tidak ada hasil yang ditemukan

LAPORAN PRAKTIKUM PENGAN TAR OSEANOGRAFI

N/A
N/A
Protected

Academic year: 2018

Membagikan "LAPORAN PRAKTIKUM PENGAN TAR OSEANOGRAFI"

Copied!
12
0
0

Teks penuh

(1)

LAPORAN PRAKTIKUM PENGANTAR OSEANOGRAFI

ARUS

Oleh :

Nama : Ridho Anzari

Nim : 08101005026

Kelompok : II (dua)

LABORATORIUM OSEANOGRAFI PROGRAM STUDI ILMU KELAUTAN

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SRIWIJAYA

(2)

BAB I

PENDAHULUAN

1.1. Latar Belakang

Oseanografi meliputi berbagai aspek, aspek fisika, kimia, geologi, geografi, dan biologi atau ilmu hayati. Dalam aspek Fisika banyak hal yang dipelajari dalam oseanografi diantaranya adalah pasang surut air laut, suhu air laut, gelombang laut, dan sebangainya. Dalam praktikum ini akan dibahas mengenai arus. Arus laut adalah proses pergerakan massa air laut yang menyebabkan perpindahan horizontal dan vertikal massa air laut tersebut yang terjadi secara terus (Gross,1972). Pergerakan massa air ini ditimbulkan oleh beberapa gaya sehingga Herunadi (1996) dalam Kurniawan (2004) mengemukakan bahwa sinyal arus merupakan resultan dari berbagai sinyal yang mempunyai frekuensi terstentu yang dibagkitkan oleh beberapa gaya yang berbeda-beda. Sedangkan menurut Hutabarat dan Evans (1984) arus merupakan gerakan air yang terjadi pada seluruh lautan di dunia.

Terjadinya arus di lautan disebabkan oleh dua faktor utama, yaitu faktor internal dan faktor eksternal. Faktor internal seperti perbedaan densitas air laut gradien tekanan mendatar dan gesekan lapisan air. Sedangkan faktor eksternal seperti gaya tarik matahari dan bulan yang dipengaruhi oleh tahanan dasar laut dan gaya coriolis, perbedaan tekanan udara, gaya gravitasi, gaya tektonik dan angin ( Gross, 1990).

(3)

Ketika angin berhembus di laut, energi yang ditransfer dari angin ke batas permukaan, sebagian energi ini digunakan dalam pembentukan gelombang gravitasi permukaan, yang memberikan pergerakan air dari yang kecil kearah perambatan gelombang sehingga terbentuklah arus dilaut. Semakin cepat kecepatan angin, semakin besar gaya gesekan yang bekerja pada permukaan laut, dan semakin besar arus permukaan. Dalam proses gesekan antara angin dengan permukaan laut dapat menghasilkan gerakan air yaitu pergerakan air laminar dan pergerakan air turbulen (Supangat, 2003).

Gaya Viskositas pada permukaan laut ditimbulkan karena adanya pergerakan angin pada permukaan laut sehingga menyebabkan pertukaran massa air yang berdekatan secara periodik, hal ini disebabkan karena perbedaan tekanan pada fluida. Gaya viskositas dapat dibedakan menjadi dua gaya yaitu viskositas molecular dan viskositas eddy. Gesekan dalam pergerakan fluida hasil dari transfer momentum diantara bagian-bagian yang berbeda dari fluida. Dalam pergerakan fluida dalam aliran laminer, transfer momentum terjadi hasil transfer antara batas yang berdekatan yang disebut viskositas molekular Di permukaan laut, gerakan air tidak pernah laminer, tetapi turbulen sehingga kelompok-kelompok air, bukan molekul individu, ditukar antara satu bagian fluida ke yang lain. Gesekan internal yang dihasilkan lebih besar dari pada yang disebabkan oleh pertukaran molekul individu dan disebut viskositas eddy (Anonim, 2009).

1.2. Tujuan

1. Mengetahui proses terjadinya arus 2. Mengetahui jenis-jenis arus

3. Mengetahui faktor yang mempengaruhi arus 4. Mampu menjelaskan dan menunjukan arah arus 1.3. Manfaat

1. Dapat mengetahui jenis-jenis arus dan bagaimana proses terjadinya.

(4)

BAB II

TINJAUAN PUSTAKA

Arus laut adalah proses pergerakan massa air laut yang menyebabkan perpindahan horizontal dan vertikal massa air laut tersebut yang terjadi secara terus (Gross,1972). Pergerakan massa air ini ditimbulkan oleh beberapa gaya sehingga Herunadi (1996) dalam Kurniawan (2004) mengemukakan bahwa sinyal arus merupakan resultan dari berbagai sinyal yang mempunyai frekuensi terstentu yang dibagkitkan oleh beberapa gaya yang berbeda-beda. Sedangkan menurut Hutabarat dan Evans (1984) arus merupakan gerakan air yang terjadi pada seluruh lautan di dunia.

