• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
11
0
0

Teks penuh

(1)

23 11

Article 10.8.8

Journal of Integer Sequences, Vol. 13 (2010), 2

3 6 1 47

Some Properties of Hyperfibonacci

and Hyperlucas Numbers

Ning-Ning Cao

1

and Feng-Zhen Zhao

1

School of Mathematical Sciences

Dalian University of Technology

Dalian 116024

China

caoning0928@163.com

fengzhenzhao@yahoo.com.cn

Abstract

In this paper, we discuss the properties of hyperfibonacci numbers and hyperlucas numbers. We derive some identities for hyperfibonacci and hyperlucas numbers by the method of coefficients. Furthermore, we give asymptotic expansions of certain sums involving hyperfibonacci and hyperlucas numbers by Darboux’s method.

1

Introduction

Dil and Mez˝o [1] introduced the definitions of “hyperfibonacci” numbersFn(r) and

“hyperlu-cas” numbers L(nr)

Fn(r) =

n

X

k=0

Fk(r−1), with Fn(0) =Fn, F0(r) = 0, F (r) 1 = 1,

L(nr) =

n

X

k=0

L(kr−1), with L(0)n =Ln, L(0r) = 2, L (r)

1 = 2r+ 1,

(2)

wherer is a positive integer, andFn andLn are Fibonacci and Lucas numbers, respectively.

The generating functions ofFn(r) and L(nr) are as follows:

X

n=0 F(r)

n tn =

t

(1tt2)(1t)r,

X

n=0

L(nr)tn = 2−t

(1tt2)(1t)r.

The first few values of Fn(r) and L(nr) are as follows:

F(1)

n : 0,1,2,4,7,12,20,33,54,88,143,232,376,609,986,1596,2583, . . .;

Fn(2) : 0,1,3,7,14,26,46,79,133,221,364,596,972,1581,2567,4163,6746, . . .;

L(1)n : 2,3,6,10,17,28,46,75,122,198,321,520,842,1363,2206,3570,5777, . . .;

L(2)n : 2,5,11,21,38,66,112,187,309,507,828,1348,2190,3553,5759,9329,15106, . . . .

There are some elementary identities for Fn(r) and Ln(r) when r= 1,2. For example,

Fn(1) = Fn+2−1, Fn(2) = Fn+4−n−3

=

n

X

k=0

(nk)Fk,

L(1)n = Ln+2−1

= Fn+Fn+2−1,

L(2)n = 4(Fn+1−1) + 3Fn−n

= Ln+3−(n+ 4).

For the above values and elementary identities of Fn(r) and Ln(r), see [4] (A000071, A001924,

A001610,A023548).

Hyperfibonacci numbers and hyperlucas numbers are useful, and Dil and Mez˝o [1] derived some equalities for Fibonacci and Lucas numbers by applying them. Hence, hyperfibonacci numbers and hyperlucas numbers deserve to be investigated. In this paper, we discuss properties ofFn(r) and L(nr). We establish some identities forFn(r) and L(nr). Furthermore, we

give asymptotic expansions of certain sums related toFn(r) and L(nr).

For convenience, we first recall some notation. Letα= (1 +√5)/2. It is well known that

Fn=

αn(1)nα−n

5 , Ln=α

n+ (

−1)nα−n,

and Fn and Ln satisfy the following recurrence relation

(3)

As usual, the binomial coefficient mn

is defined by

wheren and m are nonnegative integers. Throughout, [zn]f(z) denotes the coefficient of zn

inf(z), where

Now we recall the notation of the binomial transform of a sequence, the inverse binomial transform of a sequence and Euler-Seidel infinite matrix [1, 5]. Let {ak}∞k=0 be a sequence.

The binomial transform of {ak} is given by Pnk=0

n k

ak, the inverse binomial transform of

{ak}is given byPnk=0 nk

(1)ka

k, and the Euler-Seidel infinite matrix corresponding to the

sequence {ak} is determined by the following formulas

(4)

2

Main Results

In this section, we derive some identities for Fn(r) and L(nr). Later, we give asymptotic

expansions of certain sums involving Fn(r) and L(nr).

Various identities involving Fibonacci and Lucas numbers were established. The following sums were investigated [3, 7,8]

X

j1+j2+···+jk=n

Fj1Fj2· · ·Fjk,

X

j1+j2+···+jk=n

Lj1Lj2· · ·Ljk.

