• Tidak ada hasil yang ditemukan

Cone-beam computed tomography as a diagnostic method for determination of gingival thickness and distance between gingival margin and bone crest

N/A
N/A
Protected

Academic year: 2019

Membagikan "Cone-beam computed tomography as a diagnostic method for determination of gingival thickness and distance between gingival margin and bone crest"

Copied!
36
0
0

Teks penuh

(1)

Cone-beam computed tomography as a diagnostic method for

determination of gingival thickness and distance between

gingival margin and bone crest

Germana Jayme Borges, Luis Fernando Naldi Ruiz, Ana Helena Goncalves de Alencar, Olavo Cesar Lyra Portoand Carlos Estrela

The Scientific World Journal. 15 (Annual 2015): From Gale Health and Medical Collection 2018.

DOI:http://dx.doi.org/10.1155/2015/142108

Copyright: COPYRIGHT 2015 Hindawi Limited

http://www.tswj.com/aims/

(GALE)

Cone-beam Computed Tomography sebagai Metode

Diagnostik untuk Penentuan Ketebalan Gingiva dan Jarak

antara Margin Gingiva dan Puncak Tulang

Penerjemah

Nama : Aisyah Nafa Agustin NIM : J2A017005

Fakultas Kedokteran Gigi

Universitas Muhammadiyah Semarang

(2)

Judul : Cone-beam Computed Tomography sebagai Metode Diagnostik untuk Penentuan Ketebalan Gingiva dan Jarak antara Margin Gingiva dan Puncak Tulang

Abstrak : Tujuan dari penelitian ini adalah untuk menilai tomography computed-beam computed tomography (CBCT) sebagai metode diagnostik untuk penentuan ketebalan gingival (GT) dan jarak antara margin gingival dan vestibular (GMBC-V) dan puncak tulang interproksimal (GMBCI). GT dan GMBC-V diukur pada 348 gigi dan GMBC-I diukur di 377 daerah gigi dari 29 pasien dengan senyum bergetah. GT dinilai menggunakan transgingival probing (TP), ultrasound (AS), dan CBCT, sedangkan GMBC-V dan GMBC-I dinilai dengan evaluasi klinis transsurgical (TCE) dan CBCT. Analisis statistik menggunakan uji t independen, koefisien korelasi Pearson, dan regresi linier sederhana. Perbedaan diamati untuk GT: antara TP, CBCT, dan AS mengingat semua gigi; antara TP dan CBCT dan antara TP dan AS pada gigi seri dan gigi taring; antara TP dan US di gigi

premolar dan geraham pertama. TP mempresentasikan sarana tertinggi untuk GT. Korelasi positif dan regresi linier diamati antara TP dan CBCT, TP dan AS, dan CBCT dan AS. Perbedaan diamati pada GMBC-V dan GMBC-I menggunakan TCE dan CBCT, mengingat semua gigi. Korelasi dan hasil regresi linier signifikan untuk GMBC-V dan GMBC-I pada gigi seri, gigi taring, dan gigi premolar. CBCT adalah metode diagnostik yang efektif untuk memvisualisasikan dan mengukur GT, GMBC-V, dan GMBC-I.

(3)

1. Pendahuluan

Pengetahuan yang lebih dalam tentang struktur biologis dan kualitas morfologi jaringan periodontal yang sehat membantu menegakkan diagnosis dan prognosis penyakit periodontal [1]. Prosedur periodontal estetik sebelum rehabilitasi gigi menjadi umum. Operasi plastik periodontal telah direkomendasikan untuk memperbaiki kontur gingiva, meningkatkan jumlah jaringan keratin dan memperbaiki kualitasnya, mencakup area akar gigi yang terbuka, dan senyum bergetah yang benar [2-4].

Lebar biologis sangat penting untuk pemeliharaan kesehatan gingiva [5, 6] dan setiap pelanggaran pada ruang ini dapat menyebabkan penghancuran jaringan pendukung periodontal [7]. Telah diterima secara luas bahwa jarak standar antara batas gingiva dan puncak tulang alveolar adalah 3,0 mm [8, 9], yang telah

diadopsi dalam prosedur prostetik dan bedah, serta dalam perawatan pasien yang diobati secara periodontal. Namun, dimensi sambungan dentogingival telah dibahas secara luas dalam literatur [10-12]. Lebar biologis geraham, yang diukur pada mayat, secara signifikan lebih besar daripada gigi anterior [11]. Dalam pengamatan klinis mereka, Perez dkk. [12] memverifikasi bahwa jarak rata-rata antara margin gingiva bebas dan puncak tulang alveolar adalah 3,7 mm, dengan mempertimbangkan permukaan wajah gigi insisivus sentral maksila. Meskipun demikian, bila diukur di permukaan bukal, jarak ini berkisar antara 3,0 sampai 5,0 mm.

Variasi yang diamati pada dimensi kompleks dentogingival sering menghambat evaluasi klinis profesional. Metode diagnostik yang biasanya digunakan meliputi sinar X periapikal dan interproksimal, serta pemeriksaan tulang [13-15]. Karena keterbatasan dan ketidaktepatan dari ujian ini [16], keseluruhan perawatan mungkin akan terancam [17].

(4)

mahkota anatomis, ketebalan jaringan lunak dan keras, dan lokasi sambungan dentin-enamel masih kontroversial [20, 21].

Demikian pula, pengetahuan yang lebih dalam tentang morfologi jaringan gingiva sangat penting untuk perencanaan, pelaksanaan, dan prognosis perawatan

periodontal. Ochsenbein dan Ross [22] mengklasifikasikan jaringan gingiva menjadi dua jenis utama, satu bergigi dan kurus dan yang lainnya rata dan tebal. Namun, beberapa pasien menyajikan karakteristik dari kedua fenotip jaringan, yang menunjukkan adanya biotipe periodontal perantara [23, 24].

Tingkat keparahan sinyal dan gejala penyakit periodontal mungkin terkait dengan jenis periodontium. Pada pasien yang mengalami periodontium tebal, peradangan yang disebabkan oleh plak bakteri dapat menyebabkan kantong periodontal, sedangkan pasien dengan tipe tipis dapat mengalami resesi gingiva [25]. Oleh karena itu, selain mempengaruhi hasil perawatan periodontal dasar [26], biotipe periodontal mengganggu prosedur cakupan akar [27] dan estetika implan gigi [28].

Beberapa metode telah digunakan untuk mengukur ketebalan jaringan gingiva [29], di antaranya adalah metode langsung atau transgingival probing (TP) [30, 31], metode yang menggunakan ultrasound (AS) [25, 32, 33], dan , baru-baru ini, tomography terkompres kerucut (CBCT) [34, 35].

TP menyajikan keterbatasan karena rendahnya presisi probe periodontal dengan lekukan milimeter dan karena ini adalah prosedur invasif, yang menimbulkan ketidaknyamanan bagi pasien, oleh karena itu memerlukan anestesi lokal [31].

(5)

CBCT adalah teknologi CT dengan emisi balok sinar-X berbentuk kerucut yang menyajikan emisi radiasi terbatas. Aplikasi klinisnya memungkinkan banyak diskusi dan kemajuan dalam merencanakan dan mendiagnosis perubahan di wilayah maxillofacial [34, 35, 38-42]. Meskipun demikian, salah satu

keterbatasannya terkait dengan sulitnya menentukan batas antara jaringan lunak dan puncak tulang vestibular. Untuk mengurangi kerugian ini, Januario dkk. [34] menyarankan bahwa pasien harus menggunakan retraktor labial selama ujian. Penggunaan retraktor labial menyukai visualisasi dan pengukuran struktur lembut dan keras periodontium dan memungkinkan klinisi untuk menilai hubungan antara struktur periodontal.

Mengingat pengetahuan tentang dimensi kompleks dentogingival dan ketebalan jaringan gingiva adalah aspek utama perawatan periodontal, tujuan dari penelitian ini adalah untuk menilai CBCT sebagai metode diagnostik GT dan jarak antara margin gingiva sampai vestibular (GMBC- V) puncak tulang dan gingiva ke puncak tulang interproksimal (GMBC-I) membandingkan pengukuran klinis dengan yang menggunakan CBCT.

