• Tidak ada hasil yang ditemukan

CONTOH SOAL DAN JAWABAN PERSAMAAN DIFFER

N/A
N/A
Protected

Academic year: 2018

Membagikan "CONTOH SOAL DAN JAWABAN PERSAMAAN DIFFER"

Copied!
14
0
0

Teks penuh

(1)

CONTOH SOAL DAN JAWABAN PERSAMAAN DIFERENSIAL

1. Tentukan waktu yang dibutuhkan untuk mendinginkan benda padat awalnya di 80oC untuk 8oC ini ditempatkan dalam lemari es dengan udara interior dipertahankan pada 5oC. Jika koefisien α = 0,002 m2/s dan bidang kotak antara padat dan udara dingin di dalam lemari es adalah A = 0,2 m2

Penyelesaian :

Diketahui : T = 80oC, 8oC, dan 5oC α = 0,002 m2/s

A = 0,2 m2

Ditanya : Tentukan waktu yang dibutuhkan untuk mendinginkan benda padat? Jawab :

Dengan menggunakan persamaan diferensial orde pertama maka didapatkan

dT(t)

dt =−(0,002) (0,2)

[

T(t)−5

]

=−0,0004

[

T(t)−5

]

Dengan kondisi

T(0) = 80oC Maka akan menjadi

dT(t)

[

T(t)−5

]

=−0,0004dt

Dengan mengintegralkan kedua sisi :

dT(t)

[

T(t)−5

]

=¿−0,0004

dt+c

¿

▸ Baca selengkapnya: contoh soal dan jawaban koefisien korelasi

(2)

T(t)−5=e−0,0004t+c1

=c e−0,0004t

T(t)=5+75e−0,0004t

Jika pada saat suhu 8oC waktu yang dibutuhkan adalah

T(t)=8=5+75e−0,0004t

Maka didapatkan waktunya adalah t = 8047 s

2. Balok es dengan berat 10 kg meleleh dalam lingkungan yang temperaturnya naik. Laju pengurangan berat es per detik adalah sebanding dengan 20 dikurangi berat es yang tersisa. Setelah 60 detik, berat es adalah 9,5 kg. berapa berat es setelah 120 detik?

Penyelesaian :

Langkah 1 Menyusun persamaan diferensialnya :

dM

dt =k(20−M), M(0)=10,M(60)=9,5

Langkah 2 Mengintegralkan :

dM

dt =k(20−M).

dM

20−M=−k

dt

−ln|20−M|=kt+c

Langkah 3 Menjadikan M sebagai subjek : −ln|20−M|=kt+c ,20−M=ekt+c

, M=20−ekt+c

Langkah 4 Menyusun kembali persamaan M dengan konstanta yang ` bersangkutan :

M=20−ektec, M=20−A ekt, dengan A=ec

Langkah 5 Mencari nilai konstanta

▸ Baca selengkapnya: contoh soal dan jawaban analytical exposition

(3)

9,5=20−Ae60k,10e60k=10,5, e60k=1,05 60k=ln 1,05, k=0,000813

Maka M = 20 – 10 e0,000813t

Langkah 6 Menentukan solusinya :

M = 20 – 10 e0,000813t, M(120)=20−10e0,000813x120

M(120) = 8,975 kg

3. Seorang penerbang layang dilengkapi dengan parasut dan peralatan penting lainnya untuk mendarat di permukaan tanah. Total berat penerjun dan peralatannya adalah 160 lb . Sebelum parasut dibuka, kecepatan angin = 1

2v , dimana v adalah kecepatan(feet/detik). Parasut dibuka setelah 5 detik penerjun tersebut terjun dari atas. Setelah parasut dibuka, kecepatan udara menjadi 5

8v 2.

Hitung kecepatan penerjun (A) sebelum parasut dibuka dan B setelah parasut dibuka !