Arus laut mampu mengalir mengarungi ribuan kilometer dan sangat penting untuk menentukan iklim dari sebuah benua, khususnya wilayah yang berbatasan dengan laut. Contohnya arus Gulf Stream yang menyebabkan daerah Barat Laut Eropa lebih hangat dibandingkan wilayah lain yang memiliki lintang yang sama (Anonim, 2009).

Faktor Penyebab Terjadinya Arus

Pergerakan massa air ini ditimbulkan oleh beberapa gaya sehingga Herunadi (1996) dalam Kurniawan (2004) mengemukakan bahwa sinyal arus merupakan resultan dari berbagai sinyal yang mempunyai frekuensi terstentu yang dibagkitkan oleh beberapa gaya yang berbeda-beda. Ada dua jenis gaya utama yang penting dalam proses gerak (motion) yakni gaya primer dan sekunder. Gaya primer merupakan gaya yang menyebabkan gerak (motion) antara lain: gravitasi, wind stress, tekanan atmosfer, dan seismic. Sedangkan gaya sekunder merupakan gaya yang muncul akibat adanya gerak (motion) antara lain : gaya Coriolis dan gesekan (friction) (Pond dan Pickard, 1983).

(5)

tahanan dasar laut dan gaya coriolis, perbedaan tekanan udara, gaya gravitasi, gaya tektonik dan angin.

Jenis-jenis Arus

Berdasarkan gaya-gaya yang menimbulkannya, arus dibagi kedalam berbagai kelompok. Gross (1990), membagi menjadi empat macam yaitu :

1. Arus Ekman, merupakan arus yang disebabkan oleh gesekan angin

2. Arus Pasang Surut (Pasut), merupakan arus yang disebabkan adanya gaya pembangkit pasut

3. Arus termohalin, merupakan arus yang disebabkan oleh adanya perbedaan densitas air laut

4. Arus Geostrofik, merupakan arus yang disebabkan karena adanya gradien tekanan mendatar dan coriolis

Sedangkan Brown et al. (1989) membagi arus atau gerak berdasarkan gaya penyebabnya sebagai berikut :

1. Arus Thermohalin

2. Arus yang digerakkan angin (wind driven current) 3. Arus Pasang Surut

4. Arus Inersia

5. Arus Geostrofik Pond dan Pickard (1983) melakukan pembagian arus berdasarkan komponen gesekan (Friction) yaitu:

1. Arus tanpa gesekan (current without friction) 2. Arus dengan gesekan (current with friction)

Berdasarkan penguraian Pond dan Pickard (1983) serta Gross (1990) di mana arus pasang surut merupakan arus yang polanya dipengaruhi oleh pasang surut, maka secara umum arus juga dapat diklisifikasikan menjadi dua, yaitu arus pasang surut dan arus nir pasang surut.Dari semua klasifikasi yang telah dibuat oleh para ahli tersebut, secara umum arus dapat diklasifikasikan menjadi: 1. Arus Ekman

(6)

kecepatan angin itu sendiri. Arah arus yang ditimbulkan tidak searah dengan pergerakan angin karena adanya gaya coriolis yang ditimbulkan oleh rotasi bumi. Arus akan dibelokkan ke kanan pada Belahan Bumi Utara (BBU) dan dibelokkan ke kiri pada Belahan Bumi Selatan (BBS). Gaya gesekan molekul dari massa air membuat lapisan dalam dibelokkan oleh lapisan atasnya sampai pada kedalaman tertentu dimana gaya gesekan molekul ini tidak berpengaruh lagi. Fenomena pembelokan arus ini dikenal dengan Spiral Ekman (Gross, 1990).

Tekanan udara di atas permukaan bumi bervariasi tergantung dengan lamanya penyinaran matahari sebagai faktor utama penentu besarnya nilai radiasi matahari. Perbedaan tekanan inilah yang mengakibatkan pergerakan udara atau angin. Jika angin ini berhembus di atas permukaan air hingga terjadi pertukaran energi. Energi yang dipertukarkan inilah yang mengakibatkan bergeraknya massa air yang ada di permukaan laut (Brown et al., 1989).