2. Bahan dan Metode

2.1. Seleksi Sampel. Penelitian ini disetujui oleh Komite Etika Penelitian Universidade Federal de Goias (protokol nomor 272/2011) dan semua peserta menandatangani formulir informed consent. Sekelompok 29 pasien dengan

keluhan senyum bergetah dan indikasi pemanjangan mahkota estetik dipilih untuk studi di Clinic of the Dentistry School di Universidade Federal de Goias.

(6)

kalsium, fenitoin, dan kode 3 dan / atau 4 skor sistem Pemutaran dan Rekaman Periodontal (PSR).

2.2. Persiapan Awal Pasien. Setelah anamnesia dan PSR, semua pasien menerima instruksi kebersihan mulut individual. Mereka yang mencetak kode PSR 2

menjalani penskalaan dan perencanaan akar. Fotografi gigi untuk dokumentasi kasus dan kesan silikon (Zhermack, Zetaplus, Badia Polesine, Italia) dari lengkung maxillary untuk mendapatkan model studi juga dilakukan untuk membangun tomografi dan panduan klinis yang bertujuan untuk membakukan GMBC-V, GMBC-I, dan GT diukur dengan metode yang berbeda.

2.3. Prosedur Laboratorium: Panduan Tomografi dan Klinis. Wajah internal kesan silikon yang digunakan sebagai panduan tomografi ditandai di ujung masing-masing papilla interproksimal dan 3,0 mm di atas margin gingiva setiap gigi, dengan diameter bulat berlian berdiameter 1,0 mm. Tanda ini diisi dengan bahan radiopak (seng oksida eugenol semen) dan digunakan sebagai acuan untuk mengukur GMBC-V, GMBC-I, dan GT dalam pencitraan CBCT (Gambar 1 (a)).

Kesan silikon yang digunakan sebagai panduan klinis dipotong, dengan menggunakan pisau bedah nomor 15C, mengikuti kontur margin gingiva dan ujung papilla interproksimal untuk membantu mengukur GMBC-I selama operasi untuk memperpanjang mahkota klinis (Gambar 1 (b )).

2.4. Ujian Komplementer: CBCT. Setelah persiapan awal, semua pasien

menjalani CBCT di klinik swasta (Centro Integrado de Radiologia Odontologica (CIRO), Goiania, GO, Brazil). Selama ujian ini, pasien menggunakan retitor labial [34] dan panduan tomografi. Gambar CBCT diperoleh dengan menggunakan Sistem Imaging 3D Tone-Beam i-CAT (Imaging Sciences International, Hatfield, PA, AS), pada 120 KVp dan 3,8 mA untuk 40 s (ukuran voxel: 0,25 mm;

(7)

Redmond, WA, USA) , dengan prosesor Intel Core 2 Duo 1,86 Ghz-6300 (Intel Corporation, San Jose, CA, AS), kartu video NVIDIA GeForce 6200 dengan TurboCache (NVIDIA Corporation, Santa Clara, CA, AS) dan monitor LCD EIZO FlexScan S2000, resolusi 1600 x 1200 piksel (Eizo Nanao Corporation, Ishikawa, Jepang). Setelah rekonstruksi data mentah, pencitraan digital dan komunikasi dalam berkas obat (DICOM) dihasilkan untuk setiap pasien.

2.5. Prosedur Klinis

2.5.1. Pengukuran GT Menggunakan AS. Panduan klinis ditempatkan di mulut pasien dan transduser AS (Krupp SDM, Austenal Medizintechnik, Cologne, Jerman) diposisikan di atas tepi panduan pada jaringan gingiva vestibular setiap gigi (Gambar 1 (c) dan 1 (d)). GT gigi insisivus rahang atas (I), gigi taring (C), gigi premolar (PM), dan gigi geraham pertama (FM) diukur. Pengukuran dilakukan tiga kali, oleh seorang periodontis dengan pengalaman lebih dari 5 tahun, dan terdaftar.

2.5.2. Pengukuran GT Menggunakan TP. Ujian ini dilakukan selama operasi untuk memperpanjang mahkota klinis sebelum menaikkan flap. Setelah anestesi lokal, panduan tomografi diposisikan di mulut pasien dan probe periodontal digunakan untuk menembusnya dan menandai jaringan lunak pada permukaan vestibular setiap gigi (Gambar 1 (e)). Setelah itu, probe periodontal dengan limiter silikon diposisikan tegak lurus terhadap sumbu gigi yang panjang, pada titik yang sebelumnya ditandai, menembus jaringan gingiva sampai memenuhi tahanan pelat tulang vestibular atau struktur gigi (Gambar 1 (f)). Pembatas silikon disesuaikan untuk bersentuhan langsung dengan permukaan luar gusi. Akhirnya, probe

dilepaskan dengan hati-hati dan panjang penetrasi diverifikasi dengan pembacaan caliper digital menjadi 0,01mm (Mitutoyo MTI Corporation, Tokyo, Jepang).

2.5.3. Transsurgical Clinical Evaluation (TCE) GMBC-V dan GMBC-I. Setelah mengukur GT, kerah gingiva dilepaskan di antara gigi 16 dan gigi 26. Dengan menggunakan syndesmotome, ketebalan total diangkat dengan hati-hati

(8)

prosedur ini, panduan klinis diposisikan dan GMBC-V diverifikasi dari titik tertinggi margin gingiva ke puncak tulang vestibular menggunakan kompas tip tumpul aluminium (Jon Comercio de Produtos Odontologicos, Sao Paulo, SP, Brasil ) ditempatkan sejajar dengan sumbu panjang setiap gigi (Gambar 1 (g)). Dengan menggunakan caliper digital, GMBC-V diukur dan didaftarkan. Demikian juga, GMBC-I telah diverifikasi dari ujung papilla ke puncak tulang

interproksimal menggunakan kompas tip tumpul aluminium, yang diukur dengan menggunakan caliper digital, dan terdaftar. Pengukuran dilakukan tiga kali, oleh satu periodontis dengan pengalaman lebih dari 5 tahun (Gambar 1 (h)). Setelah semua pengukuran, osteoplasti dan osteotomi dilakukan untuk memperpanjang mahkota klinis; flap itu direposisi dan dijahit.

2.5.4. Analisis CBCTImaging. Pengukuran GT, GMBC-V, dan GMBC-I diambil dengan irisan vestibular transversal-palatal 1,0 mm tebal dengan jarak 1,0 mm antara irisan bersebelahan. Alat ukur yang dipasok oleh produsen pemindai (perangkat lunak Xoran CAT versi 3.1.62) dan filter untuk memperbaiki dan meningkatkan citra digunakan untuk memastikan ketepatan pengukuran masing-masing. Semua pengukuran ini dilakukan oleh satu ahli radiologi dengan

pengalaman lebih dari 5 tahun dalam menafsirkan pencitraan CBCT.

2.5.5. Pengukuran GT Menggunakan Pencitraan CBCT. Referensi untuk

pengukuran ini adalah tanda pada panduan tomografi yang dibuat 3,0 mm di atas margin gingiva setiap gigi (Gambar 2 (a)). Irisan vestibular transversal-palatal di mana tanda ini terlihat dalam dimensi terbesar digunakan untuk pengukuran ini. Di tengah tanda, garis dilacak tegak lurus ke sumbu gigi yang panjang, serupa dengan pemasangan probe periodontal yang dilakukan secara klinis, dan jarak dari sisi luar jaringan gingiva ke puncak tulang atau struktur gigi adalah diukur

(Gambar 2 (b)).

(9)

GMBC-V diukur (Gambar 2 (c)). Mengikuti sumbu gigi yang panjang, garis sejajar dilacak dari margin gingival ke puncak tulang vestibular (Gambar 2 (d)).

2.5.7. Pengukuran GMBC-I Menggunakan Pencitraan CBCT. Referensi untuk pengukuran ini adalah tanda pada panduan tomografi yang dibuat di ujung papilla interproksimal masing-masing. Irisan vestibular transversal-palatal di mana tanda ini terbukti, hiperaktif, dan bulat digunakan untuk pengukuran ini (Gambar 2 (e)). Sebuah garis dilacak di tengah punggungan alveolar dan jalur lain dilacak sejajar dengannya dari margin gingiva ke puncak interproximalbone (Gambar 2 (f)).