Penyelesaian :

Formula : Kita memilih axis x positif adalah vertical menurun dengan titik asal adalah titik dimana penerjun pada posisi awal

i. Adc kecepatan penerjun (A) sebelum parasut dibuka

1. F1, berat 160 lb, karena bergerak turun sehingga bernilai positif.

2. F2, kecepatan angin = 1

2v , karena angin bergerak naik sehingga bernilai negative

( −1 2 v¿

▸ Baca selengkapnya: contoh soal dan jawaban btq smk

(4)

F1 + F2 = m a di mana m = wg ; g=32

5 dvdt=160−1 2v

dv

v−320=

−1 10 dt

ln (v-320) = −1 10 t+c v = 320 + c e101

karena saat sebelum parasut dibuka, t = 0 , v(0) = 0 sehingga c = -320

Jadi kecepatan penerjun (A) sebelum parasut dibuka adalah v = 320(1- e101 ¿ Waktu sampai saat parasut dibuka adalah 0 ≤ t ≤ 5

Kecepatan saat parasut dibuka yaitu saat t = 5 v = 320(1- e101 ¿126

ii. Adc kecepatan penerjun (B) setelah parasut dibuka F1 = 160

F2 = −5 8 v

2

Sehingga diperoleh Persamaan Diferensialnya :

5 dvdt=160−5 8v

2

dv

v2−256= −1

8 dt

v−16

v+16=−¿ 1 8t+c 1

(5)

Jadi kecepatan penerjun setelah parasut dibuka (t ≥ 5) adalah

v= Diketahui bahwa air akan mengalir melalui lubang dengan kecepatan mendekati v = 2,5

h m/s , h adalah kedalaman air dalam tangki. Carilah waktu yang diperlukan untuk mengosongkan tangki melalui lubang tersebut.

Penyelesaian :

(6)

= 3 jam 34 detik

5. Seorang tentara penerjun payung dengan membawa amunisi memiliki berat sebesar 322 N melompat dari pesawat terbang pada ketinggian 10000 kaki dengan mengabaikan arah gerak angin asumsikan bahwa hambatan udara R(t) yang penerjun

payung alami adalah v(t)¿ 2

R(t)=c¿ dimana koefisien c = 15 tentukanlah : a. Persamaan yang tepat untuk kecepatan turun seketika penerjun payung b. Fungsi dari kecepatan pada saat menurun v(t)

c. Waktu yang dibutuhkan untuk mendarat d. Dampak kecepatan saat mendarat

Penyelesaian :

a. Persamaan yang tepat untuk kecepatan turun seketika penerjun payung Pada penyelesaian soal ini digunakan persamaan diferensial untuk kecepatan v(t) Diketahui :

w = 322 N v(t)¿ 2

R(t)=15¿

m = 322/10 = 32,2 kg

Ditanya : Persamaan untuk kecepatan turun sesaat? Jawab :

Kecepatan turun sesaat, v(t) dapat diperoleh dengan menggunakan persamaan sebagai berikut :

v(t)¿2 ¿ 15¿

dv(t)

dt +¿

(7)

v(t)¿2

10dv(t)

dt =322−15¿

Dengan kondisi v(0) = 0

b. Fungsi dari kecepatan pada saat menurun v(t)

Penyelesaian persoalan b menggunakan kondisi v(0) = 0

vt=4,634(e 13,9t

−1)

e13,9t+1

c. Waktu yang dibutuhkan untuk mendarat

Jarak yang dibutuhkan oleh penerjun untuk turun adalah seperti persamaan berikut:

xt=

0 1

v(t)dt=

0 1

4,634(e13,9t−1 )

e13,9t+1 dt

Setelah mendapatkan persamaan jaraknya maka kita dapat mengetahui waktu yang dibutuhkan oleh penerjun payung untuk sampai di tanah dari ketinggian 1000 kaki d. Dampak kecepatan saat mendarat