2. Arus Geostrofik

Arus geostrofik merupakan arus yang terjadi akibat adanya keseimbangan geostrofik. Kondisi keseimbangan geostrofik ini terjadi jika gaya gradien tekanan horizontal yang bekerja pada massa air yang bergerak dan diseimbangkan oleh gaya coriolis (Brown et al., 1989). Arus geostrofik merupakan hasil kesetimbangan antara gaya gravitasi dan gaya coriolis. Efek gravitasi dikontrol oleh kemiringan permukaan air laut, sedangkan densitas dikontrol oleh perbedaan suhu dan salinitas horizontal. Arus geostrofik ini tidak dipengaruhi oleh pergerakan angin (gesekan antara air dan udara) sehingga Pond dan Pickard (1983) memasukkannya kedalam golongan arus tanpa gesekan (current without friction).

3. Arus Thermohalin

(7)

sebagai arus thermohalin (Thermohalin Current) (Gross,1990). Secara umum menurut Ingmanson dan Wallace (1989) dalam Kurniawan (2004), arus thermohalin bergerak ke utara-selatan yang dari samudera Atlantik menuju samudera Antartika.

4. Arus Inersia

Sebagaimana yang telah diketahui bahwa angin berhembus menyebabkan timbulnya arus (wind driven current). Momentum yang ditimbulkan akibat dorongan angin ini tidak akan berhenti begitiu saja sehingga ketika angin berhenti berhembus gerakan air atau arus akan terus berlanjut sebagai konsekuensi dari gaya momentum pada massa air (Pond dan Pickard, 1983). Gerakan air atau arus, gaya gesekan kecil (diasumsikan nol) dan gaya yang masih bekerja tinggal gaya coriolis , yang menyerupai kurva (curved motion) yang disebut dengan arus inersia (inersia current) (Brown et al., 1989; Pond dan Pickard 1983). Jika gaya coriolis hanya bekerja pada arah horizontal maka gerakan air yang terjadi (arus inersia) di sekitar garis lintang akan membentuk lingkaran (circular) (Brown et al., 1989). Arah rotasi atau perputaran pada lingkaran inersia adalah searah putaran jarum jam di belahan bumi bagian selatan (Pond dan Pickard, 1983).

5. Arus Pasang Surut (pasut)

(8)

yaitu pasang surut harian (diurnal), tengah harian (semi diurnal) dan campuran (mixed tides). Dalam sebulan, variasi harian dari rentang pasang surut berubah secara sistematis terhadap siklus bulan. Rentang pasang surut juga bergantung pada bentuk perairan dan konfigurasi lantai samudera (Supangat, 2007). Arus Permukaan Indonesia

Arus laut permukaan di dunia memiliki pola dan sebaran yang unik. Masing – masing wilayah memiliki karakteristik arus yang berbeda. Perairan Indonesia secara tetap diisi oleh massa air Samudra Pasifik. Hal ini terjadi bukan hanya karena wilayah Indonesia lebih terbuka terhadap Samudera Pasifik tetapi juga karena kondisi dinamika permukaan laut. Ketinggian permukaan laut di bagian barat samudra pasifik lebih tinggi dibandingkan dengan wilayah di selatan Jawa sepanjang tahun, sehingga terbentuk gradien tekanan dari samudra pasifik ke samudera Hindia (Wyrtki, 1961).

Menurut Godfrey (1996),gradien tekanan tersebut terbentuk karena posisi Indonesia berada pada sisi Barat Samudera Pasifik Trade Wind Belt, dimana tekanan angin secara terus menerus menyebabkan penumpukkan massa air karena pergerakan arusnya menuju daratan. Gradien tekanan tersebut menyebabkan terjadinya arus yang melewati perairan Indonesia disebut Arlindo. Arlindo memiliki sistem sirkulasi massa air yang kompleks dan berfluktuasi secara musiman dengan arah serta kekuatannya yang bervariasi.

Arlindo sangat terkenal karena menghubungkan antara Samudera Pasifik dengan Samudera Hindia, melalui Selat Makasar dan keluar lewat Selat Lombok (25% dari total transport arus yang lewat Selat Makassar) dan Selat Ombai bersama-sama Laut Timor (75% sisa total transport arus tersebut). Arlindo terjadi sebagai akibat perbedaan tekanan rata-rata sebesar 16 cm antara Samudera Pasifik dan Hindia. Arlindo memindahkan bahang oleh air bersalinitas rendah dari tempat berkembangnya El Nino di Samudera Pasifik menuju Samudera Hindia. Mengalir melalui bagian Selatan Indonesia dan Australia, Arlindo merupakan penghubung utama atau titik temu pertukaran massa air global.

