• Tidak ada hasil yang ditemukan

getdoca0d0. 209KB Jun 04 2011 12:04:46 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdoca0d0. 209KB Jun 04 2011 12:04:46 AM"

Copied!
8
0
0

Teks penuh

(1)

E l e c t ro n ic

Jo ur n

a l o

f P

r o b

a b i l i t y

Vol. 3 (1998) Paper no. 1, pages 1–8. Journal URL

http://www.math.washington.edu/˜ejpecp/ Paper URL

http://www.math.washington.edu/˜ejpecp/EjpVol3/paper1.abs.html

Points of positive density for smooth

functionals

Mireille Chaleyat-Maurel

Universit´

e de Paris VI

Laboratoire de Probabilit´

es

4, place Jussieu, tour 46-56

75252 Paris, France

David Nualart

Facultat de Matem`

atiques

Universitat de Barcelona

Gran Via 585

08007 Barcelona, Spain

Abstract. In this paper we show that the set of points where the density of a Wiener functional is strictly positive is an open connected set, assuming some regularity conditions.

Key words. Nondegenerate smooth Wiener functionals. Malliavin cal-culus. Support of the law.

(2)

1

Introduction

The stochastic calculus of variations has been applied to derive properties of the support of a given Wiener functional. In [3] Fang proved that the support of a smooth Wiener functional is a connected set using the techniques of the quasi-sure analysis and the Ornstein-Uhlenbeck process. A simple proof of the connectivity of the support for random vectors whose components belong toD1,p withp >1 is given in [6, Proposition 4.1.1] using the Wiener chaos expansion.

An interesting question is to study the properties of the set where the density p(x) of an m-dimensional Wiener functional F is positive. In the one-dimensional case we know that the density is always strictly positive in the interior of the support (which is a closed interval) if the random vari-able belongs toD1,p with p >2 and it possesses a locally Lipschitz density ([5]). In dimension bigger than one this result is not true. In [4] the au-thors present a simple example of a two-dimensional nondegenerate smooth Wiener functional whose density vanishes in the interior of the support. As a consequence, the set Γ ={x:p(x)>0}is, in general, strictly included in the interior of the support of the law of the functional.

In [4], using the approach introduced by Fang in [3] to handle the con-nectivity of the support, Hirsch and Song proved that the open set Γ is connected. The aim of this paper is to prove that the open set Γ is con-nected using the ideas introduced in the proof of the one-dimensional case, and assuming weak regularity assumptions on the Wiener functional.

2

Preliminaries

We will first introduce the basic notations and present some preliminary results that will be needed later.

Suppose that H is a real separable Hilbert space whose norm and inner product are denoted byk · kH and h·iH, respectively. We associate with H

a Gaussian and centered family of random variables W = {W(h), h ∈H}

such that

E(W(h)W(g)) =hh, giH,

for allh, g∈H.

LetS denote the class of smooth random variables of the form

(3)

where f belongs to Cp∞(Rn) (i.e., f and all of its partial derivatives have

polynomial growth order). If F has the form (2.1) we define its derivative DF as theH-valued random variable given by

DF =

n

X

i=1 ∂f ∂xi

(W(h1), . . . , W(hn))hi. (2.2)

For any real number p ≥ 1 and any positive integer k will denote by Dk,p the completion ofS with respect to the norm

kFkpk,p=E(|F|p) +

k

X

j=1

E(kDjFkpH⊗j),

whereDj denotes thejth iteration of the operatorD. Set D∞=∩p≥1∩k≥1 Dk,p. For any separable real Hilbert spaceV the spacesDk,p(V) ofV-valued functionals are introduced in a similar way.

We will denote by δ the adjoint of the operator D which is continuous fromDk,p(H) intoDk−1,p(H) for allp >1,k≥1.

The following results are proved in [6, Lemma 1.4.2, Lemma 2.4.2]. Lemma 2.1 Suppose that a set A ∈ F verifies 1A ∈ D1,1. Then P(A) is

zero or one.

Lemma 2.2 Let{Fn, n ≥1} ∈ D1,p, p > 1 be a sequence of random

vari-ables converging to F in Lp. Suppose that supnkDFnkLp(Ω;H) <∞. Then

F ∈ D1,p, and there exists a subsequence {Fn(i), i≥ 1} which converges to F in the weak topology of Lp(Ω;H).

The spaces D1,p are stable under the composition with Lipschitz func-tions. More precisely, we have the following result ([5, Proposition 1.2.3]): Proposition 2.1 Letφ:Rm →R be a function such that

|φ(x)−φ(y)| ≤K|x−y|

for any x, y∈Rm. Suppose that G= (G1, G2, . . . , Gm) is a random vector

whose components belong to the space D1,p, p > 1. Then φ(G) belongs to D1,p, and there exists a random vector S = (S1, S2, . . . , Sm) bounded by K

such that

D(φ(G)) =

m

X

i=1

(4)

3

Connectivity of the set of positive density

Let us introduce the following condition of a random vectorF:

(H): F = (F1, F2, . . . , Fm) possesses a C2 density p with respect to the Lebesgue measure such that

M :=

Z

Rm|zsupx|≤1|∇

2p(z)|dx <+.

The main result of this section is the following theorem:

Theorem 3.1 Let F = (F1, F2, . . . , Fm) ∈ (D1,r)m, r > 2 be a random vector satisfying hypothesis (H). SetΓ ={x∈Rm :p(x)>0}. ThenΓ is a pathwise connected open set ofRm.