Setelah mengetahui waktu yang dibutuhkan penerjun untuk mencapai tanah maka kita dapat mengetahui kecepatan penerjun saat mendarat ditanah dengan persamaan sebagai berikut :

vtg=4,634(e

13,9tg−1)

e13,9tg+1

6. Massa air sebesar m =5 kg yang mula-mula berada dalam kesetimbangan termal dengan atmosfer pada 20yang mula-mula berada dalam kesetimbangan termal dengan atmosfer pada 20 C sampai 4 C, didinginkan pada tekanan konsstan sampai 4 C⁰ ⁰ ⁰ dengan memakai pompa kalor yang bekerja antara air dan atmosfir. Berapa kerja minimum yang diperlukan ? Untuk air ambillaah Cp = 4,184 kJ.kg-1. C⁰ -1

(8)

Kerja minimum diperlukan jika proes ini reversibel dan kita dapaat membayangkan serangkaian pompa-pompa kalor reversibel yang bekerja untuk mengeluarkan kalor dri air pada berbagai level suhu selagi air mendingin dari 20⁰C sampai 4⁰C dan membuang kalor ke atmosfer pada T0 = 20 +273,15 =293,15 K. Setiap pompa kalor mengeluarkan sebagian kalor δQ dan mengurangi suhu air secara bagian per bagian. Untuk sebuah pompa kalor reversibel memberikan :

|

W

|

|

Q

C

|

=

T

H

T

C

T

C

=

T

H

T

C

1

Sekarang notasi TH menjadi T0 dan T menjadi T, suhu air sebagai tambahan , pengeluaran sebagian jumlah kalor δQ yang dengan dilakukannya sebagian jumlah kerja δW untuk suhu T tertentu, memerlukan persamaan yang ditulis dalam bentuk

diferensial. Jadi,

|

δW

|

|

δQ

|

=

T

0

T

1

δW=T0δQ

TδQ

W

=

T

0

ΔS'

ΔH '

Dengan ∆S’ dan ∆H’ merupakan perubahan-perubahan sifat air. Keduanya dihitung menurut ∆H’=mCp∆T yang muncul apbila Cp konstan dan

ΔS '=mCplnT2

T1

W=mCp

[

T0lnT2

T1

(

T2−T1

)

]

T1=20+273,15=293,15KT2=4+273,15=277,15K

W

=(

5

)(

4,184

)

[

(

293

,

15ln

277

,

15

(9)

7. Persamaan diferensial yang menghubungkaan tekanan hidrostatik dengan kedalaman fluida

dP

=−

ρ gdz ,

dengan ρ kerapatan massa lokal, g percepatan gravitasi lokal dan dz ketinggian diatas permulaan dasar fluida. Terapkan persamaan ini untuk menyusun pernyataan bagi tekanan atmosfir sebagai fungsi ketinggian di atas permukaan bumi.

Penyelesaian :

Karena suhu dan tekanan disertaka, pada dasarnya udara berlaku sebagai gas ideal yang untuk itu PV = RT. Hubungan antara ρ dan V, volume molar udara yaitu :

Denga P0 tekanan pada permulaan dasar, yaitu z nol. Perhatikan bahwa g dianggap bebas terhadap z. Persamaan diatas dikenal sebagai persamaan barometric dan dapat dipakai langsung apabila T tidak bergantung pada z. kondisi ini didapat di daerah atmosfir yang dikenal dengan stratosfer, pada ketinggian antara 11 km dan 25 km.

(10)

p

Kita telah mendapatkaan dua pernyataan diatas dengan persamaan sebelumnya yang berdasar pada dua ekstrim variasi suhu yang mungkin diatmosfer . Persamaan empiris yang lebih umum yang menghubungkan T dan P adalaah :

T

dengan titik kabut air dengan jari-jari 5µm ?. Anggap bahwa 0,001m3 air pada 50 C. tegangan permukaan air pada 50⁰ C adalah 0,063 Nm-1.

Penyelesaian :

Rasio permukaan terhadap volume sebuah tetes yaitu :

(11)

Jadi, kerja 3,78 J harus dilakukan pada air.

9. Dengan mengaplikasikan hukum gerak Newton yang kedua pada translasi sebuah benda tegar, gambarkan asal mula suku-suku energi kinetik dan energi potensial dalam persamaan energi untuk sebuah system mekanis murni.!