2.6. Analisis statistik. Mean dan standar deviasi GT, GMBC-V, dan GMBC-I dihitung. Perbedaan antara pengukuran yang dilakukan dengan CBCT, TP, AS, dan TCE dihitung dengan menggunakan uji f independen atau uji Mann-Whitney dan uji post hoc ANOVA Tamhane. Hubungan antara pengukuran yang dilakukan dengan CBCT, TP, AS, dan TCE dinilai dengan koefisien korelasi Pearson dan regresi linier sederhana. Tingkat signifikansi adalah P <0,05. Analisis statistik dilakukan dengan menggunakan Paket Statistik untuk perangkat lunak Ilmu Pengetahuan Sosial, versi 20 (SPSS, Chicago, IL, AS).

3. Hasil

Untuk penelitian ini, dipilih 29 pasien, 27 wanita dan 2 laki-laki, dengan usia rata-rata 27 tahun (18 sampai 49 tahun). GT dan GMBC-V diukur dengan total 348 gigi rahang atas, 116 I, 58 C, 116 PM, dan 58 FM. GMBC-I diukur pada 377 daerah, 29 di antara gigi insisivus sentral (CI-CI), 58 antara gigi insisivus sentral dan lateral (CI-LI), 58 antara gigi seri dan kaninus lateral (LI-C), 58 antara kanin dan premolar (C -PM), 58 antara gigi premolar (PM-PM), 58 antara molar premolar dan molar pertama (PM-FM), dan 58 antara molar pertama dan molar kedua (FM-SM).

(10)

mempertimbangkan kelompok gigi (I, C, PM, dan FM) dan semua gigi. Perbedaan statistik yang signifikan diamati di antara tiga metode yang mempertimbangkan kelompok gigi dan semua gigi. Juga, perbedaan statistik yang signifikan

ditemukan pada kelompok individu I dan C antara pengukuran yang diperoleh CBCT dan TP dan diperoleh oleh TP dan AS, namun tidak ada perbedaan yang diamati antara CBCT dan AS. Pada masing-masing kelompok PM dan FM, tidak ditemukan perbedaan statistik yang signifikan antara pengukuran yang diperoleh CBCT dan TP, sementara perbedaan statistik yang signifikan diamati antara TP dan AS serta antara CBCT dan AS. Cara tertinggi pengukuran GT diperoleh TP dibandingkan metode lainnya.

Korelasi positif yang signifikan diamati antara TP dan CBCT (P <0,05) untuk pengukuran GT yang diperoleh untuk semua gigi (r = 0,401) dan kelompok gigi (I, r = 0,371; C, r = 0,442; PM, r = 0,466; M, r = 0,300). Hal yang sama juga diamati antara CBCT dan AS (semua gigi, r = 0,475; I, r = 0,416; C, r = 0,532; PM, r = 0,549; FM, r = 0,533) dan antara TP dan AS (semua gigi , r = 0,430; I, r = 0,4040; C, r = 0,517; PM, r = 0,442; M, r = 0,295). Analisis regresi linier

menunjukkan signifikansi untuk semua kelompok gigi dan semua gigi antara TP dan CBCT, antara CBCT dan AS, dan antara TP dan AS (P <0,05).

3.2. Pengukuran GMBC-V. Dengan menggunakan TCE sebagai metode referensi standar, perbedaan statistik yang signifikan diamati antara TCE dan CBCT untuk pengukuran GMBC-V yang diperoleh untuk semua kelompok gigi dan gigi. CBCT mendaftarkan nilai yang lebih tinggi untuk pengukuran GMBC-V daripada TCE. Dalam kedua metode tersebut, pengukuran GMBC-V lebih tinggi untuk I, C, PM, dan FM (Tabel 2).

(11)

dan CBCT menunjukkan signifikansi untuk I, C, PM, dan semua gigi (P <0,05), namun tidak untuk kelompok FM (P = 0,915).

3.3. Pengukuran GMBC-I. Menggunakan TCE sebagai metode referensi standar, perbedaan statistik yang signifikan diamati antara TCE dan CBCT untuk

pengukuran GMBC-I yang diperoleh untuk CI-CI, CI-LI, LI-C, C-PM, PM-PM, PMFM, dan FM-SM daerah, juga mempertimbangkan semua daerah

interproksimal. Dalam semua analisisnya, CBCT mencatat nilai yang lebih tinggi untuk pengukuran GMBC-I daripada TCE. Dalam kedua metode tersebut,

pengukuran GMBC-I rata-rata tertinggi terjadi di wilayah CPM, 3,68 mm dan 3,16 mm, masing-masing (Tabel 2).

Sebuah korelasi positif yang signifikan diamati antara TCE dan CBCT (P <0,05) untuk pengukuran yang mempertimbangkan semua daerah interproksimal (r = 0,398) dan CI-CI (r = 0,393), LI-LI (r = 0,363), LI-C (r = 0,278), C-PM (r = 0,473), PM-PM (r = 0,448), dan daerah PM-FM (r = 0,378), namun tidak untuk daerah FM-SM (r = 0,229; P = 0,071). Analisis regresi linier antara TCE dan CBCT tidak menunjukkan signifikansi hanya untuk wilayah M-M (P = 0,071).

4. Diskusi

(12)

Dalam penelitian ini, perbedaan yang signifikan dicatat antara TP dan CBCT untuk incisives dan canines, dengan cara yang lebih rendah ditemukan untuk yang terakhir. Sebaliknya, mengevaluasi ketebalan gingival pada gigi kriopreservasi dan pencairan mayat manusia, diukur pada 2,0 mm di bawah puncak tulang alveolar, menggunakan caliper dan CBCT, Fu et al. [20] tidak melihat perbedaan antara gigi seri dan gigi taring. Perbedaan antara penelitian dapat dijelaskan dengan sulitnya menentukan batas antara jaringan lunak dan puncak tulang vestibular dalam pencitraan CBCT. Selanjutnya, pengukuran dilakukan secara in vivo dalam penelitian kami dan ex vivo pada percobaan lainnya.

Lokalisasi posterior gigi premolar dan geraham berkontribusi terhadap sulitnya penilaian klinis mereka. Namun, hasil penelitian ini menunjukkan bahwa pengukuran ketebalan gingiva klinis serupa dengan yang diperoleh dengan menggunakan CBCT, yang menyarankan keuntungan dari yang terakhir untuk mengevaluasi daerah ini.

Pengetahuan tentang dimensi ketebalan gingiva lebih menyukai perencanaan prosedur periodontal dan restoratif, yang dapat mempengaruhi prognosis. Dalam penelitian ini, ketebalan gingiva rata-rata yang diperoleh dengan menggunakan CBCT adalah 1,17 [+ atau -] 0,26 mm untuk insisitif dan 1,08 [+ atau -] 0,28 mm untuk gigi taring. Hasil serupa didaftarkan oleh Batista dkk. [41] dan La Rocca dkk. [43] Untuk geraham, ketebalan gingival rata-rata yang ditemukan dalam penelitian kami adalah 1,32 [+ atau -] 0,54 mm, lebih tinggi dari yang dilaporkan oleh Ueno et al. [44] (1,13 [+ atau -] 0,88 mm), yang mengukur ketebalan gingiva pada mayat manusia menggunakan MSCT.

(13)

Meskipun AS adalah metode diagnostik noninvasif dan relatif mudah digunakan, memposisikan transduser sulit dilakukan, terutama di wilayah posterior, dan ini mungkin mengganggu reproduksibilitas pengukuran ini [45].

Jarak antara margin gingival dan puncak tulang alveolar, yang meliputi pengukuran sulkus gingiva, epitel junctional, dan lampiran konjungtif harus dipertimbangkan dalam prosedur restoratif dan bedah. Dalam penelitian ini, perbedaan yang signifikan diamati untuk jarak antara margin gingiva dan puncak tulang vestibular dan interproksimal yang diukur oleh TCE dan CBCT, dengan mempertimbangkan semua gigi dan kelompok gigi yang dianalisis, dan alat tersebut lebih tinggi dengan menggunakan yang kedua. Juga, jarak rata-rata antara margin gingiva dan puncak tulang vestibular dengan mempertimbangkan semua gigi adalah 2,54 [+ atau -] 0,85 mm, serupa dengan hasil yang dilaporkan oleh Gargiulo et al. [10] dalam sebuah studi histologis pada mayat. Dimensi rata-rata struktur dentogingival yang digambarkan oleh penulis, diberi nama unit

dentogingival fisiologis, adalah 0,97 mm untuk epitel junctional, 1,07 mm untuk lampiran konjungtiva, dan 0,69 mm untuk sulkus gingiva, sedangkan panjang total kompleks dentogingiva adalah 2,73 mm. Xie dkk. [46] melaporkan pengukuran histologis yang lebih rendah (2,17 [+ atau -] 0,18 mm), namun mereka menganggap jarak biologis, yaitu gabungan pengukuran lampiran konjungtiva dan epitel junctional.