(9)

australia, pada bulan Desember-Februari di Belahan Bumi Utara (BBU) akan terjadi musin dingin sedangkan pada Belahan Bumi Selatan (BBS) akan terjadi musim panas sehingga tekanan tinggi berada di Asia dan tekanan rendah berada di Australia. Angin muson bergerak dengan arah-arah tertentu sehingga perairan Indonesia dibagi menjadi empat musim yaitu musim barat, musim timur, musim pancaroba satu dan musim pancaroba dua (Wyrtki, 1961).

Syamsudin (2003) mengatakan air laut digerakan oleh dua sistem angin, di dekat khatulistiwa angin pasat (trade wind) menggerakkan permukaan air ke arah barat. Sementara itu, di daerah lintang sedang (temperate), angin baratan (westerlies wind) menggerakkan kembali permukaan air ke timur. Akibatnya di samudera-samudera akan ditemukan sebuah gerakan permukaan air yang membundar.

Metode Pengukuran Data Arus 1. Pengukuran Arus Insitu

(10)

perputaran dari baling-baling tersebut sehingga menimbulkan percepatan. Current meter mempunyai 2 bagian yaitu speed (kecepatan) dan direction (arah).

2. Pengukuran Arus dengan Satelit Altimetri

Sistem altimetri berkembang sejak tahun 1975, saat diluncurkannya satelit GEO-3. Pada tahun 1990 satelit altimetri mulai diluncurkan seperti ERS-1 (1991-1996), Topex/Poseidon (sejak 1992) dan ERS-2 (sejak 1995). Altimetri adalah teknik untuk mengukur ketinggian. Satelit altimetri meghitung waktu yang digunakan oleh pulsa dari pemancar ke permukaan laut dan kembali lagi sebagai echo menuju penerima. Dikombinasikan dengan data lokasi satelit yang presisi kemudian menghasilkan SSH seperti diilustrasikan pada gambar 1 (CNES, 1997 dalam Rudiastuti, 2008).

Tujuan peluncuran sensor altimetri adalah mengamati sirkulasi lautan global, memantau volume dari lempengan es di kutub dan mengamati perubahan muka laut rata-rata global (Abidin, 2001 dalam Rudiastuti, 2008). Sea Surface Height (SSH) adalah jarak antara permukaan laut dengan ellipsoida referensi (jika kedalaman laut secara akurat tidak diketahui). Nilai SSH secara

matematis dituliskan sebagai berikut:

SSH = S-R Dimana :

S = ketinggian satelit dari reference ellipsoid (satellite altitude) R = jarak antara satelite dengan laut (jarak altimetri)

Nilai SSH diperoleh dengan memperhitungkan pengaruh ketinggian permukaan laut yang akan terjadi tanpa gangguan (angin, ombak, gelombang, dan lainnya), dan juga sirkulasi lautan atau dinamika topografi (CNES, 1997 dalam Rudiastuti, 2008).

3. Pengukuran Arus dengan Membangun Model Hidrodinamika

(11)

pelayaran, bahaya-bahaya pelayaran dan sebagainya. Selain itu, kegiatan hidrografi juga didominasi oleh penentuan posisi dan kedalaman di laut lepas yang mendukung eksplorasi dan eksploitasi minyak dan gas bumi.

Fenomena dasar perairan yang disebut dalam definisi di atas meliputi: batimetri atau‘topografi’ dasar laut, jenis material dasar laut dan morfologi dasar laut. Sementara dinamika badan air yang disebut dalam definisi di atas meliputi: pasut (dan muka air) dan arus. Data mengenai fenomena dasar perairan dan dinamika badan air diperoleh melalui pengukuran yang kegiatannya disebut sebagai survei hidrografi. Data yang diperoleh dari survei hidrografi kemudian diolah dan disajikan sebagai informasi geospasial atau informasi yang terkait dengan posisi di muka bumi.

Survei adalah kegiatan terpenting dalam menghasilkan informasi hidrografi. Pada gambar diatas, tampak kegiatan utama yang dilakukan dalam survei hidrografi yang meliputi : Penentuan posisi (1) dan penggunaan sistem referensi (7), Pengukuran kedalaman (pemeruman) (2), Pengukuran arus (3), Pengukuran (pengambilan contoh dan analisis) sedimen (4), Pengamatan pasut (5), Pengukuran detil situasi dan garis pantai (untuk pemetaan pesisir) (6), Data yang diperoleh dari aktivitas-aktivitas tersebut di atas dapat disajikan sebagai informasi dalam bentuk peta dan non-peta serta disusun dalam bentuk basis data kelautan.