Penyelesaian :

Hukum Newton kedua untuk system ini :

F=ma=mdu

dt

Dengan u kecepatan benda dan F gaya luar total yang bekerja pada benda paralel terhadap perpindahannya, dll. Maka kerja total yang dilakukan oleh benda itu untuk gaya tersebut yaitu :

W

=−

Fdl

W

=−

m

du

dt

dl

=−

mu

×

du

=−

d

(

mu

2

2

)

W

=−

Δ

(

mu

2

2

)

≡−

ΔE

K

Persamaan diatas merupakan pernyataan umum yang sempurna bagi kerja mekanik total yang dilakukan oleh benda tegar dalam translasi dan persamaan tersebut tidak berdasar pada apapun mengenai sifat dasar gaya F. Namun, F dianggap dengan baik sebagai penjumlahan dua jenis gaya, gaya benda FB dan gaya permukaan Fs.

F = FB + Fs

Gaya benda disebut begitu karena bekerja di seluruh volume sistem, gaya permukaan bekerja pada daerah permukaan batas sistem. Dari persamaan diatas, maka kerja total dapat dianggap sebagai jumlah kedua bentuk kerja :

(12)

Dengan

W

B

=−

F

B

dl

Ws

=+

F

s

dl

Gaya benda merupakan gaya konservatif. Ini berarti gaya tersebut dapat diturunkan dari sebuah fungsi potensial Φ(l), yang bergantung hanya pada pada lokasi sistem, menurut penurunan terhadap koordinat posisi. Jadi, untuk kasus ini :

FB=−(l)

dl

WB=−

[

(l)

dl

]

dl=

=ΔΦ

Karena, beda ∆Φ hanya bergantung pada posisi awal dan akhir sistem, dan tidak pada jalur yang diikuti di antara kedua posisi ini, maka kerja yang dilakukan untuk gaya benda tidak bergantung pada jalur. Dengan menentukan energy potensial Ep sebagai Ep ≡ Φ, maka dapat ditulis sebagai :

WB = ∆Ep

Gaya permukaan secaraa umum tidak konservatif dan biasanya menulis peernyataan untuk kerja yang dilakukan terhadap gaya-gaya demikian. Kombinasi dari peersamaan diatas dengan persamaan sebelumnya memberikan :

W

ΔE

p

+

W

s

Persamaan diatas merupakan pernyataan dalam benuk lain dan dari kedua persamaan tersebut dapat diterapkan pada proses yang sama. Dengan melakukannya ddan menyusun ulang, maka didapatkan persamaan energi :

W

s

=

ΔE

K

+

ΔE

P

Apabila tidak ada gaya, maka persamaan diatas tereduksi :

(13)

Yang lebih dikenal sebagai “prinsip kekekalan energi” mekanika klasik. Istilah kerja pada hukum termodinamika biasanya, tentu saja bukan sebuah benda tegar.

10. Tentukan solusi jika sebuah batang memanjang dari 0 sampai ∞ , suhu awalnya u(x,t) = f(x) (0 ≤ r < ∞) dan syarat batasnya di ujung kiri adalah u(0,t) = 0 (t≥0)

Penyelesaian :

Karena x berkisar antara 0 sampai ∞, sehingga f(0) = u(0,0) = 0 dan juga kita akan memperoleh :

Fs (ut) = ∂u^s

∂ t = c

2

F (uxx) = - c2 w2 Fs (u) = - c2 w2 u^

s (w,t)

Solusi persamaan differensial orde pertama ini adalah

^

us (w,t) = (w) ec2 w2

t

Dengan syarat awal

u(x,0) = f(x) kita memperoleh u^s (w,0) = f^s (w) = C(w) dengan demikian : u^s (w,t) = f^s (w) ec

2 w2

t

Dengan mengambil transform siklus kebalikan dan mensubstitusikan

Fs (w) =

2

π

0

f(p)sin℘dp

Kita memperoleh solusi yang kita cari :

u(x,t) = 2

π

0

f(p)sin℘ec2 w2

tsinwx dp dx

(14)

Referensi

Dokumen terkait