Mengingat kelompok gigi, sarana yang ditemukan baik untuk jarak antara margin gingiva dan puncak tulang vestibular dan interproksimal dalam penelitian ini menggunakan TCE lebih rendah daripada yang terdaftar oleh Perez et al. [12] menggunakan TP, fakta yang mungkin dijelaskan oleh perbedaan antara metode yang digunakan.

(14)

dapat dibenarkan oleh gangguan yang terkait dengan masalah teknis terkait pembuatan gambar.

Ukuran voxel nampaknya sangat penting dalam evaluasi ketinggian tulang di sekitar gigi [47]. Area dengan plat tulang vestibular tipis rentan terhadap perbedaan [48], karena mereka sulit untuk divisualisasikan dan diukur, bahkan menggunakan retraktor labial, seperti dalam penelitian saat ini. Posisi gigi di lengkungan juga dapat mempengaruhi ketepatan gambar tulang [49], dan, dalam hal ini, daerah molar lebih kompleks untuk dinilai.

Terlepas dari perbedaan yang diamati, pengukuran yang diperoleh dengan menggunakan metode yang berbeda dalam penelitian ini berkorelasi dan

menunjukkan korelasi positif yang signifikan dan regresi linier untuk kelompok I, C, dan PM. Ini menunjukkan bahwa ketika variabel meningkat secara klinis, hal yang sama tetap berlaku untuk citra CBCT. Oleh karena itu, CBCT dapat berkontribusi dalam diagnosis dan perencanaan prosedur periodontal dan restoratif.

(15)

Nilai klinis dari analisis citra dinamis membawa perspektif baru metode

diagnostik noninvasive, yang memperkaya pembentukan diagnosis, perencanaan, dan hasil yang sukses berdasarkan perbandingan yang ketat. Ketepatan hasil mengenai fitur visual jaringan lunak dan keras, paparan radiasi, dan manfaat biaya pencitraan CBCT masih menantang. Diperlukan penelitian lebih lanjut untuk meminimalkan variabel-variabel ini untuk memastikan hasil gambar tiga dimensi yang menjanjikan.

5. Kesimpulan

CBCT adalah metode diagnostik yang efektif untuk memvisualisasikan dan mengukur GT, GMBC-V, dan GMBC-I, yang menyajikan pengukuran yang berkorelasi dengan yang diperoleh secara klinis dan oleh karena itu berkontribusi pada perencanaan prosedur estetika yang lebih baik pada periodontik.

Konflik kepentingan

Penulis menyatakan bahwa tidak ada konflik kepentingan terkait publikasi makalah ini.

http://dx.doi.org/10.1155/2015/142108

Sumber :

http://go.galegroup.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_L

IST&searchResultsType=SingleTab&searchType=BasicSearchForm&currentPosi

tion=1&docId=GALE%7CA462684608&docType=Report&sort=Relevance&con

tentSegment=&prodId=GPS&contentSet=GALE%7CA462684608&searchId=R2

(16)

Cone-beam computed tomography as a diagnostic method for

determination of gingival thickness and distance between gingival

margin and bone crest

Abstract:

The objective of the present study was to assess cone-beam computed tomography

(CBCT) as a diagnostic method for determination of gingival thickness (GT) and

distance between gingival margin and vestibular (GMBC-V) and interproximal

bone crests (GMBCI). GT and V were measured in 348 teeth and

GMBC-I was measured in 377 tooth regions of 29 patients with gummy smile. GT was

assessed using transgingival probing (TP), ultrasound (US), and CBCT, whereas

GMBC-V and GMBC-I were assessed by transsurgical clinical evaluation (TCE)

and CBCT. Statistical analyses used independent t-test, Pearson's correlation

coefficient, and simple linear regression. Difference was observed for GT:

between TP, CBCT, and US considering all teeth; between TP and CBCT and

between TP and US in incisors and canines; between TP and US in premolars and

first molars. TP presented the highest means for GT. Positive correlation and

linear regression were observed between TP and CBCT, TP and US, and CBCT

and US. Difference was observed for GMBC-V and GMBC-I using TCE and

CBCT, considering all teeth. Correlation and linear regression results were

significant for GMBC-V and GMBC-I in incisors, canines, and premolars. CBCT

is an effective diagnostic method to visualize and measure GT, GMBC-V, and

GMBC-I.

Full Text:

1. Introduction

Deeper knowledge of the biological structure and morphological quality of

healthy periodontal tissue helps to establish the diagnosis and prognosis of

(17)

rehabilitation have become common. Periodontal plastic surgeries have been

recommended aiming to improve gingival contours, increase the amount of

keratinized tissue and improve its quality, cover areas of exposed tooth root, and

correct gummy smile [2-4].

The biologic width is essential for the maintenance of gingival health [5, 6] and

any violations of this space may induce the destruction of periodontal supporting

tissues [7]. It is widely accepted that the standard distance between the gingival

margin and the alveolar bone crest is 3.0 mm [8, 9], which has been adopted in

prosthetic and surgical procedures, as well as in the maintenance of periodontally

treated patients. However, the dimensions of the dentogingival junction have been

broadly discussed in the literature [10-12]. The biologic width of molars,

measured in cadavers, is significantly greater than that of anterior teeth [11]. In

their clinical observations, Perez et al. [12] verified that the average distance

between the free gingival margin and the alveolar bone crest was 3.7 mm,

considering the facial surface of maxillary central incisors. Nonetheless, when

measured in the buccal surface, this distance ranged from 3.0 to 5.0 mm.

The variations observed in the dimensions of the dentogingival complex

frequently hamper a professional clinical evaluation. The diagnostic methods

normally used include periapical and interproximal X-rays, as well as bone

probing [13-15]. Due to the limitations and inaccuracy of these exams [16] the

overall treatment may be jeopardized [17].

The measurements of dentogingival junction using bone probing have been

proved to be similar to histometric measurements [18,19]. Nevertheless, anatomic

crown length, soft and hard tissue thickness, and location of dentin-enamel

junction are still controversial [20, 21].

Similarly, a deeper knowledge of the morphology of gingival tissue is of

paramount importance for planning, execution, and prognosis of periodontal

(18)

types, one scalloped and thin and the other flat and thick. However, some patients

present characteristics of both tissue phenotypes, which suggests an intermediary

periodontal biotype [23, 24].

Severity of signals and symptoms of periodontal disease may be related to the

type of periodontium. In patients presenting with thick periodontium, the

inflammation caused by bacterial plaque can cause periodontal pockets, whereas

patients with the thin type can have gingival recessions [25]. Therefore, besides

influencing the results of basic periodontal treatment [26], periodontal biotype

interferes in root coverage procedures [27] and dental implant esthetics [28].

Several methods have been used to measure the thickness of gingival tissue [29],

among which are the direct method or transgingival probing (TP) [30, 31], the

method using ultrasound (US) [25, 32, 33], and, more recently, cone-beam

computed tomography (CBCT) [34, 35].

TP presents limitations due to the low precision of periodontal probes with

millimeter indentations and because it is an invasive procedure, which provokes

discomfort for patients, therefore requiring local anesthesia [31].

Although US [25, 32, 33, 36] seems to be an effective method to measure gingival

thickness (GT) [37], it is difficult to determine a correct and reproducible position

to calibrate the equipment. Another disadvantage lies in the fact that this device

does not allow a panoramic view of gingival/periodontal structures or the analysis

of their relationships.

CBCT is a CT technology with emission of conic X-ray beams presenting limited

emission of radiation. Its clinical applications permitted numerous discussions and

advances in planning and diagnosing alterations in the maxillofacial region [34,

35, 38-42]. Nonetheless, one of its limitations is related to the difficulty of

establishing limits between soft tissues and the vestibular bone crest. In order to

lessen this disadvantage, Januario et al. [34] suggested that the patients should use

(19)

visualisation and measurement of soft and hard structures of the periodontium and

allowed the clinician to assess the relationship between the periodontal structures.