For example,

X

j1+j2=n

Fj1Fj2 =

(n1)Ln+ 2Fn−1

5 ,

X

j1+j2=n

Lj1Lj2 = (n+ 1)Ln+ 2Fn+1.

Now we derive some identities for Fn(r) and L(nr). Denote

An,k,r =

X

j1+j2+···+jk=n

Fj(1r)Fj(2r)· · ·Fj(kr), Bn,k,r =

X

j1+j2+···+jk=n

L(jr1)Lj(r2)· · ·L(jrk).

These sums are interesting because they can help us to find some new convolution properties. ForAn,k,r and Bn,k,r, we have

Theorem 1. Let k, n 1 and r1 be positive integers. For An,k,r and Bn,k,r, we have

An,2,1 = n+ 5−2Fn+4+

(n+ 1)Ln+4−2Fn+1

5 , (9)

Bn,2,1 = n+ 9−10Fn+4−2Fn+1+

(5n+ 9)Ln+4+ 4Ln+6

5 , (10)

An,k+1,r = n

X

j=0

An,k,rFj(r), (11)

Bn,k+1,r = n

X

j=0

Bn,k,rL(jr). (12)

Proof. Let

Fr(t) =

t

(1tt2)(1t)r, Lr(t) =

2t

(5)

Clearly,

F1(t) =

α2α−2 t1 −

α tα−1 −

α−1 t+α

1

5

=

X

n=0

Fn+2tn−

X

n=0 tn

t,

An,2,1 = [tn]F12(t), Bn,2,1 = [tn]L21(t)

(6)
(7)

It is interesting that we can get congruence relations from (9) and (10)

An,2,1 ≡

n2Fn+4+

(n+ 1)Ln+4−2Fn+1

5

(mod 5),

Bn,2,1 ≡

n10Fn+4−2Fn+1+

(5n+ 9)Ln+4+ 4Ln+6

5

(mod 9).

When k or r gets large, it is difficult to compute the closed forms of An,k,r and Bn,k,r.

However, we can give their asymptotic values. Now we recall a lemma [6].

Lemma 2. Assume that f(t) = P

n≥0antn is an analytic function for |t| < r and with a

finite number of algebraic singularities on the circle|t|=r. α1, α2, · · ·, αl are singularities

of order ω, where ω is the highest order of all singularities. Then

an = (nω−1/Γ(ω))×

l

X

k=1

gk(αk)α−kn+o(r− n)

, (13)

where Γ(ω) is the gamma function, and

gk(αk) = lim t→αk

(1(t/αk))ωf(t).

Theorem 3. Suppose that k and r are fixed positive integers. For An,k,r and Bn,k,r, when

n→ ∞,

An,k,r =

nk−1

(k1)!

α α2+ 1

k

(1 +α)krαn+o(αn))

, (14)

Bn,k,r =

nk−1

(k1)!

2α2α α2+ 1

k

(1 +α)krαn+o(αn))

. (15)

Proof. Let

fk,r(t) =

tk

(1tt2)k(1t)kr.

We know that fk,r(t) is analytic for |t| < 1/α, and with one algebraic singularity on the

circle |t|= 1/α. The order of 1/α isk. One can compute that

lim

t→1/α(1−αt) kf

k,r(t) =

α α2+ 1

k

(1 +α)kr.

By using Lemma 2, we can prove that (14) holds. Using the same method, we can prove that (15) holds.

(8)
(9)

By using Lemma 2, we prove that (16) and (18) hold.

Theorem 5. Suppose that m and r are fixed positive integers. When n→ ∞,

n

X

j=0 Fn(r)j

j+m1

j

= α

n+1(1 +α)r+m

α2+ 1 +o(α

n), (20)

n

X

j=0 L(nr)j

j+m1

j

= (1 +α)r+mαn+o(αn). (21)

Proof. We can verify that

n

X

j=0 Fn(r)j

j +m1

j

=

n

X

j=0

[tn−j] t

(1tt2)(1t)r[t j] 1

(1t)m

= [tn] t

(1tt2)(1t)m+r, n

X

j=0 L(nr)j

j +m1

j

= [tn] 2−t

(1tt2)(1t)m+r.

By using Lemma 2, we have (20) and (21).