Proof: It is sufficient to prove that Γ is connected because an open con-nected set of Rm is pathwise connected. Let A be a connected component

of Γ.

For eachε >0, letfε : Rm →R+ be the function defined by :

fε(x) =

d(x, Ac) ε ∧1. That is,

fε(x) =

    

d(x,Ac)

ε if 0< d(x, Ac)< ε

1 if d(x, Ac) ε

0 if x∈Ac

This implies clearly thatfεis a Lipschitzian function with Lipschitz constant

1

ε.

Set Φε=fε(F). Using Proposition 2.1 withφ=fε,G =F and p=r,

it is clear that the functional Φε belongs toD1,r and its derivative is given

by the formula :

DΦε= m

X

i=1 SiDFi

where theSi verify

q Pm

i=1Si2 ≤ 1ε. These random variables cancel almost

surely outside the set {0< d(F, Ac) < ε} because DΦε(F) = 0 a.s. on the

two sets : {F ∈ Ac} and {d(F, Ac) ε}, due to the local property of the

(5)

Clearly Φε converges a.s. and in Lp for each p ≥1 to 1A(F) as ε goes

to zero. Hence, if we prove that sup the proof will be complete.

Let us prove the uniform estimate (3.3) for the derivatives. We have :

||DΦε||H ≤

1

ε||DF||H1{0<d(F,Ac)<ε}. H¨older’s inequality implies that for every 1≤p≤r :

E[||DΦε||pH]≤

x belongs to the boundary of A. This impliesp(¯x) = 0 which corresponds to a minimum of the functionp, so∇p(¯x) = 0. Using the Tayor expansion, we can write :

Coming back to the estimate and using hypothesis (H), we have :

(6)

4

Appendix

We give here a sufficient condition for (H). Letγbe the Malliavin covariance matrix ofF:

γij =hDFi, DFjiH.

Proposition 4.1 Suppose that there exist real numberss1 ands2 depending

onm such that F satisfies:

(i) (detγ)−1 ∈Ls1

(ii) F ∈Dm+3,s2.

Then (H) is fulfilled.

Proof: We decompose the integral appearing in (H) into 2m integrals on

each of the 2m quadrants ofRm:

We takeQnas a generic quadrant ofRm that we write as (using an eventual permutation of coordinates):

Qn={x1 ≥0,· · ·, xk≥0, xk+1≤0,· · ·, xm≤0}.

(7)

where

, where 1kis the point with firstkcoordinates equal to

−1 and them−kremaining coordinates equal to 1. So, we have to evaluate for alli, j= 1, . . . , m

By Fubini’s theorem we obtain

Mnij =E

consequence, we can estimateMij n by

Mnij ≤cmE(|Hij|(|F|m+ 1)),

and by H¨older’s inequality we get

(8)

where

Tk= m

X

j=1

(γ−1)kjDFj.

As a consequence,

kH1(1)kq≤cqkT1kD1,q(H),

kH2◦H1(1)kq≤c2qkT2kD1,2q(H)kT1kD2,2q(H),

and by iteration,

kHi◦Hj◦Hm◦ · · · ◦H1(1)kq

≤cmq+2kTikD1,2q(H)kTjkD2,2q(H)kTmkD3,4q(H)· · · kT1kDm+2,2m+1q(H).

This estimate completes the proof of the proposition.

We could specify the exponents s1 and s2 appearing in the statement of Proposition 4.1. To do this it suffices to estimatekTkkDm+2,2m+1q(H) by

Sobolev norms ofF and Lp norms of (detγ)−1.

References

[1] G. Ben Arous and R. L´eandre: Annulation plate du noyau de la chaleur. C. R. Acad. Sci. Paris 312(1991) 463–464.

[2] S. Fang: Une in´egalit´e isop´erim´etrique sur l’espace de Wiener. Bull. Sciences Math. 112(1988) 345–355.

[3] S. Fang: On the Ornstein-Uhlenbeck process.Stochastics and Stochas-tics Reports 64(1994) 141-159.

[4] F. Hirsch and S. Song: Properties of the set of positivity for the density of a regular Wiener functional. Bull. Sciences Math. 121 (1997) 261-273.

[5] D. Nualart: The Malliavin calculus and related topics. Springer-Verlag, 1995.

Referensi

Dokumen terkait

Materi e-learning dikatakan sebagai enrichmen t (pengayaan),apabila kepada peserta didik yang dapat dengan cepat menguasai/memahami materi pelajaran yang disampaikan

Demikian pula dengan perusahaan ALPA SPAREPART yang memerlukan suatu sistem informasi yang dapat mengatasi keterlambatan dalam memperoleh informasi stok barang,

Dalam penelitian ini akan menggunakan proses pembelajaran sebagai acuan dan sebagai perbandingan dengan hasil dari pengenalan pola tanda tangan yang dilakukan

UNIT TAYANAN FENGADAAN. KELOMPOK KERIA

Secara sederhana yang dimaksud dengan penggunaan APD adalah seperangkat alat yang digunakan tenaga kerja untuk melindungi sebagian atau seluruh tubuhnya dari adanya potensi bahaya

[r]

pengelolaan zakat serta efisiensi kinerja keuangan BAZDA maka penulis memberikan saran sebagai berikut: a) Setelah diketahui program kerja BAZDA Kabupaten Lombok Timur

Results of the research has shown that simultaneously work motivations factor have significant influence on job satisfaction while individually, only salary and