Given that the knowledge of dentogingival complex dimensions and thickness of

gingival tissue is a major aspect of the periodontal treatment, the objective of the

present study was to assess CBCT as a diagnostic method of GT and the distance

between the gingival margin to vestibular (GMBC-V) bone crest and gingival

margin to interproximal bone crest (GMBC-I) comparing clinical measurements

with those using CBCT.

2. Materials and Methods

2.1. Sample Selection. This study was approved by the Research Ethics

Committee of the Universidade Federal de Goias (protocol number 272/2011) and

all the participants signed a free informed consent form. A group of 29 patients

with complaints of gummy smile and indication of esthetic crown lengthening

was selected for the study at the Clinic of the Dentistry School at the Universidade

Federal de Goias.

In addition to gummy smile, the inclusion criteria were as follows: no smoking,

no drug abuse, no systemic complications or allergy history, nonpregnant women,

over 18 years old, and presence of all maxillary teeth, except for third molars. The

exclusion criteria were as follows: previous periodontal surgical procedures, use

of medicines that change periodontal tissues, such as cyclosporine A, calcium

channel blockers, phenytoin, and codes 3 and/or 4 score of the Periodontal

Screening and Recording (PSR) system.

2.2. Initial Preparation of Patients. After anamnesis and PSR, all the patients

received individualised oral hygiene instructions. Those scoring a PSR code 2

underwent scaling and root planing. Dental photography for case documentation

and silicon impressions (Zhermack, Zetaplus, Badia Polesine, Italy) of maxillary

(20)

and a clinical guides aiming to standardise GMBC-V, GMBC-I, and GT measured

by different methods.

2.3. Laboratory Procedures: Tomographic and Clinical Guides. The internal face

of the silicon impression used as the tomographic guide was marked both at the

tip of each interproximal papilla and 3.0 mm above the gingival margin of each

tooth, using a 1.0 mm diameter diamond round bur. These marks were filled with

radiopaque material (zinc oxide eugenol cement) and used as reference to measure

GMBC-V, GMBC-I, and GT in CBCT imaging (Figure 1(a)).

The silicon impression used as the clinical guide was cut, using a scalpel blade

number 15C, following the contours of the gingival margin and the tips of the

interproximal papillae to help measure GMBC-I during surgery to lengthen the

clinical crowns (Figure 1(b)).

2.4. Complementary Exam: CBCT. After the initial preparation, all patients

underwent CBCT in a private clinic (Centro Integrado de Radiologia

Odontologica (CIRO), Goiania, GO, Brazil). During this exam, the patients used a

labial retractor [34] and the tomographic guide. CBCT images were acquired

using the i-CAT Cone-Beam 3D Imaging System (Imaging Sciences International,

Hatfield, PA, USA), at 120 KVp and 3.8 mA for 40 s (voxel size: 0.25 mm;

grayscale: 14 bits; focal spot: 0.5 mm; field of view: 6.0 cm) and a single

360[degrees] image rotation. The images were processed by Xoran CAT software,

version 3.1.62 (Xoran Technologies, Inc., Ann Arbor, MI, USA), in a computer

with Microsoft Windows XP Professional SP-2 program (Microsoft Corporation,

Redmond, WA, USA), with an Intel Core 2 Duo 1.86 Ghz-6300 processor (Intel

Corporation, San Jose, CA, USA), a video card NVIDIA GeForce 6200 with

TurboCache (NVIDIA Corporation, Santa Clara, CA, USA) and LCD monitor

EIZO FlexScan S2000, resolution 1600 x 1200 pixels (Eizo Nanao Corporation,

Ishikawa, Japan). After reconstruction of raw data, the digital imaging and

(21)

2.5. Clinical Procedures

2.5.1. GT Measurement Using US. The clinical guide was placed in the patient's

mouth and the transducer of the US (Krupp SDM, Austenal Medizintechnik,

Cologne, Germany) was positioned above the edge of the guide on the vestibular

gingival tissue of each tooth (Figures 1(c) and 1(d)). GT of maxillary incisors (I),

canines (C), premolars (PM), and first molars (FM) was measured. The

measurements were taken three times, by a single periodontist with over 5 years

of experience, and registered.

2.5.2. GT Measurement Using TP. This exam was carried out during surgery to

lengthen the clinical crowns prior to raising the flap. After local anesthesia, the

tomographic guide was positioned in the patient's mouth and a periodontal probe

was used to penetrate it and mark the soft tissue on the vestibular surface of each

tooth (Figure 1(e)). After that, a periodontal probe with a silicon limiter was

positioned perpendicularly to the long axis of the tooth, at the point previously

marked, penetrating the gingival tissue until meeting resistance of vestibular bone

plate or dental structure (Figure 1(f)). The silicon limiter was adjusted to be in

direct contact with the external surface of the gum. Finally, the probe was

carefully removed and the penetration length was verified with a digital caliper

reading to 0.01mm (Mitutoyo MTI Corporation, Tokyo, Japan).

2.5.3. Transsurgical Clinical Evaluation (TCE) of GMBC-V and GMBC-I. After

measuring GT, a gingival collar was removed between tooth 16 and tooth 26.

Using a syndesmotome, a total thickness flap was carefully elevated at the

vestibular side exposing the bone crest. At this moment of the procedure, the

clinical guide was positioned and GMBC-V was verified from the highest point of

the gingival margin to the vestibular bone crest using an aluminum blunt tip

compass (Jon Comercio de Produtos Odontologicos, Sao Paulo, SP, Brazil) placed

parallel to the long axis of each tooth (Figure 1(g)). Using a digital caliper,

GMBC-V was measured and registered. Likewise, GMBC-I was verified from the

(22)

compass, measured using the digital caliper, and registered. The measurements

were taken three times, by a single periodontist with over 5 years of experience

(Figure 1(h)). After all measurements, osteoplasty and osteotomy were performed

to lengthen the clinical crowns; the flap was repositioned and sutured.

2.5.4. Analysis of CBCTImaging. GT, GMBC-V, and GMBC-I measurements

were taken in 1.0 mm thick transversal vestibular-palatal slices with 1.0 mm

spacing between contiguous slices. The measurement tool supplied by the scanner

manufacturer (Xoran CAT software version 3.1.62) and filters to refine and

enhance the image were used to ensure the precision of each measurement. All

these measurements were taken by a single radiologist with over 5 years of

experience in interpreting CBCT imaging.

2.5.5. GT Measurement Using CBCT Imaging. The reference for this

measurement was the mark in the tomographic guide made 3.0 mm above the

gingival margin of each tooth (Figure 2(a)). The transversal vestibular-palatal

slice in which this mark was evident in its largest dimension was used for this

measurement. In the center of the mark, a line was traced perpendicularly to the

long axis of the tooth, similar to the insertion of the periodontal probe clinically

performed, and the distance from the external side of the gingival tissue to the

bone crest or dental structure was measured (Figure 2(b)).

2.5.6. GMBC-V Measurement Using CBCT Imaging. In the same transversal

vestibular-palatal slice used to measure GT, GMBC-V was measured (Figure

2(c)). Following the long axis of the tooth, a parallel line was traced from the

gingival margin to the vestibular bone crest (Figure 2(d)).

2.5.7. GMBC-I Measurement Using CBCT Imaging. The reference for this

measurement was the mark in the tomographic guide made at the tip of each

interproximal papilla. The transversal vestibular-palatal slice in which this

markwas evident, hyperdense, and round was used for this measurement (Figure

(23)

traced parallel to it from the gingival margin to the interproximalbone crest

(Figure 2(f)).

2.6. Statistical Analysis. Mean and standard deviation of GT, GMBC-V, and

GMBC-I were calculated. The difference between the measurements performed

with CBCT, TP, US, and TCE was calculated using the independent f-test or the

Mann-Whitney test and ANOVA Tamhane's post hoc test. The relationship

between the measurements performed with CBCT, TP, US, and TCE was assessed

by the Pearson correlation coefficient and simple linear regression. The

significance level was P < 0.05. The statistical analysis was carried out using the

Statistical Package for the Social Sciences software, version 20 (SPSS, Chicago,

IL, USA).