In the final of this section, we compare the accurate values with the asymptotic values. In Theorem 4, let

Xn= n

X

k=0

n k

Fk(r), Yn=

α(1 +α)r

(α2+ 1)(2α)n.

n Xn Yn |Xn−Yn|/Xn

50 9.2737156629317196×1020 9.2737269219308562×1020 1.2141×10−6

100 7.345448671565505×1041 7.3454486715782857×1041 1.7399×10−12

150 5.818115698360039×1062 5.8181156983601641×1062 2.1352×10−14

Table 1: some values of Xn and Yn

From the above table, we find that the value of |Xn−Yn|/Xn gets smaller and smaller

with the increasing of n.

3

Remarks

Consider the sequences {u(nr)}and {vn(r)} defined by

X

n=0

u(nr)zn =

z

(1pzz2)(1z)r,

X

vn(r)zn = 2−pz

(10)

wherep > 0. It is clear thatu(nr) =Fn(r) and vn(r)=L(nr) when p= 1. The conclusions ofFn(r)

Then we have

Un,2,1 =

We can verify that

Un,2,1 = [tn]

and it is omitted here. The identities about{vn(0)} can be found in the same way.

4

Acknowledgments

(11)

References

[1] A. Dil and I. Mez˝o, A symmetric algorithm for hyperharmonic and Fibonacci numbers,

Appl. Math. Comput.206 (2008), 942–951.

[2] D. Merlini, R. Sprugnoli and M. C. Verri, The method of coefficients, Amer. Math. Monthly 114 (2007), 40–57.

[3] N. Robbins, Some convolution-type and combinatorial identities pertaining to binary linear recurrences,Fibonacci Quart. 29 (1991), 249–255.

[4] N. J. A. Sloane, The On–Line Encyclopedia of Integer Sequences. Published electroni-cally at http://www.research.att.com/~njas/sequences, 2010.

[5] M. Z. Spivey, Combinatorial sums and finite difference, Discrete Math. 307 (2007), 3130–3146.

[6] G. Szeg˝o, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, rev. ed., 1959.

[7] Wenpeng Zhang, Some identities involving the Fibonacci numbers,Fibonacci Quart. 35 (1997), 225–228.

[8] Fengzhen Zhao and Tianming Wang, Generalizations of some identities involving the Fibonacci numbers, Fibonacci Quart. 39 (2001), 165–167.

2000 Mathematics Subject Classification: Primary 11B37, 11B39; Secondary 05A16, 05A19.

Keywords: Fibonacci numbers, Lucas numbers, generating function, asymptotic expansion, Darboux’s method.

(Concerned with sequences A000048, A000071,A001610, A001924, and A023548.)

Received June 6 2010; revised version received September 8 2010. Published in Journal of Integer Sequences, September 10 2010. Corrected, March 26 2011.

Gambar

Table 1: some values of Xn and Yn

Referensi

Dokumen terkait

Pada acara penjelasan pekerjaan dokumen pengadaan yang diikuti oleh 36 (Tiga puluh enam) peserta yang telah mendaftar, sampai dengan waktu akhir penjelasan terdapat 3 (Tiga)

dan Current rasio (rasio lancar) Merupakan Rasio yang digunakan untuk mengukur kemampuan perusahaan dalam membayar kewajiban jangka pendeknya dengan menggunakan aktiva

Demikian undangan ini kami sampaikan, atas kehadirannya kami ucapkan terima kasih. POKJA UNIT LAYANAN PENGADAAN KANTOR KESYAHBANDARAN

Jurnal Planta Tropika diterbitkan dua kali dalam setahun (Bulan Februari dan Agustus) oleh Program Studi Agroteknologi, Fakultas Pertanian, Universitas Muhammadiyah

Penggunaan pupuk organik POB 5.000 kg /ha + Urea 100 kg/ha + SP-36 200 kg/ha + NPK Phonska 300 kg/ha memberikan hasil umbi dan keuntungan yang lebih tinggi dibandingkan tanpa

Pada gambar 16 diatas, objek yang ditangkap dirubah sudut posisi penangkapan objeknya, dan hasil yang didapat ternyata tidak sesuai, yang mana objek merupakan Toyota

Gambaran histologi kelenjar tiroid tikus putih seluruh kelompk tikus percobaan secara statistik (ukuran tinggi epitel folikel, diameter folikel dan persentase nassa koloid dalam

‰ Tingkat perubahan yang diperlukan sesuatu organisasi bertahan untuk lingkungan yang berubah dapat berbeda tergantung pada tipe organisasi lingkungan yang berubah dapat