Pengukuran arus dengan membangun model hidrodinamika adalah dengan mengkonversi fenomena oseanografi kedalam persamaan numerik yang bersifat diskrit. Dengan menggunakan persamaan-persamaan ini dapat dibuat pemodelan dari yang sederhana hingga yang rumit. Sehubungan dengan itu maka seluruh informasi yang disajikan harus memiliki data posisi dalam ruang yang mengacu pada suatu sistem referensi tertentu. Oleh karenanya, posisi suatu objek di atas, di dalam dan di dasar perairan merupakan titik perhatian utama dalam hidrografi. Informasi hidrografi utamanya ditujukan untuk:

1. Navigasi dan keselamatan pelayaran. 2. 2. Penetapan batas wilayah atau daerah di laut.

(12)

DAFTAR PUSTAKA

Anonim. 2009. Arus. http://wikipedia.org. Diakses tanggal 26/11/2011 pukul 20.00 WIB

Brown, J, A. Colling, D. Park, J. Philips, D. Rothery, dan J. Wright. 1989. Ocean Circulation. The Open University. Published In Assosiation with Pergamon Press.

Godfrey, J. S. 1996. The Effect of The Indonesian Troughflow on Ocean Circulation And Heat Exchange With The Atmosphere : A Review. J. of Geophysic. Res. 101 (C5) : 12209-12238

Gross, M. 1990. Oceanography sixth edition. New Jersey : Prentice-Hall.Inc. Hutabarat, S dan SM. Evans. 1985. Pengantar Oseanografi. Universitas

Indonesia-Press. Jakarta

Kurniawan, Mujib.2004. Studi Fluktuasi Arus Permukaan Frekuensi Rendah (Low Frequency) Di Perairan Utara Papua Pada Bulan Oktober 2001-Agustus 2002. Skripsi. Ilmu dan Teknologi Kelautan. Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor

Nat,D. Eka,D. 2006. Survei Hidrografi.Refika Aditama Shykind,E. Jakarta. Pond, S dan G.L Pickard. 1983. Introductory Dynamical Oceanography, 2th

edition. Pergamon Press

Rudiastuti, Aninda Wisaksanti. 2008. Studi Sebaran Klorofil-A Dan Suhu Permukaan Laut (SPL) Serta Hubunganya Dengan Distribusi Kapal Penangkap Ikan Melalui Teknologi Vessel Monitoring System (VMS). Skripsi. Ilmu dan Teknologi Kelautan. Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor

Supangat. 2003. Arus dan faktornya. http://www.x3-prima.com/. Diakses tanggal 26/11/2011 pukul 20.00

Referensi

Dokumen terkait

Sebagian besar tumor otak bersifat radioresponsif (moderately sensitive), sehingga pada tumor dengan ukuran terbatas pemberian dosis tinggi radiasi diharapkan dapat

Sesuai dengan tahapan pra-bencana yaitu mitigasi, maka dapat dilihat dengan program dan kegiatan yang dilakukan oleh Bidang I Pencegahan dan Kesiapsiagaan BPBD Kota

Setiap anggota keluarga terikat satu sama lain melalui kekuasaan, daya tahan, ikatan emosional dan loyalitas yang dapat berubah dari waktu ke waktu, namun tidak akan pernah

Analisis Performansi Vectorized Algorithm Pada Aliran Daya Berbasis Injeksi Daya dan Injeksi Arus merupakan pengembangan dari metode Newton Raphson dalam melakukan perhitungan

Hasil pengamatan yang diperoleh untuk preferensi pakan urutan pemilihan pakan dimulai dengan jangkrik, kedua adalah pisang dan papaya terakhir bubur

Untuk menyelesaikan Program Studi S2 Matematika, peserta harus menyelesaikan dengan baik kegiatan-kegiatan akademik yang mempunyai bobot sekurang-kurangnya 42 (empat

Pernyataan kebijakan Freeport Indonesia tentang HIV/AIDS mengakui implikasi penting HIV/AIDS yang berpotensi terjadi pada karyawan kami dan pada masyarakat setempat serta

Hasil yang diperoleh menunjukkan perbedaan yang cukup besar jika dibandingkan dengan hasil penelitian Bari (2006) yang memperoleh mortalitas hampir mencapai 100% dengan