3. Results

For the present study, 29 patients were selected, 27 females and 2 males, with

mean age of 27 years (18 to 49 years). GT and GMBC-V were measured in a total

of 348 maxillary teeth, 116 I, 58 C, 116 PM, and 58 FM. GMBC-I was measured

in 377 regions, 29 between central incisors (CI-CI), 58 between central and lateral

incisor (CI-LI), 58 between lateral incisor and canine (LI-C), 58 between canine

and premolar (C-PM), 58 between premolars (PM-PM), 58 between premolar and

first molar (PM-FM), and 58 between first molar and second molar (FM-SM).

3.1. GT Measurement. Table 1 shows the mean and standard deviation of GT

measurements obtained by CBCT imaging, TP, and US, considering teeth groups

(I, C, PM, and FM) and all the teeth. Significant statistical differences were

observed among the three methods considering teeth groups and all the teeth.

Also, significant statistical difference was found in the individual groups of I and

C between the measurements obtained by CBCT and TP and obtained by TP and

US, but no difference was observed between CBCT and US. In the individual

groups of PM and FM, no significant statistical difference was found between the

(24)

were observed between TP and US as well as between CBCT and US. The highest

means of GT measurements were obtained by TP compared to the other methods.

A significant positive correlation was observed between TP and CBCT (P < 0.05)

for GT measurements obtained for all the teeth (r = 0.401) and teeth groups (I, r =

0.371; C, r = 0.442; PM, r = 0.466; M, r = 0.300). The same was observed

between CBCT and US (all the teeth, r = 0.475; I, r = 0.416; C, r = 0.532; PM, r =

0.549; FM, r = 0.533) and between TP and US (all the teeth, r = 0.430; I, r =

0.440; C, r = 0.517; PM, r = 0.442; M, r = 0.295). The linear regression analysis

showed significance for all teeth groups and all the teeth between TP and CBCT,

between CBCT and US, and between TP and US (P < 0.05).

3.2. GMBC-V Measurement. Using TCE as the standard reference method,

significant statistical differences were observed between TCE and CBCT for

GMBC-V measurements obtained for all the teeth and teeth groups. CBCT

registered higher values for GMBC-V measurements than TCE. In both methods,

GMBC-V measurements were higher for I, C, PM, and FM (Table 2).

A significant positive correlation was observed between TCE and CBCT (P <

0.05) for measurements obtained for all the teeth (r = 0.692) and I(r = 0.442), C (r

= 0.564), and PM (r = 0.552), whereas the M group did not present a significant

correlation (r = 0.014; P = 0.915). The linear regression analysis between TCE

and CBCT showed significance for I, C, PM, and all the teeth (P < 0.05), but not

for the FM group (P = 0.915).

3.3. GMBC-I Measurement. Using TCE as the standard reference method,

significant statistical differences were observed between TCE and CBCT for

GMBC-I measurements obtained for CI-CI, CI-LI, LI-C, C-PM, PM-PM, PMFM,

and FM-SM regions, also considering all the interproximal regions. In all the

analyses, CBCT registered higher values for GMBC-I measurements than TCE. In

both methods, the highest mean GMBC-I measurements occurred in the CPM

(25)

A significant positive correlation was observed between TCE and CBCT (P <

0.05) for measurements considering all the interproximal regions (r = 0.398) and

the CI-CI (r = 0.393), LI-LI (r = 0.363), LI-C (r = 0.278), C-PM (r = 0.473),

PM-PM (r = 0.448), and PM-PM-FM regions (r = 0.378), but not for the FM-SM region (r

= 0.239; P = 0.071). The linear regression analysis between TCE and CBCT did

not show significance only for the M-M region (P = 0.071).

4. Discussion

The predictability of periodontal therapy results is better estimated when it is

based on deeper knowledge of the dimensions of dentogingival structures and

annexes. Aiming to assess these measurements and shapes, several researches

have been conducted to monitor and quantify gingival and periodontal alterations,

which implies the use of precise methods. An expressive improvement has been

achieved with CBCT, a new reliable resource for diagnostic and therapeutic

treatment plan purposes, which allows viewing three-dimensional images [21, 38].

In the present study, significant differences were registered between TP and

CBCT for incisives and canines, with lower means found for the latter. In

contrast, evaluating gingival thickness in cryopreserved and thawed teeth of

human cadavers, measured at 2.0 mm below the alveolar bone crest, using caliper

and CBCT, Fu et al. [20] did not observe differences between incisives and

canines. The differences between the studies might be explained by the difficulty

of establishing limits between soft tissues and the vestibular bone crest in CBCT

imaging. Furthermore, the measurements were carried out in vivo in our study and

ex vivo in the other experiment.

The posterior localization of premolars and molars contributes to the difficulty of

their clinical assessment. However, the results of this study showed that clinical

gingival thickness measurements were similar to those obtained using CBCT,

(26)

The knowledge of gingival thickness dimensions favours the planning of

periodontal and restorative procedures, which may influence the prognosis. In this

study, the mean gingival thickness obtained using CBCT was 1.17 [+ or -] 0.26

mm for incisives and 1.08 [+ or -] 0.28 mm for canines. Similar results were

registered by Batista et al. [41] and La Rocca et al. [43] For molars, the mean

gingival thickness found in our study was 1.32 [+ or -] 0.54 mm, higher than that

reported by Ueno et al. [44] (1.13 [+ or -] 0.88 mm), who measured gingival

thickness in human cadavers using MSCT.

The results found for maxillary incisives and canines using TP, in the present

study, were 1.34 [+ or -] 0.31 and 1.22 [+ or -] 0.27 mm, respectively. Savitha and

Vandana [37] reported a mean of 1.08 [+ or -] 0.42 mm for maxillary and

mandibular incisives and canines. In our study, significant differences were

observed between gingival thickness measurements using TP and US, similar to

the findings of Savitha and Vandana [37]. Although US is a noninvasive

diagnostic method and relatively easy to use, positioning the transducer is

difficult, mainly in the posterior region, and this may interfere in the

reproducibility of these measurements [45].

The distance between the gingival margin and the alveolar bone crest, which

encompasses the measurements of gingival sulcus, junctional epithelium, and

conjunctive attachment should be taken into consideration in restorative and

surgical procedures. In the present study, significant difference was observed for

the distance between the gingival margin and the vestibular and interproximal

bone crests measured by TCE and CBCT, considering all the teeth and the groups

of teeth analysed, and the means were higher using the latter. Also, the mean

distance between the gingival margin and the vestibular bone crest considering all

the teeth was 2.54 [+ or -] 0.85 mm, similar to the results reported by Gargiulo et

al. [10] in a histological study in cadavers. The mean dimensions of the

dentogingival structures described by the authors, named physiological

dentogingival unit, were 0.97 mm for the junctional epithelium, 1.07 mm for the

(27)

length of the dentogingival complex was 2.73 mm. Xie et al. [46] reported a lower

histological measurement (2.17 [+ or -] 0.18 mm), but they considered the

biological distance, that is, the combined measurement of the conjunctive

attachment and the junctional epithelium.

Considering the teeth groups, the means found for both the distance between the

gingival margin and the vestibular and interproximal bone crests in the present

study using TCE were inferior to those registered by Perez et al. [12] using TP, a

fact that might be explained by the differences between the methods employed.

In the present study, a tomographic guide and a clinical guide were developed

aiming to standardise the position to calibrate the equipment both clinically and in

the images. However, differences between the measurements obtained in CBCT

images of TCFC and those obtained clinically. These results may be justified by

the interferences related to technical matters regarding the generation of the

images.

Voxel size seems to be critical in the evaluation of bone height around the teeth

[47]. Areas with thin vestibular bone plates are susceptible to discrepancies [48],

since they are difficult to be visualised and measured, even using a labial retractor,

as in the current study. The position of the tooth in the arch may also influence the

precision of the bone image [49], and, in this regard, the molar region is more

complex to be assessed.

Despite the differences observed, the measurements obtained using different

methods in this study were correlated and presented significant positive

correlation and linear regression for I, C, and PM groups. This demonstrates that

when the variable increases clinically, the same remains true for CBCT images.

Therefore, CBCT can contribute to the diagnosis and planning of periodontal and

restorative procedures.

Esthetic crown lengthening requires careful planning to determine the best

(28)

avoiding deficient or excessive removal, in order to ensure the stability of the

results achieved in the immediate postoperative period [50]. Normally, the

treatment plan for gummy smile is based on clinical and imaging assessments [17,

51] to determine the following aspects: gingival tissue thickness and height, bone

thickness, distance between the gingival margin and the vestibular and

interproximal bone crests, and distance between the bone crest and the

dentin-enamel junction. Nonetheless, both in clinical and imaging assessments, certain

limitations have been identified for the acquisition of these measurements. CBCT

imaging contribution in this field lies in the possibility of visualising and

measuring these structures and the interrelationships of the tissues in three

dimensions, which may minimize possible diagnostic and treatment planning

errors.

The clinical value of dynamic image analysis brought new perspectives of

noninvasive diagnostic methods, which enrich the establishment of diagnosis,

planning, and successful results based on rigorous comparisons. The precision of

the results regarding visual features of soft and hard tissues, the exposure to

radiation, and the cost benefit of CBCT imaging are still challenging. Further

studies are necessary to minimize these variables in order to ensure the promising

results of three-dimensional images.

5. Conclusion

CBCT is an effective diagnostic method to visualize and measure GT, GMBC-V,

and GMBC-I, presenting measurements correlated to those obtained clinically

and, therefore, contributing to a better planning of esthetic procedures in

(29)

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication

of this paper.

http://dx.doi.org/10.1155/2015/142108

References

[1] J. G. Maynard Jr. and R. D. Wilson, "Physiologic dimensions of the

periodontium significant to the restorative dentist," Journal of Periodontology,

vol. 50, no. 4, pp. 170-174, 1979.

[2] F. Cairo, F. Graziani, L. Franchi, E. Defraia, and G. P. P. Prato, "Periodontal

plastic surgery to improve aesthetics in patients with altered passive

eruption/gummy smile: a case series study," International Journal of Dentistry,

vol. 2012, Article ID 837658, 6 pages, 2012.

[3] D. W D. De Oliveira, F. Oliveira-Ferreira, O. D. Flecha, and P. F. Gonsalves,

"Is surgical root coverage effective for the treatment of cervical dentin

hypersensitivity? A systematic review," Journal of Periodontology, vol. 84, no. 3,

pp. 295-306, 2013.

[4] M. L. Sawai and R. M. Kohad, "An evaluation of a periodontal plastic surgical

procedure for the reconstruction of interdental papillae in maxillary anterior

region: a clinical study," Journal of Indian Society of Periodontology, vol. 16, no.

4, pp. 533-538, 2012.

[5] M. Nevins and H. M. Skurow, "The intracrevicular restorative margin, the

biologic width, and the maintenance of the gingival margin," The

International JournalofPeriodontics & RestorativeDentistry, vol. 4, no. 3, pp.

(30)

[6] P. L. Block, "Restorative margins and periodontal health: a new look at an old

perspective," The Journal of Prosthetic Dentistry, vol. 57, no. 6, pp. 683-689,

1987.

[7] A. Than, R. Duguid, and A. J. McKendrick, "Relationship between

restorations and the level of the periodontal attachment," Journal of Clinical

Periodontology, vol. 9, no. 3, pp. 193-202, 1982.

[8] M. Nevins and H. M. Skurow, "Periodontics and restorative dentistry: the

clinical interrelationship," Journal California Dental Association, vol. 12, no. 4,

pp. 101-105, 1984.

[9] A. Padbury Jr., R. Eber, and H. L. Wang, "Interactions between the gingiva

and the margin of restorations," Journal of Clinical Periodontology, vol. 30, no. 5,

pp. 379-385, 2003.

[10] A. W Gargiulo, F. M. Wentz, and B. Orban, "Dimensions and relations of the

dentogingival junction in humans," Journal of Periodontology, vol. 32, no. 3, pp.

261-267, 1961.

[11] J. S. Vacek, M. E. Gher, D. A. Assad, A. C. Richardson, and L. I.

Giambarresi, "The dimensions of the human dentogingival junction," The

International JournalofPeriodontics & RestorativeDentistry, vol. 14, no. 2, pp.

154-165, 1994.

[12] J. R. Perez, H. Smukler, and M. E. Nunn, "Clinical dimensions of the

supraosseous gingivae in healthy periodontium," Journal of Periodontology, vol.

79, no. 12, pp. 2267-2272, 2008.

[13] M. S. Reddy, "Radiographic methods in the evaluation of periodontal

therapy," Journal of Periodontology, vol. 63, no. 12, supplement, pp. 1078-1084,

(31)

[14] M. K. Jeffcoat, "Radiographic methods for the detection of progressive

alveolar bone loss," Journal of Periodontology, vol. 63, no. 4, supplement, pp.

367-372, 1992.

[15] J. R. Easley, "Methods of determining alveolar osseous form," Journal of

Periodontology, vol. 38, no. 2, pp. 112-118, 1967

[16] P. Eickholz and E. Hausmann, "Accuracy of radiographic assessment of

interproximal bone loss in intrabony defects using linear measurements,"

European Journal of Oral Sciences, vol. 108, no. 1, pp. 70-73, 2000.

[17] F. Alpiste-Illueca, "Dimensions of the dentogingival unit in maxillary

anterior teeth: a new exploration technique (parallel profile radiograph),"

International JournalofPeriodontics &RestorativeDentistry, vol. 24, no. 4, pp.

386-396, 2004.

[18] H.-Y. Kim, S.-W. Yi, S.-H. Choi, and C.-K. Kim, "Bone probing

measurement as a reliable evaluation of the bone level in periodontal defects,"

Journal of Periodontology, vol. 71, no. 5, pp. 729-735, 2000.

[19] J.-H. Yun, S.-J. Hwang, C.-S. Kim et al., "The correlation between the bone

probing, radiographic and histometric measurements of bone level after

regenerative surgery," Journal of Periodontal Research, vol. 40, no. 6, pp.

453-460, 2005.

[20] J.-H. Fu, C.-Y. Yeh, H.-L. Chan, N. Tatarakis, D. J. M. Leong, and H.-L.

Wang, "Tissue biotype and its relation to the underlying bone morphology,"

Journal of Periodontology, vol. 81, no. 4, pp. 569-574, 2010.

[21] J. F. Sherrard, P. E. Rossouw, B. W. Benson, R. Carrillo, and P. H.

Buschang, "Accuracy and reliability of tooth and root lengths measured on

cone-beam computed tomographs," American Journal of Orthodontics and Dentofacial

(32)

[22] C. Ochsenbein and S. Ross, "A reevaluation of osseous surgery," Dental

Clinics of North America, vol. 13, no. 1, pp. 87-102, 1969.

[23] J. L. Seibert and J. Lindhe, "Esthetics and periodontal therapy," in Textbook

of Clinical Periodontology, J. Lindhe, Ed., pp. 477-514, Munksgaard,

Copenhagen, Denmark, 1989.

[24] H. P Muller and E. Kononen, "Variance components of gingival thickness,"

Journal of Periodontal Research, vol. 40, no. 3, pp. 239-244, 2005.

[25] T. Eger, H.-P. Muller, and A. Heinecke, "Ultrasonic determination of

gingival thickness: subject variation and influence of tooth type and clinical

features," Journal of Clinical Periodontology, vol. 23, no. 9, pp. 839-845, 1996.

[26] N. Claffey and D. Shanley, "Relationship of gingival thickness and bleeding

to loss of probing attachment in shallow sites following nonsurgical periodontal

therapy," Journal of Clinical Periodontology, vol. 13, no. 7, pp. 654-657, 1986.

[27] L.-H. Huang, R. E. F. Neiva, and H.-L. Wang, "Factors affecting the

outcomes of coronally advanced flap root coverage procedure," Journal of

Periodontology, vol. 76, no. 10, pp. 1729-1734, 2005.

[28] H. Zigdon and E. E. MacHtei, "The dimensions of keratinized mucosa around

implants affect clinical and immunological parameters," Clinical Oral Implants

Research, vol. 19, no. 4, pp. 387-392, 2008.

[29] V. Ronay, P Sahrmann, A. Bindl, T. Attin, and P R. Schmidlin, "Current

status and perspectives of mucogingival soft tissue measurement methods,"

Journal of Esthetic and Restorative Dentistry, vol. 23, no. 3, pp. 146-156, 2011.

[30] J. Greenberg, L. Laster, and M. A. Listgarten, "Transgingival probing as a

potential estimator of alveolar bone level," Journal of Periodontology, vol. 47, no.

(33)

[31] N. Wara-aswapati, W. Pitiphat, N. Chandrapho, C. Rattanayatikul, and N.

Karimbux, "Thickness of palatal masticatory mucosa associated with age,"

Journal of Periodontology, vol. 72, no. 10, pp. 1407-1412, 2001.

[32] H.-P. Muller, N. Schaller, and T. Eger, "Ultrasonic determination of

thickness of masticatory mucosa: a methodologic study," Oral Surgery, Oral

Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 88, no. 2, pp.

248-253, 1999.

[33] H.-P. Muller, A. Heinecke, N. Schaller, and T. Eger, "Masticatory mucosa in

subjects with different periodontal phenotypes," Journal of Clinical

Periodontology, vol. 27, no. 9, pp. 621-626, 2000.

[34] A. L. Januario, M. Barriviera, and W. R. Duarte, "Soft tissue cone-beam

computed tomography: a novel method for the measurement of gingival tissue and

the dimensions of the dentogingival unit," Journal of Esthetic and Restorative

Dentistry, vol. 20, no. 6, pp. 366-373, 2008.

[35] M. Barriviera, W. R. Duarte, A. L. Januaario, J. Faber, and A. C. B. Bezerra,

"A new method to assess and measure palatal masticatory mucosa by cone-beam

computerized tomography," Journal of Clinical Periodontology, vol. 36, no. 7, pp.

564-568, 2009.

[36] R. K. W. Schulze, D. Curic, and B. D'Hoedt, "B-mode versus A-mode

ultrasonographic measurements of mucosal thickness in vivo," Oral Surgery, Oral

Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 93, no. 1, pp.

110-117, 2002.

[37] B. Savitha and K. L. Vandana, "Comparative assesment of gingival thickness

using transgingival probing and ultrasonographic method," Indian Journal of

(34)

[38] W. C. Scarfe, A. G. Farman, and P Sukovic, "Clinical applications of

cone-beam computed tomography in dental practice," Journal of the Canadian Dental

Association, vol. 72, no. 1, pp. 75-80, 2006.

[39] M. E. Guerrero, R. Jacobs, M. Loubele, F. Schutyser, P. Suetens, and D. van

Steenberghe, "State-of-the-art on cone beam CT imaging for preoperative

planning of implant placement," Clinical Oral Investigations, vol. 10, no. 1, pp.

1-7, 2006.

[40] C. Estrela, M. R. Bueno, C. R. Leles, B. Azevedo, and J. R. Azevedo,

"Accuracy of cone beam computed tomography and panoramic and periapical

radiography for detection of apical periodontitis," Journal of Endodontics, vol. 34,

no. 3, pp. 273-279, 2008.

[41] E. L. Batista Jr, C. C. Moreira, F. C. Batista, R. R. De Oliveira, and K. K. Y.

Pereira, "Altered passive eruption diagnosis and treatment: a cone beam computed

tomography-based reappraisal of the condition," Journal of Clinical

Periodontology, vol. 39, no. 11, pp. 1089-1096, 2012.

[42] K. de Faria Vasconcelos, K. M. Evangelista, C. D. Rodrigues, C. Estrela, T.

O. de Sousa, and M. A. G. Silva, "Detection of periodontal bone loss using cone

beam CT and intraoral radiography," Dentomaxillofacial Radiology, vol. 41, no.

1, pp. 64-69, 2012.

[43] A. P La Rocca, A. S. Alemany, P Levi Jr., M. V. Juan, J. N. Molina, and A.

S. Weisgold, "Anterior maxillary and mandibular biotype: relationship between

gingival thickness and width with respect to underlying bone thickness," Implant

Dentistry, vol. 21, no. 6, pp. 507-515, 2012.

[44] D. Ueno, J. Sato, C. Igarashi et al., "Accuracy of oral mucosal thickness

measurements using spiral computed tomography," Journal of Periodontology,

(35)

[45] H.-P. Muler, K. M. Barrieshi-Nusair, and E. Kononen, "Repeatability of

ultrasonic determination of gingival thickness," Clinical Oral Investigations, vol.

11, no. 4, pp. 439-442, 2007

[46] G. Y. Xie, J. H. Chen, H. Wang, and Y. J. Wang, "Morphological

measurement of biologic width in Chinese people," Journal of oral science, vol.

49, no. 3, pp. 197-200, 2007

[47] Z. Sun, T. Smith, S. Kortam, D.-G. Kim, B. C. Tee, and H. Fields, "Effect of

bone thickness on alveolar bone-height measurements from cone-beam computed

tomography images," American Journal of orthodontics and Dentofacial

Orthopedics, vol. 139, no. 2, pp. e117-e127, 2011.

[48] J. W. Ballrick, J. M. Palomo, E. Ruch, B. D. Amberman, and M. G. Hans,

"Image distortion and spatial resolution of a commercially available cone-beam

computed tomography machine," American Journal of Orthodontics and

Dentofacial Orthopedics, vol. 134, no. 4, pp. 573-582, 2008.

[49] A. D. Molen, "Considerations in the use of cone-beam computed tomography

for buccal bone measurements," American Journal of Orthodontics and

Dentofacial Orthopedics, vol. 137, no. 4, supplement, pp. S130-S135, 2010.

[50] F. Herrero, J. B. Scott, P. S. Maropis, and R. A. Yukna, "Clinical comparison

of desired versus actual amount of surgical crown lengthening," Journal of

Periodontology, vol. 66, no. 7, pp. 568-571, 1995.

[51] R. A. Levine and M. McGuire, "The diagnosis and treatment of the gummy

smile.," Compendium of Continuing Education in Dentistry, vol. 18, no. 8, pp.

757-766, 1997

Germana Jayme Borges, (1) Luis Fernando Naldi Ruiz, (2) Ana Helena Gonsalves

(36)

(1) Faculty of Dentistry, UniEvangalica University Center, 75083-515 Anapolis,

GO, Brazil

(2) Faculty of Dentistry, Goias Federal University, 74690-900 Goiania, GO,

Brazil

Correspondence should be addressed to Carlos Estrela; estrela3@terra.com.br

Received 18 January 2015; Accepted 14 March 2015

Academic Editor: Gianluca Plotino

Source :

http://go.galegroup.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_L

IST&searchResultsType=SingleTab&searchType=BasicSearchForm&currentPosi

tion=1&docId=GALE%7CA462684608&docType=Report&sort=Relevance&con

tentSegment=&prodId=GPS&contentSet=GALE%7CA462684608&searchId=R2

Referensi

Dokumen terkait

skripsi PENGARUH INTERACTIVE WORD PROGRAM TERHADAP .... Widi

risiko yang dilakukan. Manajemen risiko dapat diterapkan di setiap level di organisasi. Manajemen risiko dapat diterapkan di level strategis dan level

Dengan dirancangnya Aplikasi mendiagnosis penyakit akibat gigitan nyamuk aedes aegypti berbasis web dapat memberikan kemudahan dalam mendiagnosa penyakit yang

Pembuatan Aplikasi Bukutel ini menggunakan Java 2 Micro Edition (J2ME) yang merupakan bagian dari Java 2, dan merupakan suatu aplikasi yang bertujuan untuk menyimpan nomor telepon

Berdasarkan hasil evaluasi dokumen pemilihan jasa konsultansi pengawasan pembangunan gedung konekting, Rehabilitasi Gedung B dan Rehabilitasi Gedung Arsip/TPP TA 2012

Kepada para peserta yang merasa keberatan atas pengumuman ini dapat menyampaikan sanggahan secara tertulis selambat-lambatnya dalam waktu 3 (tiga) hari setelah

Halaman Gambar 3.1 Sketsa Proses Adsorpsi 15 Gambar 3.2 Proses Desorpsi Zeolit 15 Gambar 3.3 FlowchartAktivasi Termal Zeolit 16 Gambar 3.4 FlowchartAdsorpsi Asap Cair 17

Puji syukur kita panjatkan kepada Tuhan Yang Maha Esa atas berkat dan karuniaNya-lah Penulis dapat menyelesaian penulisan tugas akhir ini tepat pada waktunya dengan judul